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1 Intr oduction

Within theATAL community, thebelief-desire-intention(BDI) modelhascometo be
possiblythebestknownandbeststudiedmodelof practicalreasoningagents.Thereare
severalreasonsfor its success,but perhapsthemostcompellingarethattheBDI model
combinesa respectablephilosophicalmodelof humanpracticalreasoning,(originally
developedby MichaelBratman[1]), anumberof implementations(in theIRMA archi-
tecture[2] andthevariousPRS-likesystemscurrentlyavailable[7]), severalsuccessful
applications(includingthenow-famousfault diagnosissystemfor thespaceshuttle,as
well asfactoryprocesscontrolsystemsandbusinessprocessmanagement[8]), andfi-
nally, anelegantabstractlogical semantics,which have beentakenup andelaborated
uponwidely within theagentresearchcommunity[14, 16].

However, it couldbearguedthattheBDI modelis now becomingsomewhatdated:
theprinciplesof thearchitecturewereestablishedin themid-1980s,andhaveremained
essentiallyunchangedsincethen.With the explosionof interestin intelligent agents
and multi-agentsystemsthat hasoccurredsince then, a greatmany other architec-
tureshave beendeveloped,which, it could be argued,addresssomeissuesthat the
BDI modelfundamentallyfails to. Furthermore,thefocusof agentresearch(andAI in
general)hasshiftedsignificantlysincetheBDI modelwasoriginally developed.New
advancesin understanding(suchas Russelland Subramanian’s model of “bounded-
optimal agents”[15]) have led to radicalchangesin how the agentscommunity(and
moregenerally, theartificial intelligencecommunity)views its enterprise.

The purposeof this panelis thereforeto establishhow the BDI modelstandsin
relationto othercontemporarymodelsof agency, andwhereit shouldgonext.



2 Questionsfor the Panelists

Thepanelists(Georgeff, Pell,Pollack,andTambe)wereaskedto respondto thefollow-
ing questions:

1. BDI andothermodelsof practical reasoningagents.
Several othermodelsof practicalreasoningagentshave beensuccessfullydevel-
opedwithin the agentresearchand developmentcommunityand AI in general.
Examplesinclude(of course!)theSoarmodelof humancognition,andmodelsin
which agentsareviewed asutility-maximizersin the economicsense.The latter
modelhasbeenparticularlysuccessfulin understandingmulti-agentinteractions.
So,how doesBDI standin relationto thesealternatemodels?Canthesemodelsbe
reconciled,andif sohow?

2. Limitationsof theBDI model.
Onecriticism of theBDI modelhasbeenthat it is not well-suitedto certaintypes
of behaviour. In particular, the basicBDI modelappearsto be inappropriatefor
building systemsthatmustlearnandadapttheir behaviour – andsuchsystemsare
becomingincreasinglyimportant.Moreover, thebasicBDI modelgivesno archi-
tecturalconsiderationto explicitly multi-agentaspectsof behaviour. More recent
architectures,(suchasInteRRaP[13] andTouringMachines[5]) do explicitly pro-
vide for suchbehavioursat thearchitecturallevel. So, is it necessaryfor anagent
model in general(andthe BDI model in particular)to provide for suchtypesof
behaviour (in particular, learningandsocialability)? If so,how cantheBDI model
beextendedto incorporatethem?Whatothertypesof behaviour aremissingat an
architecturallevel from theBDI model?

3. Next steps.
What issuesshouldfeatureat the top of the BDI researchagenda?How canthe
relationshipbetweenthetheoryandpracticeof theBDI modelbebetterunderstood
andelaborated?Programmingparadigmssuchas logic programminghave well-
definedandwell-understoodcomputationalmodelsthatunderpinthem(e.g.,SLD
resolution);BDI currentlydoesnot. So what sort of computationalmodelmight
serve in this role?Whatarethekey requirementsto take theBDI modelfrom the
researchlab to thedesktopof themainstreamsoftwareengineer?

3 Responseby Georgeff

Thepoint I wantedto makein thispanelwasthatthenotionsof complexity andchange
will haveamajorimpacton thewaywebuild computationalsystems,andthatsoftware
agents— in particular, BDI agents— provide the essentialcomponentsnecessaryto
copewith the realworld. We needto bring agentsinto mainstreamcomputerscience,
andtheonly way we cando thatis to clearlyshow how certainagentarchitecturescan
copewith problemsthatareintractableusingconventionalapproaches.

