[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

31]

32]

33]

D. Pierce. Learning a set of primitive actions with an uninterpreted sensorimotor ap-
paratus. In Proceedings of the FEighth International Workshop on Machine Learning,
pages 338-342. Morgan Kaufmann, 1991.

J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81-106, 1986.

R. Rivest and R. Schapire. Inference of finite automata using homing sequences. In
Proceedings of the 21st Annual ACM Symposium on Theory of Computing, pages 364—
375, 1989.

C. Sammut and J. Cribb. Is learning rate a good performance criterion for learning.
In Proceedings of the Seventh International Conference on Machine Learning. Morgan
Kaufmann, 1990.

S. Singh. Transfer of learning across compositions of sequential tasks. In Proceedings
of the Eighth International Workshop on Machine Learning, pages 348-352. Morgan
Kaufmann, 1991.

R. Sutton. Temporal credit assignment in reinforcement learning. PhD thesis, University
of Massachusetts, Amherst, 1984.

R. Sutton. Learning to predict by the method of temporal differences. Machine Learning,
3:9-44, 1988.

R. Sutton. Integrated architectures for learning, planning, and reacting based on approx-
imating dynamic programming. In Proceedings of the Seventh International Conference
on Machine Learning, pages 216-224. Morgan Kaufmann, 1990.

M. Tan and J. Schlimmer. Cost-sensitive concept learning of sensor use in approach and
recognition. In Proceedings of the Sizth International Workshop on Machine Learning,
1989.

C. Watkins. Learning from Delayed Rewards. PhD thesis, King’s College, 1989.

S. Whitehead. A complexity analysis of cooperative mechanisms in reinforcement learn-
ing. In Proceedings of the Ninth AAAL 1991.

S. Whitehead and D. Ballard. Active perception and reinforcement learning. In Pro-
ceedings of the Seventh International Conference on Machine Learning, pages 179-188.
Morgan Kaufmann, 1990.

L. Wixson. Scaling reinforcement learning techniques via modularity. In Proceedings
of the Eighth International Workshop on Machine Learning, pages 368-372. Morgan
Kaufmann, 1991.

49

[5]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

K. Chan and A. Wong. Performance analysis of a probabilistic inductive learning system.
In Proceedings of the Seventh International Conference on Machine Learning, pages 16—
23. Morgan Kaufmann, 1990.

D. Chapman and L. Kaelbling. Learning from delayed reinforcement in a complex
domain. In Proceedings of the IJCAIL 1991.

A. Christiansen, T. Mason, and T. Mitchell. Learning reliable manipulation strategies
without initial physical models. In Proceedings of the IEEE Conference on Robotics and
Automation, pages 1224-1230. Morgan Kaufmann, 1990.

J. Connell. Minimalist Mobile Robotics: A Colony-style Architecture for an Artificial
Creature. Academic Press, 1990. Also available as MIT AI TR 1151.

G. Dejong and R. Mooney. Explanation-Based Learning: An alternative view. Machine
Learning, 1(2):145-176, 1986.

G. Drescher. Made-up Minds: A Constructivist Approach to Artificial Intelligence. PhD
thesis, MIT, 1990.

L. Kaelbling. Learning in Embedded Systems. PhD thesis, Stanford University., 1990.

L. Lin. Self-improving reactive agents: Case studies of reinforcement learning frame-
works. Technical Report CMU-CS-90-109, Carnegie-Mellon University., 1990.

L. Lin. Programming robots using reinforcement learning and teaching. In Proceedings

of the Ninth AAAIL 1991.

P. Maes and R. Brooks. Learning to coordinate behaviors. In Proceedings of the Eighth
AAAI pages 796-802. Morgan Kaufmann, 1990.

D. Michie and R. Chambers. Boxes: An experiment in adaptive control. In E. Dale and
D. Michie, editors, Machine Intelligence 2. Oliver and Boyd, 1968.

T. Mitchell. Generalization as search. Artificial Intelligence, 18(2):203-226, 1982.

T. Mitchell. Towards a learning robot. Technical Report CMU-CS-89-106, Carnegie-
Mellon University., 1989.

T. Mitchell, R. Keller, and S. Kedar-Cabelli. Explanation-Based Generalization: A
unifying view. Machine Learning, 1(1), 1986.

H. Moravec and A. Elfes. High resolution maps from wide angle sonar. In Proceedings of
the IEEE International Conference on Robotics and Automation, pages 116-121, 1985.

D. Pierce. Learning hill-climbing functions as a strategy for generating behaviors in
a mobile robot. In Proceedings of the First International Conference on Simulation of
Adaptive Behavior: From Animals to Animats, pages 327-336, 1990.

48

with reinforcement learning. We are currently experimenting with a scrolling occupancy
grid sonar sensor [19]. This generates a 12 by 12 array of numerical probability values rep-
resenting which areas around the robot are likely to be solid objects. We are investigating
the effectiveness of the clustering method in this new state space, as well as comparing it
with several alternative schemes such as neural nets. As for the temporal credit assignment
problem, one approach to combating this is to use a hybrid architecture which adds a sym-
bolic layer above subsumption. This new layer would deal with larger temporal chunks, and
propagate rewards across events instead of actions. As for the initial task specification issue,
we are studying ways of inferring appropriate reward functions from instances of good and
bad situations.

In conclusion, although there are some difficult problems with using reinforcement learn-
ing to program real robots, it does appear to be a promising approach. It does not require
intimate knowledge of the structure of the robot or of the environment. The robot does not
need constant supervision, which is good for inaccessible environments such as underwater
or outer space. Furthermore, one does not require any operational knowledge about how to
do the task, but only whether one is getting better or worse over some finite time interval.

12 Acknowledgements

We thank Sanjaya Addanki for encouraging us to write the paper. Norm Haas helped debug
our software, and took OBELIX’s photograph. Alka Indurkhya assisted us in collecting and
analyzing data from the simulator and the real robot. Rick Kjeldsen wrote the software for
displaying the graphs. Pandurang Nayak helped analyze the clustering algorithm. Many
of our colleagues provided valuable feedback on an earlier version of our paper, including
Richard Sutton, Nils Nilsson, Steve Whitehead, Leslie Kaelbling, Long-Ji Lin, Ming Tan,
Maja Mataric, Armand Prieditis, and Prasad Tadepalli. Finally, we thank the reviewers for
their comments on the paper.

References

[1] J. Albus. Brains, Behaviors, and Robotics. BY TE Books, 1981.

[2] A. Barto, R. Sutton, and C. Anderson. Neuronlike adaptive elements that can solve dif-
ficult learning control problems. IEEFE Transactions on Systems, Man, and Cybernetics,
13(5):834-846, 1983.

[3] R. Brooks. A robust layered control system for a mobile robot. IEEE Journal of Robotics
and Automation, 2(1), 1986.

4] R. Brooks. e behavior language: User’s guide. lTechnical Report emo 1227,
R. Brooks. The behavior language: User’s guide. Technical R Al M 7
MIT, 1990.

47

poral decomposition of sequential tasks, such as “go to place A and then go to place B”. His
system automatically strings together simple, already-learned subtasks in order to achieve
some more complex goal. The particular task domain is a simple simulated 8 by 8 static grid

environment; it remains to be seen whether his approach can be scaled up to a real robot
task.

11 Conclusions and Future Work

This paper attempts to empirically substantiate two claims. One, reinforcement learning
is a viable approach to learning individual modules in a behavior based robot. Two, using
a subsumption architecture is superior to using a monolithic architecture in reinforcement
learning. We have provided detailed experimental evidence that support these claims us-
ing real and simulated robots which learn several component behaviors in a task involving
pushing boxes.

Based on our experience with using reinforcement learning on real robots, we think the
hard subproblems in reinforcement learning have to do with dealing with large sensory state
spaces, long action sequences, and initial task specification.

Sensors on a real robot can potentially generate a lot more than the handful of bits we
used. For example, the sonar system on OBELIX normally generates more than 1000 bits
every tenth of a second. We manually compress this information (using range bins) down
to a mere 18 bits every 5 seconds (time to take an action). Good preprocessing techniques
are still somewhat of an art, and do not currently exist for many sensory systems. It would
be more convenient if the reinforcement learning techniques could actually do some of the
interpretation of the sensory information. However, this obviously exacerbates the structural
credit assignment problem in reinforcement learning.

Action spaces on a real robot are usually discretized much more finely than the small set
used by OBELIX. For example, OBELIX can carry out fairly complicated maneuvers, such as
turning through an arbitrary angle while moving forwards or backwards at an arbitrary speed.
Once again we discretized the action space on OBELIX down to a mere 5 actions. However,
the temporal credit assignment problem becomes much more difficult as the branching factor
of the action space increases.

Specifying a reinforcement learning task to a robot requires partioning the task into
simpler subtasks, and writing reward functions for each subtask. Obviously, there may be
several ways of decomposing a given task, and coming up with a good decomposition is a
non-trivial problem. In particular, it is difficult to choose reward functions for the subtasks
that when individually optimized translate into optimal performance on the overall task.

There are examples of each of the above problems in the box pushing task. The robot
never really learned any method for distinguishing boxes from walls, such as using the width
of the object in front of the robot. Also, it never was able to push a box to a wall, and then go
around to the side and push the box to a corner. Finally, although the clustering algorithm
does as well or better than the weighted Hamming algorithm on each of the subtasks of the
box pushing task, it does not push as many boxes overall.

We plan to extend our work in several directions to address some of the above problems

46

and grasping strategies for picking up objects. Our work differs from these in that we are
applying clustering in the context of reinforcement learning.

Chapman and Kaelbling [6] describe a splitting technique that seems to be an interesting
dual to our clustering technique. The basic idea is to start with completely indistinguishable
state descriptions, and then start differentiating between them by splitting on the values of
certain state variables.

The weighted Hamming technique is similar to techniques like CMAC [1] that generalize
across state vectors. The pole balancing example mentioned in Section 3 has been extensively
studied in reinforcement learning. Barto et. al. [2] extend the earlier BOXES algorithm [15]
in their ACE/ASE system using a temporal differencing technique.

Our work also draws on earlier research on behavior-based robots using the subsumption
architecture [3]. The particular definition of modules we used in Section 4 derives from
Connell’s thesis [8]. The main difference is that we are studying how to automatically
program such robots by having them learn new behaviors.

Mitchell’s task [17] of sliding a block using a finger contact served as the inspiration for
the box pushing task. His approach involves using a partial qualitative physics domain theory
to explain failures in sliding the block, which are then generalized into rules. Our approach
instead uses an inductive trial and error method to improve the robot’s performance at the
task. Christiansen et. al. [7] describe a similar trial and error inductive approach for learning
action models in a tile sliding task.

Rivest and Schapire [23] describe a technique for learning a task environment in the form
of a finite state machine. Their approach could be applied to our problem by learning the
physics of the box pushing task (that is, how the world changes as the robot moves around in
it). One problem with their approach is that it is not sensitive to the particular task being
performed by the robot. Since there are many features of the robot’s environment that
are unrelated to its task of pushing boxes, their learning technique may spend lots of time
learning parts of the environment not related to the task. Their technique also throws out
most of the learned world structure every time it discovers a discrepancy, and thus requires
on the order of a million steps to learn relatively simple environments.

Kaelbling [11] describes some work on using reinforcement learning in the context of a
mobile robot. The task was to move towards a bright light. Her task is much simpler than
ours since the input space is only 4 bits, as opposed to 18 bit in our case. Another difference
is that we use the subsumption structure to speed up the convergence of the learning. Finally,
much of her experimental data seems to be derived from a simulator.

Maes and Brooks [14] describe a technique for learning to coordinate existing behaviors
in a behavior-based robot. Their work is complementary to our own. In our case new
behaviors are learned assuming a priority ordering to coordinate the behaviors. In their
case, the behaviors are known, and the priority ordering is learned. The reinforcement
learning task in our case is more challenging since reward is a scalar variable, whereas in
their case rewards are binary. Also, our techniques address the temporal credit assignment
problem of propagating delayed rewards across actions. In their work, since rewards are
available at every step in the learning, no temporal credit assignment is necessary.

