
COP 3223H — Honors Introduction to Programming with C March 6, 2017

Homework 5: Conditionals and Loops in C
See Webcourses and the syllabus for due dates.

General Directions
This homework should be done individually. Note the grading policy on cooperation carefully if you choose
to work together (which we don’t recommend).
In order to practice for exams, we suggest that you first write out your solution to each problem on paper,
and then check it typing that into the computer.
You should take steps to make your code clear, including using symbolic names for important constants and
using helping functions (or helping procedures) to avoid duplicate code.
It is a good idea to test your code yourself first, before running our tests, as it is easier to debug when you
run the code yourself. To do your own testing for problems that ask for a function (instead of a whole
program), you will need to write a main function to do your own testing. (Note that our tests are also in a
main function.)
Our tests are provided in hw5-tests.zip, which you can download from the homeworks directory. This zip
file contains several C files with names of the form test_f.c, where f is the name of the function you
should be writing (such as fl_temp_judge), and also some other files, including tap.h and tap.c.
Continuing to use f to stand for the name of the function you should be writing, place the code for f in a file
named f.c, with the function itself named f (actually, it should be named with whatever f stands for). These
conventions will make it possible to test using our testing framework.

Testing on Eustis
To test on eustis.eecs.ucf.edu, send all the files to a directory you own on eustis.eecs.ucf.edu, and compile
using the command given in a comment at the top of our testing file (e.g., at the top of test_f.c for a
function named f), then run the executable that results (which will be named test_f) by executing a
command such as:

./test_f >test_f.txt

which will put the output of our testing into the file test_f.txt, which you can copy back to your system to
view and print. You can then upload that file and your source file f.c to webcourses.

Testing on Your Own Machine using Code::Blocks
You can also test on your own machine using Code::Blocks, which is probably more convenient.
If you need help installing Code::Blocks on your own machine, see the course staff or the running C page.
To use our tests for a function f (where f should be replaced in all cases below with the name of the function
being asked for in the problem you are working on, such as fl_temp_judge), with Code::Blocks, create a
new “Console application” project (using the File menu, select the “New” item, and then select “Project ...”).
Make the project a C project (not C++!). We suggest giving the project the title “test_f”, and putting it in a
directory named, say, cop3223h/test_f.
You should unzip the contents of our hw5-tests.zip file into a directory you own, say cop3223h/hw5testing.
You will need to add the project tests for f (i.e., the file test_f.c) and the files tap.c and tap.h. We
recommend that you do this by copying these files into the project’s directory (i.e., into the directory
cop3223h/test_f). (You can do this using the File Explorer (on Windows) or the Finder (on a Mac), or by
using the command line. Once this is done, use the “Project” menu in Code::Blocks and select the item
“Add files...”, then follow the dialog to add each of the files test_f.c, tap.c, and tap.h to the project.
After this is done remove the dummy file main.c in the project, which can be done by using the “Project”
menu, selecting the item “Remove files...”, and then selecting the file main.c.

https://webcourses.ucf.edu/
http://www.eecs.ucf.edu/~leavens/COP3223H/syllabus.shtml
http://www.eecs.ucf.edu/~leavens/COP3223H/homeworks/
http://www.cs.ucf.edu/~leavens/COP3223H/docs/unix.pdf
http://www.cs.ucf.edu/~leavens/COP3223H/docs/scp.pdf
http://www.cs.ucf.edu/~leavens/COP3223H/running_c.shtml#eustis
http://www.cs.ucf.edu/~leavens/COP3223H/docs/scp.pdf
http://www.codeblocks.org
http://www.cs.ucf.edu/~leavens/COP3223H/running_c.shtml