Mostapplicationsof computersystemsarealgorithmic,workingwith perfectinfor-
mation.But in ahighly competitiveworld,businessesneedsystemsthataremuchmore
complex thanthis — systemsthat areembeddedin a changingworld, with accessto
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only partialinformation,andwhereuncertaintyprevails.Moreover, thefrequency with
which thebehaviour of thesesystemsneedsto bechanged(asnew informationcomes
to light, or new competitive pressuresemerge), is increasingdramatically, requiring
computerarchitecturesandlanguagesthatsubstantiallyreducethecomplexity andtime
for specificationandmodification.In termsof Figure1, businessneedsaredriving to
the top right handcorner, andit is my contentionthatonly softwareagentscanreally
deliversolutionsin thatquadrant.

As we all know, but seemnot to have fully understood(at leastin theway physi-
cistshave) theworld is complex anddynamic,aplacewherechaosis thenorm,not the
exception.We alsoknow thatcomputationalsystemshave practicallimitations,which
limit theinformationthey canaccessandthecomputationsthey canperform.Conven-
tional softwaresystemsaredesignedfor staticworlds with perfectknowledge— we
areinsteadinterestedin environmentsthataredynamicanduncertain(or chaotic),and
wherethecomputationalsystemonly hasa localview of theworld (i.e.,haslimited ac-
cessto information)andis resourcebounded(i.e.,hasfinite computationalresources).
Theseconstraintshave certainfundamentalimplicationsfor the designof the under-
lying computationalarchitecture.In what follows, I will attemptto show thatBeliefs,
Desires,andIntentions,andPlansareanessentialpartof thestateof suchsystems.

Let usfirst considerso-calledBeliefs.In AI terms,Beliefsrepresentknowledgeof
theworld. However, in computationalterms,Beliefsarejust someway of representing
thestateof theworld, beit asthevalueof avariable,a relationaldatabase,or symbolic
expressionsin predicatecalculus.Beliefs areessentialbecausethe world is dynamic
(pasteventsneedthereforeto beremembered),andthesystemonly hasa localview of
theworld (eventsoutsideits sphereof perceptionneedto beremembered).Moreover,
asthesystemis resourcebounded,it is desirableto cacheimportantinformationrather
thanrecomputeit from baseperceptualdata.As Beliefsrepresent(possibly)imperfect



informationabouttheworld, theunderlyingsemanticsof theBelief componentshould
conform to belief logics, even thoughthe computationalrepresentationneednot be
symbolicor logicalatall.

Desires(or, morecommonlythoughsomewhatloosely, Goals)form anotheressen-
tial componentof systemstate.Again, in computationalterms,a Goalmaysimply be
thevalueof a variable,a recordstructure,or a symbolicexpressionin somelogic. The
importantpointis thataGoalrepresentssomedesiredendstate.Conventionalcomputer
softwareis ”taskoriented”ratherthan”goal oriented”;thatis, eachtask(or subroutine)
is executedwithout any memoryof why it is beingexecuted.This meansthat thesys-
tem cannotautomaticallyrecover from failures(unlessthis is explicitly codedby the
programmer)andcannotdiscover andmake useof opportunitiesasthey unexpectedly
presentthemselves.

For example,thereasonwe canrecover from a missedtrainor unexpectedflat tyre
is that we know wherewe are (throughour Beliefs) andwe rememberto wherewe
want to get (throughour Goals).The underlyingsemanticsfor Goals,irrespective of
how they arerepresentedcomputationally, shouldreflectsomelogic of desire.

Now thatweknow thesystemstatemustincludecomponentsfor BeliefsandGoals,
is that enough?More specifically, if we have decidedupon a courseof action (let’s
call it a plan), and the world changesin some(perhapssmall) way, what shouldwe
do — carry on regardless,or replan?Interestingly, classicaldecisiontheorysayswe
shouldalwaysreplan,whereasconventionalsoftware,beingtask-oriented,carrieson
regardless.Which is theright approach?

Figure2 demonstratestheresultsof anexperimentwith a simulatedrobottrying to
move arounda grid collectingpoints[11]. As the world (grid) is dynamic,the points
changevalueandcomeandgo asthe robot movesandplans— thusa plan is never
goodfor long.They axisof thegraphshowsrobotefficiency in collectingpoints,thex
axisthespeedof change(i.e.,therateatwhichthepointsin thegrid arechanging).The
“cautious”graphrepresentsthecasein which thesystemreplansat every change(i.e.,
asprescribedby classicaldecisiontheory),andthe “bold” graphin which thesystem
commitsto its plansand only replansat ”crucial” times. (The caseof conventional
software,whichcommitsto its plansforever, is notshown, but yieldshigherefficiency
than classicaldecisiontheory when the world changesslowly, but rapidly becomes
worsewhentheworld changesquickly). In short,neitherclassicaldecisiontheorynor
conventionaltask-orientedapproachesareappropriate— thesystemneedsto commit
to theplansandsubgoalsit adoptsbut mustalsobecapableof reconsideringtheseat
appropriate(crucial)moments.Thesecommittedplansor proceduresarecalled,in the
AI literature,Intentions, andrepresentthe third necessarycomponentof systemstate.
Computationally, Intentionsmaysimply bea setof executingthreadsin a processthat
canbe appropriatelyinterrupteduponreceiving feedbackfrom the possiblychanging
world.