Finally, Singh [25] describes an interesting approach to automatically learning the tem-

45

9 Limitations of our work

Our work currently suffers from a number of limitations. Algorithm 1 scales badly since it
requires explicitly storing all possible states. Although Algorithm 2 overcomes this problem,
it requires fine tuning several parameters to ensure that the clusters under each action are
semantically meaningful. Algorithm 2 is also limited in that clusters once formed are never
broken up.

Our approach assumes that the learner is given a partially specified subsumption structure
for the task. In particular, this implies coming up with suitable applicability conditions
and reward functions for each module. In our case, the applicability conditions are very
straightforward — a single predicate like BUMP or STUCK that lingers for a few time instants.
These might conceivably be inferred as “synthetic items” by Drescher’s system [10]. Keeping
a history of the last &k states visited does not work well; it only complicates the structural
learning problem. On the other hand, it took us several iterations to write reward functions
that generated good performance figures. Ideally, we would like to just guide the robot
through the task — pointing out certain desirable states (such as pushing a box) and some
undesirable states (such as pushing a wall) — and have it automatically learn the rest.

The performance of the robot at the end of a learning run is somewhat disappointing.
In particular, the number of box pushing steps in Table 4 is admittedly low. This is partly
because boxes are very difficult to detect using sonar. We are currently investigating more
complete representations to help overcome this difficulty.

The box pushing task is quite simple as it involves only 5 actions and a state repre-
sentation of 18 bits. Pierce [21, 20] has shown some interesting results with larger input
representations. We are currently experimenting with a much richer sensory input to the
learner (see Section 11). Also, Lin [13] has recently shown that our approach can be extended
to a more complex task by explicitly teaching the robot. Similarly, Whitehead [31] describes
some theoretical results showing that in certain domains the performance of) learning can
be greatly improved with the addition of teaching.

Finally, our experiments have been limited to comparing the subsumption approach ver-
sus a simple monolithic approach. It is conceivable that modular controller architectures
other than subsumption may yield similar computational benefits. Some work along this
direction has recently been reported [25, 33].

10 Related Work

Our work is based extensively on previous work in reinforcement learning. The two tech-
niques described in our paper both use Q learning to deal with temporal credit assignment.
Q learning was developed by Watkins [30]. Sutton [28] showed how Q learning could be
integrated into a reactive planning system. Lin [12] presents a detailed study of different
reinforcement algorithms using Q) learning.

The clustering technique used in Algorithm 2 is similar in spirit to other clustering
techniques studied in machine learning [5], and to decision tree techniques such as 1D3 [22].
Tan and Schlimmer [29] show how ID3 can be applied to the robotics domain to learn sensing

44

robot over a learning run of 2000 steps. Once again, the table shows that the two algorithms
are at least twice as good for the subsumption case than they are for the monolithic case.
As expected, the data shows that the algorithms are less successful on the real robot than
they are on the simulator.

Technique Monolithic | Subsumption
Q Learning with Clustering 35 72
Q Learning with Weighted Hamming 27 65

Table 4: Number of steps a box was pushed over learning run on the real robot

The improvement of the subsumption learner over the monolithic learner at the box-
pushing task is not as dramatic as one might expect. This is partly because it is very
difficult to find boxes using real sonar (see the low numbers in Table 2). Note that on the
simulator, which has much cleaner sonar, the subsumption approach is markedly better than
the monolithic learner.

Subjectively, however, even on the real robot the subsumption learner appears much
more purposive over a learning run than the monolithic learner. The subsumption learner
converges to a clear strategy while the monolithic learner seems to wander around aimlessly.
To corroborate this subjective observation, we evaluated the monolithic learner using the
subsumption reward functions. This makes sense because the subsumption learner’s reward
functions actually embody a more detailed description of the task. The results of the eval-
uation are shown below only for the Hamming technique (with the results for the random
agent repeated for easy reference).

Technique | Finder | Pusher | Unwedger
Hamming % 46% 67%
Random 8% 30% 68%

Table 5: Evaluating the monolithic learner using subsumption rewards

Comparing the rows in Table 5 reveals that the monolithic learner really only learned
to push a box. In terms of finding boxes and unwedging from stalled states, the monolithic
learner is only as good as the random agent. Thus, the reason that the monolithic learner
performs the overall task only half as well as the subsumption learner is mainly because it
never learned to find boxes. Note that the monolithic learner receives rewards only when it
pushes a box, a fairly rare event during the learning run. In fact, with such a reward the
early stages of the learning are essentially a random walk [31]. The monolithic system’s poor
performance at finding boxes suggests that, over the limited length of a learning run, the
learning techniques were unable to resolve the long-term temporal credit assignment problem
involved in approaching potential boxes.

Summarizing, analysis of the data shows that the two learning algorithms are able to
successfully learn the three separate behaviors in the box pushing task. Furthermore, the
subsumption approach seems clearly superior to the monolithic approach at learning the
task.

43

0.852 DATA FROM REAL ROBOT COMPARING MONOLITHIC AND SUBSUMPTION
N

1
:

8468

1]
'
2
1]
: .
'
!

8416

8364

8312

8.026
.B208
R N S P
L0164 A . .
-------- Monolithic Weighted Hamming
— Monolithic Statistical Clustering
oo52 - --Subsumption Weighted Hamming
---- Subsumption Statistical Clustering
8.8

50.9 60.8 70.0 88.0 99.@ 108.9

Figure 35: Data from real robot comparing the monolithic and subsumption learners

Technique Monolithic | Subsumption
Q Learning with Clustering 16 159
Q Learning with Weighted Hamming 30 209

Table 3: Number of steps a box was pushed over learning run on the simulator

42

Figure 34 compares the performance of Algorithms 1 and 2 for the monolithic case with
that for the subsumption case on the simulator. The performance of the two algorithms for
the monolithic case is clearly inferior to their performance for the subsumption case.

2667 , SIMULATOR DATA COMPARING MONOLITHIC AND SUBSUMPTION
1
\
A

0.24

:
2133

-------- Monolithic Weighted Hamming
. — Monolithic Statistical Clustering
" Do - - - Subsumption Weighted Hamming

'
867| !

i
0.168) 1\ o N ---- Subsumption Statistical Clustering
' ' Y
:\ \: Voo
1 Y “ ~
1 AL Is
333 vy AN -
~ -
§ 7
. :
1e67| TN
8.08 -

.0533|

'
0267 !

1a.@ 28.9 30.a 4e.a =) E@.a Te.a cg.a Je.a loa.g

Figure 34: Simulator data comparing the monolithic and subsumption learners

Figure 35 compares the performance of Algorithms 1 and 2 for the monolithic case with
that for the subsumption case on the real robot. After the first half of the learning run, the
performance of the two algorithms for the subsumption case is markedly better than their
performance for the monolithic case.

To summarize, both the simulator data and the data from the real robot show that the
performance of Algorithms 1 and 2 are noticeably better for the subsumption case than for
the monolithic case.

Subsumption vs Monolithic Architectures Let us now compare the subsumption ap-
proach with the monolithic approach using as a metric the number of steps during which the
robot was actually pushing a box. This measure is somewhat noisy and should be viewed
only in general terms. For instance, the same experiment was run a second time on the real
robot using the Weighted Hamming algorithm and produced a result about 50% better than
reported here.

Table 3 shows the number of box pushing steps for the two learning algorithms on the
simulator over a learning run of 2000 steps. The table shows that the two algorithms are
at least 7 times better at pushing boxes for the subsumption case than they are for the
monolithic case.

Table 4 shows the number of box pushing steps for the two learning algorithms on the real

41

8.2 DATA FROM REAL ROBOT ON OVERALL SUBSUMPTION PERFORMANCE

-------- () Learning With Weighted Hamming

" ---- Handcoded Apgent

8.16 — Q Learning With Statistical Clustering
i ---Random Agent

0.26]

Figure 33: Real data evaluating the subsumption approach using the monolithic reward
function

case, rewards are few and far between. Still, it is important to contrast the subsumption
learner with the monolithic learner, since the latter represents a first pass at a solution to
the learning problem on which we spent a few frustrating months.

Furthermore, it is not the case that giving the monolithic learner a more complex reward
function will necessarily improve its performance. In fact, we have found that using reward
functions with many conditions in them tends to degrade task performance ultimately be-
cause the learner gets stuck in local minima. In the early stages of our work, we found
the monolithic learner would converge to one of two strategies — aggressively pushing every
object it found, or conservatively avoiding every object that it came near to — depending on
whether it got rewarded more often for pushing boxes or punished more often for getting
wedged.

One could look at this as an argument for using the subsumption approach. In a real
robot, it is difficult to carry out a large number of trials. Therefore, we want the robot
to receive some kind of reward on a large percentage of these steps. To do this with local
sensing a complicated reward function with multiple terms is generally required. However,
such functions are particularly susceptible to getting stuck in local minima. Thus, we need
to divide the control function up into a number of pieces each of which has a fairly simple
reward function.

The architectural change from subsumption to monolithic does not affect either the hand-
coded or the random agent — the programs remain the same for both cases. Thus, in the
graphs below we directly compare the performance of Algorithms 1 and 2 for the subsumption
case with that for the monolithic case.

40

L2667 SIMULATOR DATA ON OVERALL SUBSUMPTION PERFORMANCE

-------- Q Learning With Weighted Hamming
---- Handcoded Agent

—Q Learning With Statistical Clustering
---Random Agent

.2133

.1867

L1333

L1867

.B533

8267

l8.8 20.8 38.0 4.0 56.8 6@.0 70.8 80.a 98.0 108.06

Figure 32: Simulator data evaluating the subsumption approach using the monolithic reward
function

Figure 33 show the performance of the subsumption learner on the real robot using
the monolithic reward function. Algorithm 1 does better than any of the others, although
Algorithm 2 starts performing better in the end. The random agent does much worse, as
expected. The handcoded agent does slightly better than the others at the end.

For the individual behaviors, Algorithm 2 seemed slightly better than Algorithm 1. In
particular, Algorithm 2 was better at finding and pushing than Algorithm 1, and roughly
comparable at unwedging. For the overall task, however, Algorithm 1 seems better than
Algorithm 2. This suggests that improved performance at the individual behaviors does
not necessarily translate into improved overall task performance. In particular, the latter
requires good coordination between the behaviors. For example, although Algorithm 2 finds
a lot more objects than Algorithm 1, not many of these turn out to be boxes. Hence, its
performance as evaluated by the monolithic reward function may not be as good as Algorithm
1, which could be more discriminating in its choice of “potential” boxes.

Evaluating the monolithic learner Next we evaluate the performance of the monolithic
learner at the box pushing task. One way to visualize the monolithic learner is as a degenerate
instance of a subsumption approach. Namely, it comprises of a single module that is always
applicable, and that attempts to learn all three behaviors — finding, pushing, and unwedging.

In some sense, the monolithic learner is a straw man because of its reward function. The
three-part subsumption learner is given a lot more information on which states are useful
since it has 3 separate reward functions. This also means that many of the steps taken
by the subsumption learner generate a reward for one of the modules. In the monolithic

39

obstacles using sonar. However, there is a noticeable difference between the performance of
the handcoded agent and the learning algorithms at finding boxes. This suggests that there
is considerable room for improvement at this task by developing better learning techniques.

Finally, note that the simulator correctly predicts the convergence rate of the algorithms
(see earlier graphs), and the relative effectiveness of each. However, it tends to substantially
overestimate the actual performance.

