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Overview

• Multiagent models for partially observable environments:
◮ Non-communicative models.
◮ Communicative models.
◮ Game-theoretic models.
◮ Some algorithms.

• Talk based on survey by Frans Oliehoek (2006).
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The Dec-Tiger problem

• A toy problem: decentralized tiger (Nair et al., 2003).

• Two agents, two doors.

• Opening correct door: both receive treasure.

• Opening wrong door: both get attacked by a tiger.

• Agents can open a door, or listen.

• Two noisy observations: hear tiger left or right.

• Don’t know the other’s actions or observations.
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Multiagent planning frameworks

Aspects:

• communication

• on-line vs. off-line

• centralized vs. distributed

• cooperative vs. self-interested

• observability

• factored reward
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Partially observable stochastic games

Partially observable stochastic games (POSGs) (Hansen et al.,
2004):

• Extension of stochastic games (Shapley, 1953).

• Hence self-interested.

• Agents do not observe each other’s observations or actions.
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POSGs: definition

• A setI = {1, . . . , n} of n agents.

• Ai is the set of actions for agenti.

• Oi is the set of observations for agenti.

• Transition modelp(s′|s, ā) whereā ∈ A1 × . . . × An.

• Observation modelp(ō|s, ā) whereō ∈ O1 × . . . × On.

• Reward functionRi : S × A1 × . . . × An → R.

• Each agents maximizesE
[

∑

h

t=0
γtRt

i

]

.

• Policyπ = {π1, . . . , πn}, with πi : ×t−1(Ai × Oi) → Ai.
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Decentralized POMDPs

Decentralized partially observable Markov decision processes
(Dec-POMDPs) (Bernstein et al., 2002):

• Cooperative version of POSGs.

• Only one reward, i.e., reward functions are identical for each
agent.

• Reward functionR : S × A1 × . . . × An → R.

Dec-MDPs:

• Jointly observable Dec-POMDP: joint observation
ō = {o1, . . . , on} identifies the state.

• But each agents only observesoi.

MTDP (Pynadath and Tambe, 2002): essentially identical to Dec-
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Interactive POMDPs

Interactive POMDPs (Gmytrasiewicz and Doshi, 2005):

• For self-interested agents.

• Each agents keeps a belief over world states and other
agents’ models.

• An agent’s model: local observation history, policy,
observation function.

• Leads to infinite hierarchy of beliefs.
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Communication

• Implicit or explicit.

• Implicit communication can be modeled in
“non-communicative” frameworks.

• Explicit communication Goldman and Zilberstein (2004):
◮ informative messages
◮ commitments
◮ rewards/punishments

• Semantics:
◮ Fixed: optimize joint policy given semantics.
◮ General case: optimize meanings as well.

• Potential assumptions: instantaneous, noise-free, broadcast
communication.
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Dec-POMDPs with communication

Dec-POMDP-Com (Goldman and Zilberstein, 2004)

• Dec-POMDP plus:

• Σ is the alphabet of all possible messages.

• σi is a message sent by agenti.

• CΣ : Σ → R is the cost of sending a message.

• Reward depends on message sent:
R(s, a1, σ1, . . . , an, σn, s′).

• Instantaneous broadcast communication.

• Fixed semantics.

• Two policies: for domain-level actions, and for
communicating.

• Closely related model: Com-MTDP (Pynadath and Tambe,
2002). 10/18



Extensive form games

8-card poker:
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Extensive form games (1)

Extensive form games:

• View a POSG as a game tree.

• Agents act on information sets.

• Actions are taken in turns.

• POSGs are defined over world states, extensive form games
over nodes in the game tree.
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Dec-POMDP complexity results

Observability

Communication fully jointly partial none

none P NEXP NEXP NP

general P NEXP NEXP NP

free, instantaneous P P PSPACE NP
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Dynamic programming for POSGs

• Dynamic programming for POSGs (Hansen et al., 2004).

• Uncertainty over state and the other agent’s future
conditional plans.

• Define value functionVt over state and other agent’s depth-t

policy trees: a|S| vector for each pair of policy trees.

• Computing thet + 1 value function requires backing up all
combinations of all agents’ depth-t policy trees.
⇒ Prune (very weakly) dominated strategies.

• Optimal for cooperative settings (DEC-POMDP).

• Still infeasible for all but the smallest problems.
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(Approximate) DEC-POMDP solving

• Extra assumptions: e.g., independent observations, factored
state representation, local full observability (DEC-MDP),
structure in the reward function.

• Optimize one agent while keeping others fixed, and iterate.
⇒ Settle for locally optimal solutions.

• Free communication turns problem into a big POMDP.
⇒ Find good on-line communication policy.

• Add synchronization action (Nair et al., 2004).

• Belief over belief tree (Roth et al., 2005).
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Some algorithms

Joint Equilibrium based Search for Policies (Nair et al., 2003)

• Use alternating maximization.

• Converges to Nash equilibrium, which is a local optimum.

• Keeps belief over state and other agents’ observation
histories.

• This POMDP is transformed to an MDP over the belief
states, and solved using value iteration.
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Some algorithms (1)

Set-Coverage algorithm Becker et al. (2004):

• For transition-independent Dec-MDPs with a particular joint
reward structure.

Bounded Policy Iteration for Dec-POMDPs (Bernstein et al.,
2005):

• Optimize a finite-state controller with a bounded size.

• Alternating maximization.
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