Finally, for the samereasonsthe systemneedsto storeits currentIntentions(that
is, becauseit is resourcebound),it shouldalsocachegeneric,parameterizedPlansfor
usein futuresituations(ratherthantry to recreateeverynew planfrom first principles).
Theseplans,semantically, canbeviewedasaspecialkind of Belief,butbecauseof their
computationalimportance,aresensiblyseparatedout asanothercomponentof system
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state.

In summary, thebasiccomponentsof a systemdesignedfor a dynamic,uncertain
world shouldincludesomerepresentationof Beliefs,Desires,IntentionsandPlans,or
whathascometo becalledaBDI agent.I havesaidherenothingaboutthewayin which
thesecomponentsarecontrolledandmanaged,which is of coursecrucialto theway in
which BDI agentscopewith uncertaintyandchangein a way that is not possiblewith
conventionalsystems.Thereis muchin theliteratureaboutthis,andmany differentand
interestingapproaches.

Finally, becauseof the logical or physicaldistribution of informationandprocess-
ing, it is importantthatagentsystemsbedistributed,giving riseto so-calledmulti-agent
systems.Apartfromtheusualbenefitsprovidedby distributedsystems,multi-agentsys-
temsalsohavethesubstantialbenefitof containingthespreadof uncertainty, with each
agentlocally dealingwith theproblemscreatedby anuncertainandchangingworld.



4 Responseby Pollack

I wantto begin by clarifying thedistinctionbetweenthreethings:

– Modelsof practicalreasoningthatemploy thefolk-psychologyconceptsof belief,
desire,andintention,perhapsamongothers.Let’scall theseBelief-Desire-Intention
(BDI) models.

– ParticularBDI modelsthatcenteronclaimsoriginally propoundedby Bratman[1]
aboutthe role of intentionsin focusingpracticalreasoning.Specifically, Bratman
arguedthat rationalagentswill tendto focustheir practicalreasoningon the in-
tentionsthey have alreadyadopted,andwill tendto bypassfull considerationof
optionsthatconflictwith thoseintentions.Let’scall thisBratman’sClaim,andlet’s
call computationalmodelsthatembodythis claim IRMA models(for the“Intelli-
gentResource-BoundedMachineArchitecture”describedin [2]).

– The ProceduralReasoningSystem(PRS)[7, 6], a programmingenvironmentfor
developingcomplex applicationsthat executein dynamicenvironmentsandcan
bestbespecifiedusingBDI concepts.

OnecanrejectBratman’s Claim, but still subscribeto the view that BDI models
areuseful;theconverse,of course,is not true.1 And while it is possibleto build a PRS
applicationthatrespectsBratman’sClaim — indeed,asmentionedin theIntroduction,
several successfulapplicationshave donejust this — it is alsopossibleto build PRS
applicationsthat embodyalternative BDI models.It is up to the designerof a PRS
applicationto specifyhow beliefs,desires,andintentionsaffect andareinfluencedby
theapplication’s reasoningprocesses;thereis no requirementthat thesespecifications
conformto Bratman’sClaim.

Thequestionssetout in theIntroductionmight in principlebeaskedof eachof the
threeclassesof entity underconsideration:BDI models,IRMA models,or PRS-based
applications.However, I think it makesthemostsensehereto interpretthemasbeing
addressedat IRMA models,in part becausetheseare the mostspecificof the three
classes(it wouldbedifficult to addressall BDI modelswithin a few pages),andin part
becauseIRMA modelshave received significantattentionwithin the AI community,
both in their realizationin severalsuccessfulapplications,andin a numberof detailed
formalmodels.