8.3 Learning Box Pushing as a Monolithic Task

Now we turn to analyzing the performance of an agent who learns the box pushing task in
its entirety without decomposing it into the constituent behaviors of finding, pushing, and
unwedging. We created a monolithic learner by defining a single module — box pusher — that
was active all the time. The reward function for the monolithic learner is given in Figure 31.
The single module was given a reward of 1 when it pushed a box — that is, it was bumped in
two successive states while going forward, and was not stuck in the second state — and was
given a reward of 0 otherwise. Thus, the monolithic reward function can be used to measure
the percentage of time the robot was actually pushing a box.

Monolithic reward (old state,action,new state):
begin
IF action = forward % went forward
and BUMP(old state) % bumped before
and BUMP (new state) % bumped now
and =STUCK(new state) % not stuck now
THEN return 1 % reward robot
ELSE return 0 % default is no reward
end

Figure 31: Reward Function for Monolithic Learner

Evaluating the subsumption approach using the monolithic reward function
Comparing the subsumption approach with the monolithic one is difficult unless the same
reward function is used. However, the subsumption modules use reward functions different
from the one used by the monolithic learner. To overcome this problem, while collecting
data on the performance of the subsumption learner, we also measured its performance us-
ing the monolithic reward function. This gives us a common metric for comparing the two
approaches.

Figure 32 shows the performance of the subsumption learner using the reward function
given to the monolithic learner. In this case, Algorithm 1 (weighted Hamming) outperforms
all the other techniques, including even the handcoded agent. Algorithm 2 (clustering) does
slightly worse than the handcoded agent. Finally, the random agent does miserably — even
on such a fine resolution plot, it can hardly be made out above the horizontal axis.

38

directly appealing to the graphs. Here we answer this question numerically by extracting
some quantitative information from the data.

Table 1 and Table 2 compare the performance obtained using the two learning algorithms,
the handcoded agent, and the random agent on the simulator and the real robot, respectively.
The percentage figures were derived using the above graphs and the reward functions used
in the various modules. An example will help illustrate how the numbers were computed.
The final average reward for the box finder behavior using Q learning with clustering on the
real robot was 0.16 (see Figure 26). The maximum and minimum reward values for the box
finder are 3.0 and -1.0 (from the reward function for box finder in Figure 12). Hence the
percentage improvement for box finder from the lowest reward value is

0.16 — (—1.0)

100 = 29
3.0 - (—1.0) %

This is a quantitative measure of the average performance achieved over a complete
learning run. It will be somewhat lower than the “ultimate” performance level since it
includes all the early steps during which the robot was not particularly competent yet. The
same experiment was run a second time using the Weighted Hamming algorithm on the real
robot with similar results (within 3% of the values listed here).

Technique Finder | Pusher | Unwedger
Handcoded Agent 48% 88% 85%
Q Learning with Clustering 55% 88% 5%
Q Learning with Weighted Hamming | 30% 0% 9%
Random Agent 13% 33% 69%

Table 1: Average performance at end of learning run for simulator data

Technique Finder | Pusher | Unwedger
Handcoded Agent 31% 57% 3%
Q Learning with Clustering 29% 60% 2%
Q Learning with Weighted Hamming | 15% 55% 4%
Random Agent 8% 30% 68%

Table 2: Average performance at end of learning run for real data

The tables indicate that Algorithm 1 and Algorithm 2 were very successful at learning to
push boxes and unwedge from stalled states on the simulator — the performance is very close
to or better than the performance of the handcoded agent. The algorithms were understand-
ably less successful on the real robot, indicating that the real world environment presents a
greater challenge to the learning algorithms. But even on the real robot, performance comes
close to or exceeds that of the handcoded agent.

The algorithms are clearly less successful at learning to find boxes, especially on the real
robot. Again, this is what we expected, given the difficulty of distinguishing boxes from

37

8.8] .,

SIMULATOR DATA ON LEARNING TO UNWEDGE FROM STALLED STATES

-1.48

-1.86

-2.24/n

-2.62| ¥

2893
.1748

-8602]

-------- Q Learning With Weighted Hamming
---- Handcoded Agent

— Q Learning With Statistical Clustering
---Random Agent

Figure 29: Simulator data on learning to unwedge

DATA FROM REAL ROBOT ON LEARNING TO UNWEDGE

-.513

-------- Q Learning With Weighted Hamming

-.6z28

-.742

-.837

---- Handcoded Apent
— Q Learning With Statistical Clustering
---Random Agent

Figure 30: Real data on learning to unwedge

36

8.75), DATA FROM REAL ROBOT ON LEARNING TO PUSH BOXES

9.3?5.’5

- 3751

NS e Q Learning With Weighted Hamming
v ---- Handcoded Agent

_2.63 ;’ — Q Learning With Statistical Clustering

, ! ---Random Agent

Figure 28: Real data on learning to push boxes

Learning to Unwedge from Stalled States Figure 29 compares the performance of the
four techniques at unwedging from a stalled state in the simulator. The vertical axis plots
the average value of the reward function for the unwedger module, which was described
earlier in Figure 15, over various points along the learning run. The unwedger module
gets rewarded for moving the robot forward without stalling. In this case, interestingly the
random agent does quite well achieving a result only slightly worse than the other techniques.
Given some thought, this is not so surprising — if the robot is stuck against an obstacle,
randomly thrashing around will very quickly unwedge it! Once again, the handcoded agent
is clearly superior to the others. In this case, however, Algorithm 1 (weighted Hamming)
outperforms Algorithm 2 (clustering). The latter once again improves rather dramatically
from a very poor start to achieve a level of performance only slightly worse than that attained
by Algorithm 1.

Figure 30 compares the performance of the four techniques at unwedging the real robot
OBELIX from a stalled state. The handcoded agent performs at about the same level as
Algorithm 1 and Algorithm 2. The random agent performs worse than either Algorithm 1
or 2, but once again the differences between it and the others are small for the unwedg-
ing behavior. In this case, Algorithm 1 (weighted Hamming) is better than Algorithm 2
(clustering), as was also observed for the simulator data.

8.2 Analysis of Data on Learning Individual Behaviors

As stated before, one of the central questions is can our approach learn the individual
behaviors, and if so, with what degree of success? We answered this question above by

35

the graphs the two learning algorithms show substantial improvement over random behavior,
sometimes surpassing the performance of the handcoded agent. Finally, Algorithm 2 (clus-
tering) never performs appreciably worse than Algorithm 1 (weighted hamming) suggesting
that there is no penalty for simultaneously learning a similarity metric across states and a
policy function.

Learning to Push Boxes Figure 27 compares the performance of the four techniques at
pushing boxes in the simulator. The vertical axis plots the average value of the reward func-
tion for the pusher module, which was described earlier in Figure 13, at various points during
the learning run. The pusher module gets rewarded for staying in contact with an object.
The data shows that the learning algorithms improve noticeably over the run, and are con-
siderably superior to the random agent. The handcoded agent is better than all the other
techniques. Algorithm 2 (clustering) is initially worse than Algorithm 1 (weighted Ham-
ming), but improves dramatically to approach the performance attained by the handcoded
agent.

-------- Q Learning With Weighted Hamming
---- Handcoded Agent

— Q Learning With Statistical Clustering
---Random Agent RPN,

Y

Figure 27: Simulator data on learning to push boxes

Figure 28 compares the performance of the four techniques at pushing boxes in the
real world. Both learning algorithms improve steadily over the run, and are clearly better
than the random agent. Algorithm 2 starts off initially doing worse than the handcoded
agent, but finally surpasses it. Algorithm 2 (clustering) outperforms Algorithm 1 (weighted
Hamming) after recovering from a bad start. Once again, note that the handcoded and
learning algorithms do not attain the level of performance on the simulator. This is hardly
surprising, given that boxes do not rotate or flex on the simulator.

34

.BBS7

SIMULATOR DATA ON LEARNING TO FIND BOXES

-------- Q Learning With Weighted Hamming
---- Handcoded Agent

— @ Learning With Statistical Clustering
---Random Agent

-.886

- 471}

-.B571 %

.BER?

.3333)}1

L1667} b

Figure 25: Simulator data on learning to find boxes

DATA FROM REAL ROBOT ON LEARNING TO FIND BOXES

-------- Q Learning With Weighted Hamming
---- Handcoded Agent
. — Q Learning With Statistical Clustering
i ---Random Agent .

Figure 26: Real data on learning to find boxes

33

Learning to Find Boxes Figure 25 presents data collected using the simulator on learning
to find boxes using four different algorithms: Q learning with weighted Hamming (Algorithm
1), Q learning with statistical clustering (Algorithm 2), a handcoded agent, and finally a
random agent. The y axis plots the average value of the reward function for finder, which
was described earlier in Figure 12, at various points along the learning run. The box finder
is rewarded for getting something directly in front of the robot.

Figure 25 illustrates that both Algorithms 1 and 2 show steady improvement in perfor-
mance over the learning run. As expected, both learning agents do substantially better than
the random agent. The handcoded agent is clearly superior to Algorithm 1, and is better
than Algorithm 2 till late in the learning run. For this particular behavior, Algorithm 2 (clus-
tering) is much better than Algorithm 1 (weighted Hamming), and in fact approaches then
exceeds the performance obtained by the handcoded agent. This suggests that Algorithm 2
learns a better similarity metric than the handcoded metric used in Algorithm 1.

In the graph shown in Figure 25, and in the subsequent graphs, it is important to note that
we are plotting the average value of the reward over the complete run so far. Thus, since
the initial values for the learning algorithms are fairly poor, the fact that they approach
the handcoded program’s performance at the end of the run indicates that the learning
algorithms are actually doing somewhat better than the handcoded program at that point!
For example, in Figure 26, the clustering algorithm (Algorithm 2) is actually 20% better at
getting rewards for finding boxes if we just look at the reward values over the last quarter
of the trial (that is, the most recent 500 steps).

Although they are fixed algorithms, both the handcoded and random agents show some
performance variations over the learning run. Early values are also subject to instability due
to the small number of data points so far. This is especially apparent for the random agent.
Some of the variation is also due to the fact that the robot takes a random action 10% of
the time. We left this feature active during the tests to demonstrate that the learned policy
functions were robust and able to recover from errors.

Since the learning agents take random actions 10% of the time, it seemed fair to similarly
handicap the handcoded agent. Thus, any performance difference between the learning and
handcoded agents cannot be attributed to the fact that random actions need to be taken
once in a while to explore the environment.

Figure 26 presents the same data for the real robot OBELIX. Once again, both algorithms
show steady improvement over the learning run. Both algorithms are substantially better
than the random agent. However, the handcoded agent is better than both algorithms over
the complete run. Algorithm 2 (clustering) is superior to Algorithm 1 (weighted Hamming)
at finding boxes, and approaches the performance of the handcoded agent. The performance
attained by the various algorithms is clearly inferior to their performance on the simulator.
One reason for this difference is that there are several obstacles in the interior of the simulator
environment whereas there are none in the playpen used by OBELIX. Thus, many more
potential “boxes” exist in the simulator.

In the graphs in Figure 25 and Figure 26 (and elsewhere), the ordering of the two learning
algorithms should not be taken too seriously. One, the data represents only one learning run,
and there are likely to be small performance variations over several learning runs. Two, in all

32

Figure 24: Playpen for the real robot

for clustering. The data we present below uses parameter values that were deemed to be the
best from these experiments. In particular, the Hamming distance threshold was set at 2; Q
learning was carried out each time over 5 steps; ¢, §, and p were set at 107°, 0.45, and 2.0,
respectively; the learning rate 3, and the discount factor v used in the Q learning update
rule were set at 0.5 and 0.9, respectively.

Plotting the experimental results In the graphs below, the vertical axis plots the
average reward value so far. This is computed by dividing the cumulative reward obtained
so far by the behavior being learned by the total number of steps over which the behavior
has been active so far. The vertical axis is scaled by different amounts in each graph in order
to make the differences between the various techniques clear. The horizontal axis represents
the percentage of the learning run that has been completed so far. In all cases, the robot was
run as a unit with all three behaviors participating (except for the experiments involving the
monolithic learner). Since each behavior is not active all the time, the total number of steps
is usually less than 2000. For example, the total number of steps for the box finder is about
600 since it is active approximately 30% of the time. Thus, at the horizontal axis label “20”,
the robot has taken 400 steps, only some of which were generated by the box finder.

