Homework: Due October 31, 2007

Problem 1: Concurrent programming in Java

Consider an airplane control system which is composed of three control signals:

· Pitch (movement of the note up or down)

· Roll (rotation along a longitudinal axis)

· Yaw (rotation along a vertical axis)

Implement an AirplaneControl class, which encapsulates these values. Implement five other classes, implementing the Runnable interface which can read or write these values as follows:
· BlackBox – can read the values (and record them)

· Pilot – can read and write

· CoPilot – can read and write

· QualifiedPassenger – can read and write

· AutoPilot – can read and write.

Discuss the issues of atomicity in this application. Implement an application which implements the scenario from the movie “Airplane!”:
-the airplane is controlled by the Pilot, the CoPilot reads the controls.

-the Pilot falls sick, the plane is taken over by the CoPilot

-the CoPilot falls sick.

-after some time while the plane is not under the control of any thread, the AutoPilot takes over.

-the QualifiedPassenger takes over from the AutoPilot, lands the plane and relinguishes control.
-the AutoPilot takes over the plane, which takes off again.

-during all this time, the BlackBox records the actions.

Naturally, this is not quite a fully specified problem. I leave it to your creativity of how do you implement, for instance, the “handling over control” problem. Also, you might want to consider the effect of the environment: for instance, there might be random changes in the pitch, roll, yaw due to wind, etc. The pilots need to correct this to get back to the values they want. But certainly you want to make sure that there will be no situation where the Pilot changes the pitch and the AutoPilot changes the roll. Also, the BlackBox always needs to perform a consistent reading, so you should never record the result of a partial write.
Problem 2: Real time Java

Implement using the RTSJ framework the following functionality:

(a) Create a “job” of configurable difficulty and memory requirements, which you can instantiate like this:

String label = “JobType”;

long memoryReq = 5000;

long difficulty = 10000;

Job n = new Job(label, memoryReq, difficulty);

n.doTheJob();

The memory should be actually allocated and “touched” in the doTheJob function. The difficulty should be proportional to the number of instructions necessary to do the job.
(b) Through experimentation, find memoryReq and difficulty values such that the “doTheJob()” function will takes any desired value between 0.1 sec and 10 sec.

(c) Implement an application which runs two types of jobs “Job1” and “Job2” through aynchronous event handling. Job1 should be run every 5 seconds while Job2 every 2 seconds.

(d) Run a series of experiments through which Job1 has a constant time required of 1sec, while the time required by Job2 increases from 0.1 to 10 seconds. Discuss you observations.
(e) Set the priority of the two jobs at different priority levels, repeat the experiments in (d), discuss the observations.

(f) Run the programs in such a way that the memory is allocated using different types of memory (ImmortalMemory, ScopedMemory etc). Repeat the experiments in (d), discuss observations.

Problem 2 – alternative homework for people who do not have access to a Linux machine:
Read the paper “The synchronous data flow programming language LUSTRE” by N. Halbwachs, P. Caspi, P. Raymond and D. Pilaud.

Submit an 800 word summary and two examples of code which are based on variations of code examples from the paper: indicate what the original code is doing, and how your modifications affect the code snippet.