Bratman’s Claim addressesat a particular, albeitcentral,questionin practicalrea-
soning:how cananagentavoid gettinglost in themorassof optionsfor actionavailable
to it?2 Theformationof intentionsandthecommitmentstherebyentailedareseenasa
mechanism— possiblyoneamongstmany — for constrainingthesetof optionsabout
which an agentmust reason.Practicalreasoningtaskssuchas means-endreasoning

1 However, onecould rejectall BDI models,including IRMA ones,arguing that they have no
explanatoryvalue.Thedebateover this questionhasragedin thephilosophicalliterature;see,
e.g.,CarrierandMachamer[3, Chap.1-3].

2 Bratmanactuallycameat thingstheotherway round.He wonderedwhy humansformedin-
tentionsandplans,andconcludedthat doing so providesthemwith a way of focusingtheir
practicalreasoning.



andtheweighingof alternativesremainimportantfor IRMA agents.But IRMA agents’
intentionshelpfocusthesereasoningtasks.

In responseto the first questionposed,then,it seemsclearthat bothSoarandthe
utility maximizationmodelsincludeimportantideasthatcanpotentiallybeintegratedin
anIRMA agent.As justnoted,IRMA agentsstill needto performmeans-endreasoning
(in a focusedway), and Soar, with its chunkingstrategies,canmake the means-end
reasoningprocessmoreefficient.Again, IRMA agentsstill needto weighalternatives
(in a focusedway),andto do this they mayusethetechniquesstudiedin theliterature
on economicagents.It hasbeengenerallyacceptedfor many yearsthatagentscannot
possiblyperformoptimizationsover the spaceof all possiblecoursesof action[17].
Bratman’s Claim is aimedpreciselyat helpingreducethatspaceto make therequired
reasoningfeasible.

Thesecondquestionconcernsthedevelopmentof techniquestoenableIRMA agents
to learnandto interactsocially. Certainly, if Bratman’s Claim is a viableone,thenit
mustbepossibleto designIRMA agentswho canlearnandcaninteractwith onean-
other. However, all that is requiredis thatBratman’s Claim becompatiblewith (some)
theoriesof learningandsocialinteraction:Bratman’s Claim itself doesnot have to tell
usanything aboutthesecapabilities.3 To date,I seeno evidencethat thereis anything
in eitherBratman’s Claim or its interpretationin IRMA modelsthat would make an
IRMA agentinherentlypoorlysuitedto learningor socialinteraction.

The third questionasksaboutan appropriateresearchagendafor thoseinterested
in IRMA models.Whatseemsmostcrucial to me is thedevelopmentof computation-
ally soundaccountsof thevariouspracticalreasoningtasksthatmustbeperformedby
IRMA agents.Therehasbeenagreatdealof attentionpaidto questionsof commitment
andintentionrevision,andthis is not surprising,giventhat thesequestionsarecentral
to Bratman’s Claim. But thereareother reasoningtasksthat all IRMA agentsmust
performaswell. For example,they mustdeliberateaboutalternatives that areeither
compatiblewith theirexistingplansor have“triggeredanoverride”[2]); recently, John
Horty andI have beendevelopingmechanismsfor weighingalternativesin thecontext
of existingplans[10]. Anotherexampleis hintedat in my earliercomments:all IRMA
agentsneedto be able to performmeans-endreasoning.But unlike standardmeans-
endreasoningin AI (plan generation),an IRMA agentmustdo this reasoningtaking
accountits existingplans.Work onplanmerging,notablythatof Yang[18], mayberel-
evanthere.Onefinal example:IRMA agentsmustbecapableof committingto partial
plans.If they wererequiredalwaysto form completeplans,they would over-commit,
andfilter out too many subsequentoptionsasincompatible.But this thenentailsthat
IRMA agentsmusthave a way of decidingwhento adddetailto their existingplans—
whento commit to particularexpansionsof their partialplans.To my knowledge,this
questionhasnotbeeninvestigatedyet.

In addressingquestionslike these,we needto focus,at leastfor now, on the de-
velopmentof computationallysoundmechanisms:algorithmsand heuristicsthat we
canemploy in building IRMA agents(perhapsusingPRS).Formalunderpinningscan,
andif at all possible,shouldaccompany thesemechanisms,but unlessthey underpin

3 However, it mightcontributeto them;see,e.g.,Ephratietal. [4] for somepreliminarywork on
usingtheintention-commitmentstrategy in multi-agentsettingsto increasecooperation.



specificalgorithmsandheuristicsthey seemunlikely to havemuchimpact.

5 Responseby Tambe

I wasinvitedonthispanelasarepresentativeof theSoargroupwith particularinterests
in multi-agentsystems.Thus,in this short response,I will mainly focuson the rela-
tionshipbetweenSoarandBDI models.For thesakeof simplicity, onekey assumption
in my responseis consideringPRS,dMARS, andIRMA to be the paradigmaticBDI
architectures.Of course,it alsoshouldbeunderstoodthatdespitemy twelve yearsof
researchusingSoar, I alonecannotpossiblycaptureall of the diversesetof views of
Soarresearchers.