8.1 Learning Each Behavior Separately

For the first set of experimental results, we focus on learning each behavior separately as
a subsumption module. We look at how well Algorithms 1 and 2 were able to learn each
of the three behaviors in the box pushing task on the real robot and on the simulator, and
compare these results with the performance obtained by the handcoded and random agents.

31

values are repeatable, actions are invertible, and there are no rotational effects. Comparing
the data from the real robot with that from the simulator allows us to assess the effect of
removing these simplifications on the learning algorithms.

Data from Both Algorithms We present data on the effectiveness of both Algorithm
1 and 2 in learning the box pushing task. Some caution must be observed in comparing
the performance of these algorithms, because they do not operate on the same input rep-

resentations. In particular, Algorithm 1 uses an abstracted sonar state description whereas
Algorithm 2 uses the full 18 bits.

Using Handcoded and Random Agents for Box Pushing On each graph below we
also present data on the performance that was obtained by handcoded and random agents.
The handcoded agent is a simple reactive program that describes the best action to take
in any given state for each of the three separate behaviors. The random agent chooses
randomly between the actions with equal probability regardless of the state. Comparing the
performance of the handcoded and random agents with that of the learned programs gives
us a good basis for judging the effectiveness of the learning.

Experimental Methodology We used the following procedure to collect the experimen-
tal data. The learning runs were organized into 20 trials, each trial lasting for a 100 steps.
Thus, the robot takes totally 2000 steps in each learning run. On our real robot, a learning
run takes about 2 hours. At the beginning of each trial, the world is restored to its initial
state. This includes resetting the boxes and the robot to their initial locations. The robot
starts with a randomly chosen orientation at the beginning of each trial.

We settled on a learning run of 2000 steps for several reasons. We wanted to obtain
significant learning in a relatively short period of time (hours) instead of long periods of
time (days). Also, we found that on the average the learning algorithms had converged in
this number of steps. In a few cases we let the learning algorithms run for periods longer
than 2000 steps, but this did not lead to a significant improvement in their performance.

The simulator world was initialized as shown earlier in Figure 10. For data on the real
robot OBELIX, a special “playpen” was created, as shown in Figure 24. The playpen was
modeled after the simulator world, except there were no obstacles in the middle of the room.
The playpen was a portion of the robotics laboratory at IBM Hawthorne. Large packing
cartons formed three walls of the playpen and a sheet rock wall formed the fourth. Experi-
mental conditions were tightly controlled by using pieces of tape on the floor to demarcate
the initial locations of the robot and the boxes at the beginning of each trial. Two boxes
were placed in the playpen for OBELIX to push around. In contrast, the simulator used 4
boxes. The boxes used on the simulator are irregular polygons (concave and convex). On
the real robot, however, we used only rectangular boxes.

Parameter values We carried out several experiments comparing the effect of different
parameter values on Algorithms 1 and 2. These include the Hamming distance threshold,
the number of steps to use in) learning, and different values of €,6 and p in Algorithm 2

30

1. Initialize clusters under each action a to NIL. Fix the clustering parameters €, 0, p.
2. Do Forever:
a. Observe the current world state s.

. Choose an action a that maximizes Q(s,a).
. Carry out action a in the world. Let the new state be ¢
. Let the immediate reward for executing a in world state s be r.
. Update the Q value of state action pair s,a using the rule:

Q(s,a) — Q(s,a) + B(r +1e(1) - Q(s,a)

where (1) is the maximum Q(t, a) over all actions a.
f. If there exists a cluster ¢ which matches state s to within ¢,
their QQ values agree in sign, and their absolute Q) value difference is < ¢

o Ao o

then merge s into ¢. Otherwise create a new cluster ¢’ from s.
g. Merge any existing clusters ¢l and ¢2 under action « if distance(cl,c2) < p,
their QQ values agree in sign, and their absolute value difference is < 6.

Figure 23: Algorithm 2: Q learning with Clustering

o Competence: How well does the robot learn each individual behavior in the box pushing
task?

o Decomposition: To what extent does breaking the overall task into a set of subsumption
modules help the learning?

The competence question can be answered by measuring the improvement in performance
of each individual behavior as a function of the learning. The decomposition question can
be answered by comparing the improvement in overall performance obtained by learning
each behavior separately with that obtained by learning the box pushing task as a single
monolithic control system.

Measuring Performance Improvement There are obviously many ways of monitoring
the improvement in performance of the robot, ranging from some overall measure of perfor-
mance — such as the number of boxes successfully pushed to a corner — to local measures
such as the reward obtained during each trial. The box pushing task involves a variety of
capabilities, ranging from finding boxes to pushing them to getting out of stuck situations.
Therefore, we choose as a performance measure the cumulative value of the reward obtained
thus far divided by the number of steps taken thus far. This measure is a running estimate
of the average reward value over the experiment. Clearly, several alternative performance
metrics could be used, such as the speed at which the policy function is learned or the con-
vergence rate of the task reward values. Since our primary focus is on comparing the learning
algorithms with a handcoded program, not on comparing different learning algorithms with
themselves, we chose the average reward metric.

Real Data and Simulator Data Data is presented from both the simulator as well from
the real physical robot OBELIX. The simulator is a simplified environment, in that the sonar

29

Action Selection Using Clusters Now we turn to the problem of choosing an action
from the stored state clusters. There are several possible action selection mechanisms. For
example, the robot can decide to pick a cluster that most closely matches the current situ-
ation, and carry out the stored action for that cluster. The problem with such a scheme is
that the closest matching cluster may not be the one with the highest Q value. Alternatively,
the robot can pick the action which contains the cluster with the highest Q value. However,
the highest QQ value cluster may match the current state very poorly.

Instead we pick the action that maximizes some combination of utility and the degree of
match. More precisely, the action selection strategy used by the robot is to pick the action
a that maximizes the quantity

2cec, Qe }5(5 € c|51 = V1y...y 50 = vn)
Soeec, P(s € clsy =v1,...,8, =v,)

Q(s,a) =

The numerator in the above expression is the sum of the Q values of the clusters stored
under an action (denoted by C,), weighted by the probability of match between the state s
and each cluster. The denominator, which is a normalization factor, is the sum of the match
probabilities of the state s over the clusters associated with action a.

As an aside, note that Algorithm 2 computes the Q(s,a) values of doing an action @ in a
state s from the Q values of clusters and the match probabilities. In contrast, Algorithm 1
looks up the utility values from an array containing the) values for all possible states and
actions. Thus, Algorithm 2 scales much better than Algorithm 1 with the number of sensor
bits and actions. In particular, for the case when the number of bits n = 18, there are far
fewer than 2'® x 5 clusters (typically less than 100).

Summary of Algorithm 2 Figure 23 highlights the main steps of Algorithm 2. Once
again, Step 2b actually takes a random action 10% of the time as a tradeoff between explo-
ration and policy-directed behavior. The algorithm uses Q) learning to propagate rewards
temporally across actions. It uses clustering to propagate rewards across states. By setting
the parameters €, 6, and p to different values, the algorithm can be made to cluster solely
on states, solely on Q values, or on some combination of both. The exact values of these
parameters that were used in our experiments were ¢ = 107%, § = 0.45, and p = 2.0. These
values were obtained essentially by trying out a variety of different values, and selecting the
ones that gave the best performance. However, the overall performance of the clustering
algorithm does not seem to be sensitive to small percentage changes (such as 10%) in the
values of the parameters & and p, and ¢ can be increased to 1072 with similar results.

8 Experimental Results

This section describes a detailed experimental study evaluating the performance of the two
learning algorithms described above. Mainly, we are interested in answers to the following
two questions.

28

Merging Existing Clusters Often two existing clusters are considered “close” enough
that they can be merged to form a new cluster. This requires a “distance” metric on clusters.

n

distance(cl, c2) = \IZ(}%(SZ =1|s € cl) — p(s; = 1|s € €2))?

=1

The metric computes the Euclidean distance between two n-dimensional vectors repre-
sented by clusters ¢l and ¢2, where the elements of each vector are real numbers between
0 and 1 representing the conditional probabilities of each state bit being a 1 given a state
matching the cluster. Two clusters ¢l and ¢2 are merged into a new cluster if and only if
distance(cl, c2) < p, where p is a parameter to the clustering algorithm, and if the Q values
of the two clusters agree in sign and their absolute difference is less than 6.

Given two clusters

a = <(Za170a1)7 SR (Zan70an)7 Qavma>

b= <(Zbl,051),) (an7obn)7 vamb>

if the two clusters are close enough to be merged into a new cluster

c={(z1,01)y. ., (2n,0n), Qc, mc)

the elements of ¢ are formed as follows. For each state bit : we have

myg my
Zi = Zgy——— + 2y
Mg + My My + My

mg Mg
o Oaima + My - Obima +my
The number of instances that make up each cluster is used to weight the counts. This
weighting scheme tilts the final counts towards the original counts associated with the larger
of the two clusters over those associated with the smaller cluster.
Similarly, the Q value associated with the merged cluster ¢ is the weighted sum of the Q
values associated with clusters a and b.

myp

L
Qe — Qam + Qbm

Finally, the number of instances of cluster ¢ is the sum of that for clusters ¢ and b.

Me = Mg + M

27

/
Z; — pZ

0; — 1+ po;
while for each state bit s; = 0 we have:

21+ pz

/
0; [10;

Here p, a real number between 0 and 1, is used to implement the decayed count scheme
we alluded to earlier. The value for p is determined by how much we want to devalue past
experiences over recent experiences. If we set u to 1, then past experiences are not decayed,

and the above rules will keep exact counts. Typically, we set u = where k is a fixed

k
b
integer (such as 10). This particular decay scheme is based on the](;;16 described by Maes
and Brooks [14].
The Q value associated with the updated cluster ¢ is the weighted sum of the Q values
associated with cluster ¢, @, and state s and last action performed a, Q(s,a). The number
of instances associated with the state (assumed to be 1) and the cluster (denoted by m,) is

used to weight the final @ value.

me

Qor = Qe 7y

+Q(s,a)

m.+ 1

Finally, the number of instances of ¢’ is simply

mc’<_mc+1

Forming New Clusters If a state s does not match any existing clusters, then a new
cluster ¢, is formed as follows. First an empty cluster ¢ = ((z1,01),...,(2n,0n), Qc, M) is
created such that

k41
2 =0, = ———
2
QCZO
m. =10

Here k is the fixed integer used in defining the decay parameter u (see above). The
cluster ¢; is now formed by simply merging state s with the empty cluster ¢ as described
in the previous section. Initializing a cluster’s state bit probabilities in this manner has the
effect of relaxing the state description, while taking account of the particular bit values of
the state.

26

P(s1=v1,...,8, =v,]s €¢) = Hﬁ(sz = v;|s € ¢)
=1
Now, we can compute the conditional probability of a state bit being a 1 or a 0 given

the state matches a cluster directly from the probability values stored in a cluster. That is,
p(s; = 1|s € ¢) is directly available from each cluster, and

plsi=0ls€c)=1—p(s; =1]s €¢)

The other two probabilities, p(s; = v;) (the probability of the «th state bit having a value
v;), and p(s € ¢) (the probability of any state s matching a cluster ¢), are estimated by
collecting statistics on the sensors and keeping a count of the number of instances that have
matched cluster ¢, respectively.

Given p(s € c|sy = v1,...,8, = v,), two criteria are used to decide whether s is an
instance of ¢. The first condition is that

Pls Eclsy = 01,00, 8, =v,) > €

where € is a fixed parameter input to the clustering algorithm. The value of the parameter
e directly influences the types of clusters formed by the algorithm. If it is high, then the
clusters that will be formed will be similar to one another since states can be nearly identical
yet belong to different clusters. A value close to 0 will cause very dissimilar clusters since
most of the time states will tend to match existing clusters.