2

Then you will need to write the file f.c in the project. To do this, use the “File” menu in Code::Blocks,
select the “New” item, and then from the submenu select the item “File...” Create the new file in the same
project directory, cop3223h/test_f, with the file name f.c. Apparently creating the file in the project
directory is not enough to have Code::Blocks understand that the file is part of the project. So you also need
to use the “Project” menu and the “Add file...” item to make sure that the new file is included in the project.
You can then use Code::Blocks to write the code for function f in the file f.c.
To run our tests, you can then build and run the project. If you encounter errors where Code::Blocks (or the
system loader) says it cannot find a file, use the “Project” menu and the “Add file...” item to make sure that
all files are included in the project.
When everything is built, the easiest way to capture the test output is to use the command line. Run the
cmd.exe program (on Windows, which you can start by typing “cmd” into Cortana and selecting cmd.exe)
or the Terminal (on a Mac) and change to the directory (by a command like cd cop3223h/test_f/). If you
made a “Debug” version of the testing program under Code::Blocks, which is the default for Code::Blocks,
then change to the bin/Debug directory (with a command like cd bin/Debug). On Windows, then you
would execute the following from the command line prompt

test_f.exe >test_f.txt

which will put the testing output into the file test_f.txt. On a Mac, you can accomplish the same thing by
executing from the terminal prompt:

./test_f >test_f.txt

You can then upload the output test_f.txt file and your source file f.c to webcourses.

What to turn in
For problems that ask you to write a C function, upload your code as an ASCII file with suffix .c, and also
upload the output of running our tests (as an ASCII file with suffix .txt).

Problems
1. (10 points) [Programming] In sunny Florida, long term residents develop a semi-tropical sense of what

temperatures mean. Your task in this problem is to write a function, in C, that captures that judgment.1

That is, you are to write a function

char * fl_temp_judge(double temp);

that takes a temperature, temp, which is a double representing the temperature in degrees Farenheit, and
produces a C string (which has type char *, because a character array used as a return value in C really
returns the address of the array). This function should return the string "cold" if temp is less than 55.0,
it should return "cool" if temp is at least 55.0 and less than 70.0, "warm" if temp is at least 70.0 and less
than 85.0, and "hot" if temp is 85.0 or more.2 Tests are shown in Figure 1 on the following page.

Remember to turn in your C source code file fl_temp_judge.c and the output of running our tests.
Your code and also the output of running our tests should be submitted to webcourses as ASCII text
files that you upload.

2. (20 points) [Programming] In C, write a function,

int divisors(int n, int divs[], int sz);

that takes a positive integer n, an array of ints, divs, and in int sz, such that divs has at least sz
elements, where n is at least as large as the number of divisors of n. The result of a call

1 The temperature ranges in this problem were given to Dr. Leavens by his wife.
2So that you don’t have to worry about the strange properties of the double called “not a number” (NaN), you should assume that

temp is such that isnan(temp) is false. The C math library math.h defines isnan.

http://www.cs.ucf.edu/~leavens/COP3223H/about.shtml#OutProgramming
http://www.cs.ucf.edu/~leavens/COP3223H/about.shtml#OutProgramming

3

// $Id: test_fl_temp_judge.c,v 1.2 2017/03/06 04:14:06 leavens Exp leavens $

// compile with:

// gcc tap.c fl_temp_judge.c test_fl_temp_judge.c -o test_fl_temp_judge

#include <stdlib.h>

#include <stdio.h>

#include "tap.h"

extern
char * fl_temp_judge(double temp);

// Testing for fl_temp_judge().

int main() {

plan(19);
is(fl_temp_judge(30.0), "cold");

is(fl_temp_judge(54.0), "cold");

is(fl_temp_judge(54.99), "cold");

is(fl_temp_judge(55.0), "cool");

is(fl_temp_judge(56.0), "cool");

is(fl_temp_judge(60.1259), "cool");

is(fl_temp_judge(69.999), "cool");

is(fl_temp_judge(70.0), "warm");

is(fl_temp_judge(70.125), "warm");

is(fl_temp_judge(70.125), "warm");

is(fl_temp_judge(72.0), "warm");

is(fl_temp_judge(79.0), "warm");

is(fl_temp_judge(84.5), "warm");

is(fl_temp_judge(84.999), "warm");

is(fl_temp_judge(85.0), "hot");

is(fl_temp_judge(85.01), "hot");

is(fl_temp_judge(95.0), "hot");

is(fl_temp_judge(125.0), "hot");

is(fl_temp_judge(-20.0), "cold");

return exit_status();
}

Figure 1: Tests for the function fl_temp_judge. Note that is() is part of libtap (file tap.h) that compares
two strings for equality. The plan and exit_status functions are also part of libtap.