I will begin hereby first pointing out the commonalityin SoarandBDI models.
Indeed,theSoarmodelseemsfully compatiblewith theBDI architecturesmentioned
above.To seethis, let usconsidera very abstractdefinitionof theSoarmodel.Soaris
basedon operators,which aresimilar to reactive plans,andstates(which includeits
highest-level goalsandbeliefsaboutits environment).Operatorsarequalifiedby pre-
conditionswhich helpselectoperatorsfor executionbasedon anagent’s currentstate.
Selectinghigh-level operatorsfor executionleadsto subgoalsandthusa hierarchical
expansionof operatorsensues.Selectedoperatorsarereconsideredif their termination
conditionsmatchthe state.While this abstractdescriptionignoressignificantaspects
of the Soararchitecture,suchas(i) its meta-level reasoninglayer, and(ii) its highly
optimizedrule-basedimplementationlayer, it will sufficient for thesake of definingan
abstractmappingbetweenBDI architecturesandSoarasfollows:

1. intentionsareselectedoperatorsin Soar;
2. beliefsareincludedin thecurrentstatein Soar;
3. desiresaregoals(includingthosegeneratedfrom subgoaledoperators);and
4. commitmentstrategiesarestrategiesfor definingoperatorterminationconditions.

For instance,operatorsmaybeterminatedonly if they areachieved,unachievable
or irrelevant.

Bratman’sinsightsabouttheuseof commitmentsin plansareapplicablein Soaraswell.
For instance,in Soar, a selectedoperator(commitment)constrainsthe new operators
(options)that theagentis willing to consider. In particular, theoperatorconstrainsthe
problem-spacethat is selectedin its subgoal.This problem-spacein turn constrains
thechoiceof new operatorsthatareconsideredin thesubgoal(unlessa new situation
causesthe higher-level operatoritself to be reconsidered).Interestingly, suchinsights
haveparallelsin Soar. For instance,Newell hasdiscussedat lengththerole of problem
spacesin Soar.

Both SoarandBDI architectureshave by now beenappliedto several large-scale
applications.Thus,they shareconcernsof efficiency, real-time,andscalabilityto large-
scaleapplications.Interestingly, even the applicationdomainshave also overlapped.
For instance,PRSanddMARS have beenappliedin air-combatsimulation,which is
alsooneof thelarge-scaleapplicationsfor Soar.

Despitesuchcommonality, therearesomekey differencesin SoarandBDI models.
Interestingly, in thesedifferences,the two modelsappearto complementeachother’s



strengths.For instance,Soarresearchhastypically appealedto cognitive psychology
and practicalapplicationsfor rationalizingdesigndecisions.In contrast,BDI archi-
tectureshave appealedto logic andphilosophy. Furthermore,Soarhasoften takenan
empiricalapproachto architecturedesign,wheresystemsarefirst constructedandsome
of the underlyingprinciplesareunderstoodvia suchconstructedsystems.Thus,Soar
includesmodulessuchaschunking,a form of explanation-basedlearning,anda truth
maintenancesystemfor maintainingstateconsistency, which asyet appearto be ab-
sentfrom BDI systems.In contrast,theapproachin BDI systemsappearsto beto first
clearlyunderstandthelogicalor philosophicalunderpinningsandthenbuild systems.

Basedon theabove discussion,it would appearthat thereis tremendousscopefor
interactionin theSoarandBDI communities,with significantopportunitiesfor cross-
fertilizationof ideas.BDI theoriescouldpotentiallyinform andenrichtheSoarmodel,
while BDI theoristsandsystembuildersmaygainsomenew insightsfromSoar’sexper-
imentswith chunkingandtruth maintenancesystems.Yet, thereis anunfortunatelack
of awarenessexhibited in both communitiesabouteachothers’research.The danger
hereis thatbothcouldendupreinventingeachothers’work in differentdisguises.

In my own work, I haveattemptedto bridgethisgap,roughlybasedonthemapping
definedabove. For instance,CohenandLevesque’s researchon joint intentions[12],
and Groszand Kraus’s work on SHAREDPLANS [9] hassignificantly influencedthe
STEAM systemfor teamwork,which I havedevelopedin Soar. However, this is justone
suchattempt.This paneldiscussionwasanexcellentstepto attemptto bridgethis gap
in general.
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