A second condition for a state to match a cluster is based on the Q values of the state
and the cluster.® Intuitively, it would seem that we want to distinguish clusters at least by
the sign of the Q value. Otherwise, we might merge states where doing an action gives a
high reward with states where it does not. In practice, we have found that making finer
distinctions between different) values generates better performance. More precisely, if the
Q values of a cluster and a state are both positive or both negative, and their absolute
difference is less than a fixed parameter 6, then the state is considered an instance of the
cluster.

Finally, the assumption that the bits comprising a state are statistically independent is
not true for real sonar data. The estimates it generates tend to be lower than the actual
probabilities would be. Typically p(s; = 1|s; = 1) > p(s; = 1) for any two sensor bits s; and
s; because objects in the world are usually extended in space.

Merging States with Clusters In this section we describe how a state that matches an
existing cluster (using the above state-cluster similarity metric) is used to update the cluster.

Let ¢ = ((z1,01), ..+, (2n,0n), Qc, me) be a cluster, and let s be a state matching cluster c.
Denoting the updated cluster by ¢ = {(z1,0}),..., (2,0), Q., m.), for each state bit s; = 1:

3Although Algorithm 2 does not explicitly store Q values for states, they can be computed from the Q
values of the clusters as we show later.

25

Figure 22: Cluster associated with FINDER module and action “forward”

a harder time creating the disjunctions used in the 9-bit reduced signatures (shown in Fig-
ure 19). However, Algorithm 2 does not generalize solely on the basis of syntactic similarity.
It also takes into account the utility of various actions with respect to the given task.

Matching States against Clusters Deciding if a state s is an instance of a cluster ¢
requires computing the conditional probability of s being an instance of ¢ given the bitwise
description of s. Formally, we can denote this quantity as

P(s € clsy = v1,80 = V2, ..., 8, = U,)

where s; denotes the ¢th bit of s, and v; is either a 0 or a 1. Using Bayes rule, we obtain the
following equation
]5(81 = V1,038 = vn|8 € c)ﬁ(s € C)

Pls1 =01, .., 8, = v,

pls €clsy =v1,...,8, =v,) =

Now, assuming the bits comprising a state are independent (we discuss this assumption
below), we can rewrite the denominator of the above equation as

P(s1 =01,...,8, =0v,) = Hﬁ(SZ = ;)
Using the following identity from probability theory

p(A, BIS) = p(A]S)p(B|S) <= p(A, B) = p(A)p(B)

and the bitwise independence assumption, we can rewrite the first quantity in the nu-
merator of the above equation as

24

encountered, it is matched against the existing clusters for the particular action. If it con-
sidered similar to one of them, it is incorporated into that particular cluster. Otherwise, a
new cluster is created based on just this particular instance.

To select the best action to perform from a given state, the following procedure is carried
out. First, the state is matched against all the clusters associated with each action, and the
utility of doing the action from the state is computed as a function of the match probabilities
and the cluster Q) values. Then, the action that promises the best eventual reward is selected
as the one to perform from the state.

Clusters A cluster represents an aggregate of a set of states that are considered “simi-
lar” (the similarity metric is described below). More formally, a cluster ¢ is a n + 2-tuple
{(z1,01)s -y (20, 0n), Qeym.), where z; and o; are decayed counts® of the number of times the
tth bit of a state s matching cluster ¢ was a 0 or 1, respectively; n is the number of bits in
a state; Q). represents the Q value of the cluster; and m, represents the number of instances
that have matched the cluster so far.

Given the above representation, we can define the conditional probability of the ¢th state
bit of a state s being a 1 given that s matches cluster ¢, denoted by p(s; = 1]s € ¢), as

0;

pls;i=1ls €c) = o b 2.

We use the p to emphasize that these are not true probabilities (since our counts are
decayed counts, not true counts), but probability estimates. Note that clusters can represent
“don’t care” values as prob = 0.5. In fact, they can actually make much finer discriminations
than simply 0, 1, or “don’t care” since they use a real number between 0 and 1.

A cluster is always associated with a particular action; thus, the action “forward” has
a different set of clusters than the action “left”. The Q value associated with a cluster
represents the predicted utility of performing the action from a state that matches the
cluster.

An example of a cluster is given in Figure 22. This cluster was learned by the box
finder module, and is associated with the action “forward”. It has a Q value of 2.17, and 25
instances have so far matched the cluster. The figure represents the probability information
in a cluster graphically — darker regions correspond to higher probabilities and lighter regions
correspond to lower probabilities. (The probability of a bit is shown at the corresponding
sensor location on the robot.) Intuitively, the cluster can be interpreted as saying that if the
probability of the BUMP bit is high (the dark horizontal bar just above the circle), and the
probability of the front near sonar bits is high (the dark circular arc above and to the right of
the BUMP bar), then going forward will generate a high reward. This makes sense because
the box finder is rewarded for going forward when its front near sonar bits are turned on.

Algorithm 2 generates a qualitatively different type of similarity than Algorithm 1. While
it can generate descriptions similar to those given by Weighted Hamming distance, it has

?When collecting statistics, it is useful to have the counts decayed so that past experiences have less
impact than recent experiences. We describe the particular decaying scheme in the section on merging states
with clusters.

23

to converge [30]. We have experimentally found 10% to be a good compromise between
exploratory and goal-directed activity. Usually, once the robot has learned a good control
strategy, it can easily compensate for occasional deviations from its strategy caused by
random actions.

1. Initialize the stored utility values Q(x,a) for all x,a to 0.
2. Do Forever:
a. Observe the current world state s.
. Choose an action a that maximizes Q(s,a).
Carry out action a in the world. Let the new state be ¢
Let the immediate reward for executing a in world state s be r.
Update the stored utility values using the update rule:
Q') — Q(sra) + Ar +elt) — Q[+ a)
(where (1) is the maximum Q(t, a) over all actions a)
over all states s’ such that the weighted Hamming distance between
s and s’ is < k.

o oo o

Figure 21: Algorithm 1: Q learning with Weighted Hamming

7.2 Algorithm 2: Q Learning with Statistical Clustering

One problem with the Weighted Hamming distance algorithm described above is that all
possible states have to be stored. While this is reasonable for 9 bit state representations,
it becomes more expensive for the full 18 bit state representation. We now describe a
second algorithm that overcomes this problem by not storing states explicitly in a table, but
instead stores clusters of states. The second algorithm still uses Q learning for temporal
credit assignment, but is distinguished from the first by its use of statistical clustering for
structural credit assignment.

Another distinction between the two algorithms is that the similarity metric in Algorithm
1 is handcoded, whereas the one used in Algorithm 2 is learned. Since our intention in
developing Algorithm 2 was to see whether an adequate similarity metric could be learned,
we did not want to implement it with the reduced 9-bit virtual sonar representation, but
instead use it with the complete 18-bit state description. Thus, Algorithm 1 can be viewed
as a control experiment involving only the temporal credit assignment problem.

In Algorithm 2, the robot learns a set of clusters for every action. Each cluster has
associated with it a Q value. For example, the action “forward” may have a cluster with
a positive Q value, and a cluster with a negative Q) value. The positive Q value cluster
represents a class of states where going forward should generate a positive reward. Similarly,
the negative () value cluster represents a class of states where going forward should generate
a negative reward.

Clusters are extracted from the instances of states, actions, and rewards that are gen-
erated by the robot as it explores the task environment. Each time a new instance is

22

we use a maximum distance of 2 or less. This means two of the far virtual sensors can be
different, or one of the near virtual sensors can be different. We never generalize between

states in which BUMP or STUCK differ.

Figure 20: Signature neighborhoods on the simulator

To get a feel for the types of areas considered the same, examine the picture shown
in Figure 20. This is taken from our robot simulator. The dark objects are immovable
walls, while the heavily outlined objects are boxes. Over this we have plotted boundaries in
signature space. If the robot crosses one of the marked boundaries, then for some orientation
of the robot the signature changes by a distance of at least 2. Notice that the boundaries
are not necessarily closed. This is because our weight Hamming distance does not generate
a total ordering on all possible signature. If A is 2 away from C but only 1 away from B, it
may be that B is only 1 away from C. Thus it would be possible to get from A to C without
crossing any borders if one went through B as an intermediate step. The main importance of
the picture, however, is to show that the robot makes many discriminations near obstacles,
but far fewer in large open regions. This in turn is important because our system is set up to
learn “reactive” control programs. This means we associate one and only one correct action
with each distinct state.

Summary of Algorithm 1 The complete description of Algorithm 1 is given in Figure 21.
It can be viewed as one possible instantiation of the generic reinforcement algorithm of
Figure 4.

The description of Algorithm 1 in Figure 21 (as well as Algorithm 2 in Figure 23) is
simplified in one respect. The action selection step (Step b) does not always choose the
action that results in the maximum utility value; such a policy will never explore new actions.
Instead, some percentage of the time, a random action is chosen to ensure that all states
in the state space will eventually be explored. This is a necessary condition for learning

21

states. Thus we must make some sort of generalization that says for a number of “similar”
states, taking a particular action yields a “similar” result. This notion of similarity can
either be hard-coded, as in Algorithm 1, or derived from statistical properties of the data,
as in Algorithm 2.

Figure 19: Virtual sonar derived from actual sonar

One way to solve this structural credit-assignment problem is to change representations so
that a small change in the syntax of a state vector causes only a small change in the associated
semantics. For this purpose, we have defined a number of more meaningful “virtual” sonar
sensors whose values are computed from combinations of the actual readings. Choosing an
appropriate reduced representation (as well as the original 18 bits) requires care and at least
a partial understanding of how the robot interacts with the environment while carrying out
its task. Figure 19 illustrates the virtual sonar representation. There are 3 binary sensors
covering space near the robot’s body, and 4 other binary sensors which see farther out. These
are shown in the diagram above. Each new sensor is just the logical OR of 2 to 4 of the
original sensor bits. We use the resulting 7 bits, plus BUMP and STUCK, to define a new
9 bit input vector to the learning algorithm. Note that the virtual sonar is used only in
Algorithm 1 below (which uses the weighted Hamming metric). Algorithm 2, which employs
statistical clustering, uses the complete 18 bit state description.

Now to decide if two states are “similar”, we see what the Hamming distance between
them is. That is, we count how many of the bits are different. Yet not all bits are equally
important. BUMP and STUCK are very useful so they are given a weight of 5. The nearby
virtual sonars are fairly useful so they are given a weight of 2, whereas the far virtual sonars
are less so and thus only carry a weight of 1. To compute the weighted Hamming distance
between two reduced signatures, we simply add up all the weights of the bits positions in
which they differ. Empirically, setting the threshold at 1 or 2 produces good results, but
increasing it to 3 or 4 significantly degrades performance. In the experiments described later

20

e GIVEN:

— A state representation composed of sonar occupancy infor-
mation, an infra-red “bump” sensor, and a “stuck” sensor.

— Five possible actions — Go forward, turn left, turn hard left,
turn right, turn hard right.

— Three task modules, one for finding boxes, one for pushing
them, and one for unwedging the robot from stalled states.

— Applicability conditions and a reward function on each mod-
ule.

— A priority ordering specifying that the unwedging module
has priority over the box pushing module, which in turn
dominates the box finding module.

¢ LEARN: For each module, a policy which maximizes the cumu-
lative expected reinforcement from the module reward function.

Figure 18: The Problem of Learning Component Behaviors for Pushing Boxes

During learning, the above equality is not true because the stored utility values have not
yet converged to their final value. Thus, the difference between the left hand side and right
hand side of the above equality gives the error in the current stored value. In particular, Q
learning uses the following rule to update stored utility values.