divisors(n, divs, sz) is the number of (positive) divisors of n such that for each i such that 0 ≤ i
and i is strictly less than the result, divs[i] is positive, and divs[i] evenly divides n. Furthermore,
divs is sorted in strictly increasing order (for the elements up to the result). (For convenience, this
specification for divisors is stated in the file divisors.h.) Tests for divisors appear in Figure 2 on
page 5, which includes some output that may be helpful for debugging.

Remember to turn in your C source code file divisors.c and the output of running our tests.

3. (20 points) [Programming] The number 6 is considered a “perfect number” because it is the sum of its
proper divisors. A proper divisor is a positive divisor that is strictly less than the number itself; for
example, the proper divisors of 6 are 1, 2, and 3, which sum to 6. 28 is also a perfect number.

Your task in this problem is to write a function

bool is_perfect(int n);

that takes a positive int, n, and returns true just when n is a perfect number (i.e, when the sum of its
proper divisors is n). Tests are shown in Figure 3 on page 6.

http://www.cs.ucf.edu/~leavens/COP3223H/about.shtml#OutProgramming

4

Remember to turn in your C source code file is_perfect.c and the output of running our tests.

Points
This homework’s total points: 50.

5

// $Id: test_divisors.c,v 1.2 2017/03/06 04:22:01 leavens Exp leavens $

// compile with:

// gcc tap.c divisors.c test_divisors.c -o test_divisors

#include <stdlib.h>

#include <stdio.h>

#include "tap.h"

#include "divisors.h"

#define SIZE 150

// Requires: 0 < n and divs has at least count elements

// Effect: print to stdout the count divisors of n contained in divs

void print_divisors(int n, int divs[], int count) {

printf("divisors of %d are: ", n);

for (int i = 0; i < count; i++) {

printf("%d", divs[i]);

if (i < count-1) {

printf(", ");

}

}

printf("\n");

}

/* Check the divsors of n computed by divisors()

and return the number of divisors of n. */

int check_divisors(int n) {

int divs[SIZE];

int count = divisors(n, divs, SIZE);

print_divisors(n, divs, count);

// 1 and n must both divide n

ok(0 < count && divs[0] == 1 && divs[count-1] == n);

// each element in divs must be a divisor

for (int i = 0; i < count; i++) {

ok(0 < divs[i] && divs[i] <= n && n % divs[i] == 0);

}

return count;

}

// Testing for divisors().

int main() {

ok(check_divisors(1) == 1);

ok(check_divisors(2) == 2);

ok(check_divisors(3) == 2);

ok(check_divisors(4) == 3);

ok(check_divisors(6) == 4);

ok(check_divisors(7) == 2);

check_divisors(12);

check_divisors(28);

check_divisors(42);

check_divisors(50);

check_divisors(60);

check_divisors(72);

check_divisors(100);

check_divisors(128);

check_divisors(360);

check_divisors(496);

check_divisors(500);

check_divisors(840);

return exit_status();
}

Figure 2: Tests for the function divisors.

6

// $Id: test_is_perfect.c,v 1.2 2017/03/06 04:16:20 leavens Exp leavens $

// compile with:

// gcc tap.c divisors.c is_perfect.c test_is_perfect.c -o test_is_perfect

#include <stdlib.h>

#include <stdio.h>

#include "tap.h"

#include "is_perfect.h"

// Testing for is_perfect()

int main() {

ok(!is_perfect(4));
ok(is_perfect(6));
ok(!is_perfect(12));
ok(!is_perfect(27));
ok(is_perfect(28));
ok(!is_perfect(29));
ok(is_perfect(496));
ok(is_perfect(8128));
return exit_status();

}

Figure 3: Tests for the function is_perfect.