Q(r,a) — Q(x,a)+ B(r+ ve(y) — Qx,a))

Thus, the new Q value is the sum of the old one and the error term multiplied by a
parameter 3, between 0 and 1. The parameter 3 controls the rate at which the error in the
current utility value is corrected. Setting /3 to 1 results in one-shot learning.

Q learning can be performed over sequences of actions by storing the last k
< state, action, reward > triples. After updating the Q) value of a state using the above up-
date rule, the Q value of the state before it can be updated, and so on in reverse chronological
order. Multi-step Q learning does not change what can be learned, nor does it affect the
steady-state values. All it does is speed up the back-propagation of reward to temporally
remote steps. This form of multi-step Q learning is different from others described in the
literature [30, 13] in that there is no recency parameter A as in the T D()X) methods [27].

For simplicity, we describe our algorithms as using single step QQ learning. However, the
experimental data presented in Section 8 was collected using 5-step Q learning. Using a
depth anywhere between 3 and 10 steps seems to give similar results.

Weighted Hamming Distance The robot starts with 18 bits of sensory information.
This yields a space with a quarter of a million states. Since we want the robot to learn
something useful in a few thousand steps, obviously we have no hope of experiencing all

19

Figure 17: Representation of control flow among modules

7 Learning Algorithms

This section describes two learning algorithms that we have implemented on OBELIX as
well as on the simulator. The two algorithms use the same technique for temporal credit
assignment, but differ in their approach to the structural credit assignment problem.

7.1 Algorithm 1: Q Learning with Weighted Hamming

The first algorithm combines a well known learning algorithm for temporal credit assignment,
Q learning [30], with a simple structural credit assignment technique based on Hamming
distance. We describe each of these techniques below.

Q Learning The key idea behind Q learning [30] is the use of a single data structure — a
utility function Q(x,a) across states (x) and actions (@) — for evaluating actions and states.
The utility of doing an action a in a state x is defined as the expected value of the sum
of the immediate payoff or reward r plus the utility of the state resulting from the action
discounted by a parameter v between 0 and 1 [28]. That is,

Q(z,a) = E(r + ve(y)|z, a)

where “E” denotes an expected value conditionalized upon being in state x and perform-
ing action a. The utility of a state, in turn, is defined as the maximum of the utilities of
doing different actions in that state. That is,

e(x) = maximum Q(x, a) over all actions a

18

Finally, the applicability conditions on the unwedging behavior is shown in Figure 16. As
in the case of the box pushing behavior, the unwedging behavior continues to be applicable
for 5 time steps after the robot is no longer stalled.

Unwedger applicable (old state,action,new state):
begin
[F STUCK (new _state) % stuck now
THEN begin
*unwedger history™ := 5 % set global variable
return true
end
ELSE IF *unwedger history™ > 0
THEN begin
*unwedger history™ := *unwedger history™ - 1
return true % one step less to recover
end
ELSE return false
end

Figure 16: Applicability Function for Unwedger

6.5 Summary

We can visualize the control flow among modules in a box pushing robot as shown in Fig-
ure 17. The robot always starts in the finder module (labeled F in the figure). If it is
bumped, the pusher module (labeled P) turns on. The pusher module continues to have
control of the robot as long as the robot continues to be bumped. If it is stuck, control
transfers to the unwedger module (labeled U). The timeout refers to the number of steps (5
in our case) that a module continues to be applicable after its initial triggering condition is
no longer true.

Figure 17 intentionally bears a resemblance to a finite state machine. Our multi-part
architecture provides a solution to a fundamental problem in reactive controllers known as
perceptual aliasing [32]. This problem occurs when the same state vector calls for different
actions depending on the context. For instance, if the BUMP bit is on, this indicates a good
state for the pusher module to try going forward. However, this same situation will cause the
unwedger module to try to turn instead. By having separate reactive controllers, the robot
will not be constantly vacillating between these two actions. The applicability conditions
essentially remember enough contextual information to differentiate the two scenarios.

To summarize, we provide the robot with a “sketch” of a plan for pushing a box, and
leave it to flesh out the details. Lastly, Figure 18 details the information supplied, and the
objective of the learning system.

17

Pusher_applicable (old state,action,new state):
begin
IF BUMP(new state) % bumped now
THEN begin
*pusher_history™ := 5 % set global variable
return true
end
ELSE IF *pusher_history™ > 0
THEN begin
*pusher_history™ := *pusher_history™ - 1
return true % one step less to recover
end
ELSE return false
end

Figure 14: Applicability Function for Box Pusher

6.4 Behavior 3: Getting Unwedged

Given that OBELIX is learning to find and push boxes in a cluttered laboratory environment,
it is very likely that it will bump into walls and other immovable obstacles and become stalled
or wedged. Pushing a box into a wall will also cause a stalled state. A separate behavior
is dedicated in OBELIX to extricate it from such situations. The basic idea is for OBELIX
to turn around sufficiently so that it can begin going forward again. Even though this task
seems simple, it turns out to be quite hard. OBELIX can easily learn to turn once it gets into
a stalled situation. It does not readily learn to turn in the right direction, and by the right
amount because typically no one action will unwedge the robot. Hence this task requires
performing temporal credit assignment over multiple actions.

The reward function for the unwedging task is given in Figure 15. The unwedging be-
havior is rewarded when the robot is no longer stalled, and is able to go forward once again.
It is punished if the robot continues to be stalled.

Unwedger reward (old state,action,new state):
begin

[F STUCK (new state) % stalled now

THEN return -3 % punish robot

ELSE IF action = FORWARD % went forward

and =STUCK(new state) % not stalled now

THEN return 1 % reward robot

ELSE return 0 % default is no reward
end

Figure 15: Reward Function for Unwedger

16

6.3 Behavior 2: Pushing a Box

Once OBELIX has found a box, it needs to push it until the box is wedged against an
immovable obstacle (like a wall). What makes this task difficult is that boxes tend to rotate
if they are not pushed with a force directed through their center of drag. OBELIX has to
learn to keep the box centered in its field of view, by turning whenever the box rotates to
one side of the robot. The reward function supplied to OBELIX for the box pushing task
is shown in Figure 13. The robot gets rewarded whenever it continues to be bumped and
going forward. It gets punished whenever it loses contact with the box.

Here the relative magnitudes of the reward values are important in preventing undesirable
cyclic behavior. For instance, suppose the penalty term was —1 instead of —3. Now imagine
the robot executing the following sequence of actions: push the box, turn to the left losing
sight of the box, turn back to the right. The average reward over this whole cycle would
be (1 — 14 0)/3 = 0 which is non-negative and better than the state in which the robot is
never pushing the box (—1). Thus, the learner would be predisposed to come up with this
behavior. However, since reinforcement learning is so prone to local minima, we want to
bias the learning more strongly toward the optimal solution. By setting the penalty term to
—3 the average reward for the sequence described becomes —2/3. Since this cycle of actions
generates an overall negative reward it will eventually be expunged.

Pusher reward (old state,action,new state):
begin
IF action = FORWARD % went forward
and BUMP(new state) % still bumped
THEN return 1 % reward robot
ELSE IF = BUMP (new state) % lost the box
THEN return -3 % punish robot
ELSE return 0 % default is no reward
end

Figure 13: Reward Function for Box Pusher

The applicability condition used in OBELIX for the box pushing behavior is given in
Figure 14. Intuitively, the box pushing behavior should be applicable whenever OBELIX
is actively pushing a box, and should not be applicable otherwise. One problem with such
a criterion is that the moment OBELIX loses contact with a box, the behavior is turned
off, and OBELIX has no opportunity to correct its mistakes. A better scheme in practice
is to allow applicability conditions to continue to be applicable for a fixed number of time
steps after the applicability predicate (which first turned it on) ceases to be true. This
“potentiation” of a behavior is commonly used in robotic systems and is sometimes referred
to as a monostable condition [8, 4]. For example, the box pushing behavior continues to be
applicable 5 time units after OBELIX has lost contact with a box. This value was chosen to
allow the robot some time to try to recover and push the box once again, but does not let
it flail indefinitely.

15

perfect strategy is to cruise around the room looking for “narrow” objects (that is, objects
that only turn on the front sonars on the robot), and try to push them. This strategy will
often cause OBELIX to push various types of obstacles including walls, which in turn will
cause the unwedging behavior to become active.

To encourage the robot to follow the above strategy, the box finding behavior should
be rewarded whenever the sensor bits corresponding to the near ranges on the front sonars
turn on. This happens whenever the robot is close to and facing a “potential” box. The
reward encourages the box finder to go toward objects and try to push them. The exact
reward function for the box finding task is described in Figure 12. The reward function takes
as arguments the previous state (old_state), the current state (new_state), and the action
(action) that led from the former to the latter. The predicate FRONT NEAR SONAR BITS
is the disjunction of the state bits representing the near ranges of the central front facing
sonars on the robot.

Occasionally, the robot may turn on the front near sonar bits by making a turn. In such
cases, although it will receive no immediate reward, a further action of going forward will
generate a positive reward, which is then propagated backwards to reinforce the turning
action.

Finder reward (old state,action,new state):
begin
IF action = forward % went forward
and FRONT NEAR SONAR BITS (new state) % facing object
THEN return 3 % reward robot
ELSE IF =FRONT NEAR SONAR BITS (new state)
THEN return -1 % punish robot
ELSE return 0 % default is no reward
end

Figure 12: Reward Function for Box Finder

In our experiments we have used several types of reward functions. The ones described
in the paper were selected because they gave the best results overall. However, the actual
numbers used in the various terms do not substantially alter the experimental results. What
matters most is their qualitative value: whether they are positive or negative, and their rough
relative magnitudes. Still, even with just two terms in the reward function, it is easy for the
learner to get stuck in local minima. For example, if there is something close by and directly
in front of the robot, it can turn slightly back and forth endlessly without incurring the -1
penalty. However, to discover that it can also get a +3 bonus, the robot must serendipitously
move forward at some point. Zero rewards do not affect the behavior of the system.

Finally, we specify the applicability conditions for the box finding behavior. This turns
out to be trivial since the box finding behavior is always applicable. However, it is the least
preferable behavior among the three behaviors for the overall task. This ensures that it gets
control only when the other two behaviors are not applicable.

14

Figure 11: Modules in a Box Pushing Robot

The ordering condition used in OBELIX to coordinate the three behaviors — box finding,
box pushing, and unwedging — is as follows. The unwedging behavior is highest in the
priority ordering. If the robot is in a stalled situation, it cannot do anything else. Thus, the
foremost task is to get the robot out of a stalled situation. The box pushing behavior is next
in priority. If the robot has started to push a box, then clearly it should continue to do so
as long as it can. Lastly, the box finding task is lowest in the priority ordering. If the robot
is not stalled, and it is not pushing a box, then it should look for a box to push.

Another interesting way to obtain this priority ordering on the three behaviors is by
examining the temporal sequence in which they will become applicable. First, the robot
needs to find a box to push one, thus box finding is lowest in the priority ordering. Second,
the robot needs to continue to push a box once it has found one, thus box pushing is second
in the priority ordering. Finally, once the robot has pushed a box to a wall or against another
obstacle, it needs to extricate itself from the stalled situation, thus unwedging is the third
and highest in the priority ordering.

6.2 Behavior 1: Finding a Box

In order to push a box, OBELIX has to first find one. At this point we need to define what
constitutes a “box”. The constraints on a box are that the robot should be able to physically
push it, and be able to distinguish it from obstacles such as walls. In practice, we use empty
rectangular paper cartons about a cubic foot in volume on the real robot. For the simulator,
boxes are convex or concave polygons of varying sizes.

Distinguishing boxes from obstacles using sonar or infra-red detectors is difficult since
both generate remarkably similar patterns from a distance. One reasonable but far from

13

sensors on a simulator robot are “clean”. Finally, actions are deterministic (in the sense
that taking the same action twice from the same state will produce identical results) on the
simulator, unlike on the real robot. Even though the simulator is a fairly inaccurate model
of reality, it has still proved to be a useful tool in our investigations.

One interesting scheme that could speed up learning is to use the learned results from
the simulator on the real robot. Since our simulator is a fairly distorted model of reality, we
have obtained disappointing results using this approach. The real robot simply unlearns all
the simulator-learned material. However, Lin [13] appears to have obtained better results,
perhaps because he used a more sophisticated simulator. Writing a good simulator is quite
a difficult task; in the limit, consider using computer graphics techniques to synthesize video
inputs. We believe that for many tasks it is more expeditious to use a robot operating in
the real world, since the real world is its own best model.

6 The Box Pushing Task

To explore ways in which robots can learn, we have to pick a sample task that is rich enough
that it may potentially lead to practical use, yet simple enough to formulate and study. One
such task is having a robot push boxes across a room. One can view this as a simplified
version of a task carried out by a warehouse robot moving packing cartons around from one
location to another.! Mitchell [17] describes a similar task involving sliding a tile across a
table using a finger contact, although he advocates a more knowledge-intensive approach to
learning the task than the one pursued in this paper.

Conceptually, the box pushing task involves three subtasks. First, the robot needs to find
potential boxes and discriminate them from walls and other obstacles, which is quite difficult
to do using sonar or infra-red detectors. Second, the robot needs to be able to push a box
across a room, which is tricky because boxes tend to slide and rotate unpredictably. Finally,
the robot needs to be able to recover from stalled situations where it has either pushed a box
to a corner, or has attempted to push an immovable object like a wall. Our approach will
be to learn each of these subtasks as a distinct reactive behavior. By reactive, we mean that
we base the control decision on only the currently perceived sensory information. Figure 11
illustrates the overall structure of a behavior-based robot that follows this decomposition of
the task, and also depicts a priority ordering on the three subtasks of the box pushing task.
We discuss the need for this information next.

6.1 Priority Ordering

Our intention is to have OBELIX learn the above three tasks in parallel, using three copies
of the learning algorithm. In order to achieve this, OBELIX must be able to detect which of
the three behaviors is active at any given time. The ordering on the three behaviors enables
OBELIX to determine the dominant behavior in any situation.

TExcept that no one would ever use a round robot to push square boxes!

12

information. The 18 bits generate a total state space of about a quarter million states. It is
the job of the learning algorithm to decide which of the 5 actions to take in each case.

5.2 A Simulated Robot Testbed

Carrying out exhaustive trials on real robots is often time-consuming. While the robot can
usually take any number of steps unattended, a human is required each time the environment
is reset to its initial state. For this purpose a simulator is more useful. While a successful
run on a simulator does not necessarily imply that an algorithm will be successful on a real
robot, nevertheless a simulator offers a fairly rapid prototyping environment.

Figure 10: A simulated robot environment

Figure 10 illustrates a simulated robot environment that we have used in developing
and testing our learning algorithms. The simulator depicts a room environment modeled
after the actual environment in which OBELIX moves about. The robot is represented by
the circular figure; the “nose” indicates the orientation of the robot. Dark shaded objects
represent obstacles. Outline figures represent boxes.

The robot uses simulated “sonar” sensors that are patterned after the real sonar sensors
on OBELIX. These indicate the presence or absence of objects at near and far distances from
the robot. Figure 10 shows the sonar pattern seen by the robot at the location depicted in
the simulator. The BUMP bit is indicated by a short horizontal bar placed directly over the
circle. The robot can move about the simulator environment by taking actions such as going
forward or turning left and right by varying degrees.

The simulator is a simplification of the real world situation in several important respects.
First, boxes in the simulator can only move translationally. Thus a box will move without
rotation even if a robot pushes the box with a force which is not aligned with the axis of
symmetry. Second, the sonars on OBELIX are prone to various types of noise, whereas the

11

faces is at too steep an angle relative to the sonar beams. A different problem occurs for
very short objects, such as the wheels of office chairs. As shown in Figure 8, the sonar
beams are angled downward about 10 degrees to enhance the detection of objects on the
floor. However, it is still possible for a low object to go unnoticed if it is close enough to
the robot to get under the sonar beam. Of course, there is a similar problem in detecting
overhanging obstacles such as table tops or the seats of chairs.

Figure 9: Top view of sonar showing detection zones

The individual sonar units are arranged in an orthogonal pattern as shown in Figure 9.
There are 4 sonars looking toward the front and 2 looking toward each side. The centerlines
of adjacent sonars are offset by 15 degrees to allow some overlap of the detection zones. This
configuration also improves the probability of detecting large flat surfaces in the robot’s
direction of travel. Since each of the front sonars will respond to a different range of surface
normals, the robot can detect walls which are angled up to +/- 30 degrees from its direction
of travel (an important survival skill). Unfortunately, the robot is prone to grazing collisions
since there is a big blind spot at about 45 degrees to each side of the front. Any objects
in this area will escape detection. This can become an important consideration with regard
to developing the concept of object permanence. If the robot sees something in front of it,
turning a small amount may cause the object to totally disappear from view!

Finally, there are two secondary sources of sensory information that have higher semantic
content than the general-purpose sonar array. There is a extra infra-red (IR) detector which
faces straight forward and is tuned to a response distance of 47. This sensor supplies the
BUMP bit used by the learning algorithms since it only comes on when something is right
against the front of the robot. The other source of auxiliary information available is the
motor current being used for forward motion. If this quantity exceeds some fixed threshold,
the STUCK bit is turned on. To prevent damage to the robot, an onboard emergency routine
automatically stops the robot and backs it up slightly when this happens. Note, however,
that even if the robot’s current path is blocked and the robot is wedged up against an
obstacle, the STUCK bit will not come on unless the robot is commanded to move forward.

Thus, to summarize, 18 bits of information are extracted from the sensors on the robot.
16 bits of information come from the 8 sonar sensors (1 bit from the NEAR range and 1

bit from the FAR range). There is also 1 bit of BUMP information, and 1 bit of STUCK

10

motion of the vehicle to one of 5 different possibilities. The robot either moves forward, or
turns left or right in place by two different angles (22 degrees or 45 degrees). It never stops
or backs up. Although the base is capable of performing such moves (as well as much more
complicated ones) we chose to simplify the learning problem by ignoring these features.

OBELIX’s primary sensory suite includes both sonar and infrared devices. In one set
of experiments we use an array of 8 multi-echo sonar units. These use standard Polaroid
transducers and the Texas Instruments single-frequency driver boards. Each sensor in the
array has a field of view of roughly 20 degrees and can see out to about 35 feet. The robot
computes the range to obstacles by measuring the time between the emission of a pulse and
the receipt of the return echo. Our system is capable of measuring a single echo to within
about 1/4” or, alternatively, classifying each echo into one of a series of contiguous 17 range
bins. This latter ability lets us extract potentially useful information from later echoes as
well as the initial one.

For the purposes of the experiments described here, however, we use just two range bins.
One extends from 9” to 18”7 and another covers the distance between 18” and 30”. Thus,
any object in the “near zone” shown in Figure 8 will activate the NEAR bit for that sensor,
whereas objects in the “far zone” will cause the FAR bit to come on. Sometimes, if the
nearer of two objects only partially blocks the sonar beam, both bits will come on. This is
because each of the objects generates a detectable echo. Also, although the near zone stops
9” from the edge of the vehicle, very close objects are usually still sensed. This is because
the obstacle and the robot’s body form two ends of a resonant cavity. For instance, an object
at 67 will also generate a secondary echo which looks like it came from an object located 127
away. This is within the near zone, so the NEAR bit will activated for the object. Higher
order echoes are possible, especially when the robot is almost touching the reflecting surface.
Thus, an extremely close object may actually activate both the NEAR and the FAR bits.

Figure 8: Downward sonar deflection and range limits

Unfortunately, there are several situations in which the sonar will fail to see an obstacle
in front of the robot. The most troublesome case is one in which the object has a smooth,
hard surface. Such objects act like sonar mirrors and can only be detected when their surface
normals are within +/- 10 degrees from the centerline of the sensors. For instance, a box
with a very crisp corner pointed toward the robot may not be sensed because each of the

Module A

suppressor
node

motor

Module B ‘ S command

Figure 7: A suppressor node

practice we have found that a fixed priority scheme is sufficient. This is typically represented
using “suppressor” nodes as shown in Figure 7. The semantics of these devices is that a signal
injected into the side of the node takes precedent over and replaces the signal that normally
passes through the node. For instance, if module A decides that it is not applicable, any
commands generated by module B will pass straight through and go directly to the robot’s
effectors. However, in those cases where A feels it has something to say, its commands will
automatically supercede those of B. In this way A effectively grabs control of the particular
actuator resource in question.

In general, to build a subsumption-style control system we must first break the overall
task into a number of subtasks. Then, for each subtask, we must devise suitable action-
generation policies and applicability conditions. Finally, we must specify a priority ordering
on the behaviors to allow the system to resolve any conflicts that may arise.

5 Real and Simulated Robot Testbeds

We describe two robot testbeds, one real and one simulated, for studying the robot learning
problem.

5.1 OBELIX: A Real Robot Vehicle

OBELIX is a real mobile robot, shown in Figure 2, which has a variety of functional sensory
systems. The robot uses a 9600 baud Arlan 130 radio link to continually send the data it
collects back to a workstation which in turn responds with motion commands. While there
is a small amount of processing onboard, most of the learning work is done by an external
Symbolics 3650 computer running Lisp. We chose this arrangement, rather than coding
everything in assembly language, to avail ourselves of the rapid prototyping environment
and debugging tools available on the Lisp machine.

The physical robot itself is built on a small, 12”7 diameter, 3-wheeled base from RWI, Inc.
This platform is able to turn in place as well as go forward and backward. The sensors are
mounted on top and always face in the direction of travel. For our experiments, we limit the

Figure 5: Parallel paths and arbitration net in a Subsumption Architecture

The primary advantage of such a decomposition is that each of the parallel control paths
only needs to solve those perception, modeling, and planning problems relevant to the par-
ticular task for which the path is designed. Typically, such special-purpose subsystems are
much easier to build than their all-encompassing monolithic counterparts. A secondary ad-
vantage of the architecture is that it can be developed incrementally. As new capabilities
are needed, new paths can be added to the control system with little or no modification of
the original paths.

Module

Applicability

Predicate

Policy
Input Gate

Output

Figure 6: A Module in a Subsumption Architecture

In our version of the subsumption architecture each parallel control path consists of a
“module”. Essentially, each module generates a separate behavior of the robot. A module
has two internal components, as shown in Figure 6. The policy says what to do given the
current sensory information, whereas the applicability predicate says when to make a such
a recommendation instead of deferring to some other module. The applicability predicate
essentially gates the result of the policy to the arbitration network when appropriate. Thus,
there is no need for the policy to be complete and capable of making a reasonable action
decision for every possible sensory configuration. It is the job of the applicability predicate
to silence the policy when its advice is questionable or meaningless.

Although the mediation between different control paths could be arbitrarily complex, in

1. Initialize the learner’s internal state S to Sp.
2. Do Forever:
a. Observe the current world state 1.

. Choose an action a = V(1, S) using the evaluation function V.
Carry out action @ in the world.

. Let the immediate reward for executing a in world state I be r.
Update the learner’s internal state S,., = U(Seuq, I, a,r)
using the update function U.

o oo o

Figure 4: General Algorithm for Reinforcement Learning

sition, and the time derivatives of both these displacements. The reward function punishes
the learner if the pole tips over, and is otherwise zero. The internal state S consists of a
table representing a policy function which maps states to possible actions. Rows in the table
are formed by discretizing each of the four variables in a world state I into a number of
contiguous regions. For every row in the table, the learner keeps a count of the number of
steps the pole remained balanced when it chose to go left or right in a state corresponding
to the row. Given the current position of the pole and the cart, the evaluation function V
looks up the corresponding row in the table, and chooses the action which has been most
successful in the past. The update function U increments the row count of the action chosen
in the previous step provided there is no negative reward in the current step.

Reinforcement learning has several nice properties. It does not require supplying the
robot with a theory of its domain, as is required by explanation-based learning [9, 18], which
would be a substantial undertaking in any real world robotics task. Second, reinforcement
learning is incremental, as opposed to some types of inductive learning, thus the robot is
continually improving its performance as it learns. Third, supplying the robot with suitable
reward functions turns out to be relatively straightforward, especially for the kinds of tasks
that subsumption architectures have been used for.

On the other hand, reinforcement learning suffers from a number of limitations. One,
it is slow to converge, requiring several thousand instances. Two, it is difficult to “prime”
the learner with domain knowledge that happens to be available, except by engineering the
representation of states.

4 Behavior-based Robots

In this section we discuss one specific implementation of behavior-based robots, namely the
subsumption architecture [3, 8]. As shown in Figure 5, a subsumption-style architecture
operates by breaking the overall control system into a number of smaller, concurrent parallel
processes. Fach of these branches, or “behaviors” as they are often called, uses a subset
of the available sensory data to independently compute a set of values for the output con-
trol parameters. A hard-wired arbitration network or priority ordering then combines the
individual results into a unified command for the actuators.

learner’s actions, since the states and rewards experienced by the learner depends on the
actions it takes. Two, the learning has as a single goal choosing actions that maximize the
cumulative reward over time. In contrast, other types of learners have different goals, such
as minimizing description length or reformulating a concept definition. Finally, the learner
is faced with a difficult credit assignment problem of evaluating the goodness of states and
actions from a scalar reinforcement signal, not a very helpful explanation!

Figure 3 illustrates the two credit assignment problems, temporal and structural, in re-
inforcement learning [26]. The figure shows several possible action sequences leading to the
current state (£ = 0). The one actually carried out is drawn with darker lines. The temporal
credit assignment problem is how to propagate the reward backwards in time from ¢t = 0
to t = —3. The structural credit assignment problem, on the other hand, is how to propa-
gate the reward spatially across states so that similar states cause the agent to take similar
actions. The latter seems to be the harder of the two problems for real robots.

Figure 3: Temporal versus Structural Credit Assignment

Following Kaelbling [11], we can view most reinforcement learning algorithms as instanti-
ations of the general scheme shown in Figure 4. Any reinforcement learner has the following
components: an internal state S, an update function U that modifies S, and an evaluation
function V for choosing actions. Different reinforcement algorithms vary in one or more of
the parameters S, V, and U.

A classic example of reinforcement learning is the BOXES algorithm for the pole balanc-
ing task [15]. Many refinements have since been made to this algorithm [2, 24], but it serves
nicely to illustrate the key ideas underlying reinforcement learning. Briefly, the problem is
to balance a pole using a cart that runs on a rail (with one degree of freedom). There are
two possible actions — the cart can be moved left or right exerting equal but opposite forces
on the pole. The world state I is composed of four variables: the displacement of the cart
from some mean initial position, the angular displacement of the pole from the vertical po-

by the same angle does not guarantee that the robot is back in the same state it was before
doing the actions.

For these reasons, we believe it is important to experiment with real physical robots.
There are many facets of the real world that are very difficult to simulate effectively — for
example, how does a sonar reflect off a metal file cabinet? Often, certain difficulties with
simulators disappear with real robots — for example, to get out of loops in a simulator requires
doing random actions once in a while, whereas sufficient randomness is always present in
the real world. Likewise, we have found algorithms that work effectively on a simulator
sometimes do not work on a real robot — for example, because they converge too slowly or
because real sensors contain more noise than expected. On the other hand, it is easier to
test out new algorithms on a simulator since many more trials can be carried out in the same
amount of time. Thus, we have used both real and simulated robot testbeds in our study.

2.1 Requirements for a Robot Learning Algorithm

Robotics is particularly challenging as a domain for any learning algorithm. In particular,
some requirements on a learning algorithm for it to be applicable to robots are given below:

o Noise immunity: The technique should be able to deal with noise. State descriptions
may sometimes be wrong, and the use of probabilistic smoothing techniques is often
required.

o Fust convergence: The technique should be able to converge in a reasonable number
of trials since actions are required to obtain examples, and it is difficult to carry out a
million actions on a real robot.

o [ncrementality: The learning algorithm should be allow the robot to improve its per-
formance while it is learning. Since the examples are generated by the robot itself, this
allows the robot to explore its environment quicker and generate better examples.

o Tractability: The learning algorithm should be computationally tractable. That is,
every iteration of the algorithm should be doable in real time.

o Groundedness: The technique should only depend on information that can actually be
extracted from the sensors on a robot.

3 Reinforcement Learning

Reinforcement learning studies the problem of inducing by trial and error a policy from
states to actions that maximizes a fixed performance measure (or reward) [2, 11, 28]. It is
similar to models used in some psychological studies of behavior learning in animals and
humans. However, it differs in several important respects from the more traditional work
on concept learning [16]. One, it is unsupervised learning meaning that examples are not
carefully selected by a teacher. Instead, the distribution of examples is influenced by the

Figure 2: The OBELIX robot examining a box

technique. Section 3 provides a brief overview of reinforcement learning. Section 4 presents
a specific architecture for behavior-based robots. Section 5 describes a real and a simulated
robot testbed for studying robot learning. Section 6 describes the example task of box push-
ing. Section 7 describes two reinforcement learning algorithms that we have implemented for
the box pushing task. Section 8 contains experimental results comparing the two algorithms
with handcoded and random agents. Section 10 discusses related work. Finally, Section 11
concludes, and suggests directions for further research.

2 Salient Characteristics of the Robot Domain

There are a number of features of the robot domain that distinguish it from other domains.
Robots are constrained to interact with the real world through sensors and effectors. One way
this affects learning is that any proposed algorithm has to work with information that can be
computed from the available sensors. For example, Sutton [28] describes a simulated robot
that learns to navigate in a simple grid-based environment. However, his algorithm cannot
be used on a sonar-based robot since it assumes the precise coordinates of the robot are
known at all times. Most easy-to-build sensors are incredibly noisy. For example, Polaroid
sonars are a popular sensor on many robots because they are readily available and cheap, but
they are prone to many different kinds of errors. This means that the state representation
constructed from sonar images is bound to have some incorrect elements, and any learning
algorithm must be able to handle this problem.

Similarly, actions often do not have the desired effect because the robot cannot carry
them out to the desired precision. For example, a robot for stacking blocks may not be able
to align two blocks so that they are flush because of the limited resolution of the arm. Also,
actions are almost never exactly invertible — turning left by a certain angle and then right

environment that is adjacent to it. This deviates from approaches using global sensing, such
as an overhead camera [7].

Reinforcement learning [2, 11, 28, 30] studies how an agent can optimally choose an action
based on its current and past sensor values such that it maximizes over time a reward function
measuring the agent’s performance. This is a particularly appealing approach because it
allows a robot to learn in unknown environments, adapt its learning to the particulars of a
task, and to choose actions based on the currently perceived state. Also, specifying a reward
function for a task is often much easier than explicitly programming the robot to carry out
the task.

However, one problem with reinforcement learning is that it is slow to converge in large
search spaces, an especially acute problem in robotics. By using a behavior-based architec-
ture, we are able to overcome this problem to some extent, since it decomposes the problem
of learning a complex task into a set of simpler problems of learning each constituent be-
havior. This reduces the overall search space, and thereby accelerates the convergence of
the learning algorithm — an important consideration for real robots. It also helps reduce
the perceptual aliasing problem [32], which is caused by the many-to-one and one-to-many
mapping between external world states and internal perceived states. In particular, state
history information can be encoded as part of the module, which helps the robot disam-
biguate the current state. Thus, the same state may provoke different reactions from the
different modules.

Each behavior in a behavior-based robot is generally comprised of an applicability con-
dition specifying when it is appropriate, and a policy specifying the best action in any state.
Our approach assumes the robot is initially supplied with applicability condition on each
behavior, as well as a priority ordering to resolve conflicts among the various behaviors.
However, it does not depend on any particular set of sensors or actions. The key idea is to
learn a policy for each behavior that over time maximizes a fixed performance function.

We describe an actual behavior-based robot called OBELIX (shown in Figure 2) that
learns several constituent behaviors in an example task of pushing boxes. In particular,
OBELIX combines Q learning [30], a technique for propagating rewards temporally across
sequences of actions, with two state generalization techniques — weighted Hamming distance
and statistical clustering — which propagate rewards spatially across similar states.

We present detailed experimental evidence from learning runs on the real robot and a
simulator showing how performance at the box pushing task improves with learning. In
particular, we empirically compare the performance of two learning algorithms on the three
behaviors involved in the box pushing task with a handcoded agent as well as a random
agent. Finally, we contrast these results with those for learning the box pushing task using
a monolithic architecture, that is without decomposing the task into simpler behaviors. The
results indicate that the two algorithms are able to learn each behavior to a reasonable degree
of performance, sometimes exceeding the handcoded agent’s performance. Furthermore, the
results suggest that learning each behavior separately is superior to learning the entire task
as one behavior.

The rest of the paper is organized as follows. Section 2 discusses some relevant charac-
teristics of the robotics domain, and how they influence the design of any potential learning

1 Introduction

Behavior-based robots, such as those using the subsumption architecture, are a promising
and demonstrably successful approach to building intelligent autonomous agents [3, 8]. They
radically differ from the traditional approach of structuring an agent’s architecture into
functional modules — perception, planning, learning etc. — by instead organizing an agent
as a layered set of task-achieving modules. Each module implements one specific control
strategy or behavior, such as “avoid hitting anything” or “keep following the wall”. Thus,
with this approach, each module has to solve only the part of the perception or planning
problem that it requires. Furthermore, the subsumption approach naturally lends itself to
incremental improvement, since new layers can be easily added on top of existing layers.
Figure 1 contrasts the traditional approach with the subsumption approach to building
intelligent agents.

Figure 1: Traditional and Behavior-based architectures for an intelligent agent

One of the problems with behavior-based robots is that the component modules have to
be laboriously programmed by a human designer. Although some exciting progress has been
made recently in learning to coordinate various behaviors [14], the task of programming in
each individual behavior remains the burden of a human designer. If new behaviors could be
learned, it would also free the designer from needing a deep understanding of the interactions
between a particular robot and its application environment.

In this paper we are interested in developing learning algorithms that allow a real mo-
bile robot to learn new behaviors in an initially unknown environment. This differs from
approaches where the robot has considerable task knowledge to begin with [17]. Also, we
want the learning algorithm to be sensitive to the task being learned. This contrasts with
general algorithms for learning the structure of finite state environments [23]. Finally, we
are interested in situations where a mobile robot can only perceive the portion of the task

Abstract

This paper describes a general approach for automatically programming a behavior-based
robot. New behaviors are learned by trial and error using a performance feedback function as
reinforcement. Two algorithms for behavior learning are described that combine Q learning,
a well known scheme for propagating reinforcement values temporally across actions, with
statistical clustering and Hamming distance, two ways of propagating reinforcement values
spatially across states. A real behavior-based robot called OBELIX is described that learns
several component behaviors in an example task involving pushing boxes. A simulator for
the box pushing task is also used to gather data on the learning techniques. A detailed
experimental study using the real robot and the simulator suggests two conclusions. One,
the learning techniques are able to learn the individual behaviors, sometimes outperforming
a handcoded program. Two, using a behavior-based architecture speeds up reinforcement
learning by converting the problem of learning a complex task into that of learning a simpler
set of special-purpose reactive subtasks.

Automatic Programming of Behavior-based Robots
using Reinforcement Learning

Sridhar Mahadevan and Jonathan Connell
IBM T.J. Watson Research Center, Box 704
Yorktown Heights, NY 10598

(sridhar@watson.ibm.com and jhc@Qwatson.ibm.com)

July 25, 1991

