
COP 4020 — Programming Languages I March 18, 2013

Homework 4: Higher-Order Functional
Programming

See Webcourses2 and the syllabus for due dates.

Purpose
In this homework you will learn more advanced techniques of functional programming such as using
higher-order functions to abstracting from programming patterns, and using higher-order functions to model
infinite data [UseModels] [Concepts]. Many of the problems exhibit polymorphism [UseModels]
[Concepts]. The problems as a whole illustrate how functional languages work without hidden effects
[EvaluateModels].

Directions
Answers to English questions should be in your own words; don’t just quote text from other sources.
We will take some points off for: code with the wrong type or wrong name, duplicated code, code with extra
unnecessary cases, or code that is excessively hard to follow. You should always assume that the inputs
given to each function will be well-typed, thus your code should not have extra cases for inputs that are not
of the proper type. Make sure your code has the specified type by including the given type declaration with
your code. Avoid duplicating code by using helping functions, library functions (when not prohibited in the
problems), or by using syntactic sugars and local definitions (using let and where). It is a good idea to
check your code for these problems before submitting.
Since the purpose of this homework is to ensure skills in functional programming, we suggest that you work
individually. (However, per the course’s grading policy you can work in a group if you wish, provided that
carefully follow the policy on cooperation described in the course’s grading policy.)
Don’t hesitate to contact the staff if you are stuck at some point.

What to Turn In
For each problem that requires code, turn in (on Webcourses2) your code and output of testing with our test
cases. Please upload code as a plain (text) file with the name given in the problem or testing file and with the
suffix .hs or .lhs (that is, do not give us a Word document or a PDF file for the code). Also paste the output
from our tests into the Comment box for that “assignment”. For English answers, please paste your answer
into the assignment as a “text answer” in the problem’s “assignment” on Webcourses. For a problem with a
mix of code and English, follow both of the above.
For all Haskell programs, you must run your code with GHC. See the course’s Running Haskell page for
some help and pointers on getting GHC installed and running. Your code should compile properly (and thus
type check); if it doesn’t, then you probably should keep working on it. Email the staff with your code file if
you need help getting it to compile or have trouble understanding error messages. If you don’t have time to
get your code to compile, at least tell us that you didn’t get it to compile in your submission.
You are encouraged to use any helping functions you wish, and to use Haskell library functions, unless the
problem specifically prohibits that.

What to Read
For learning Haskell, you may want to read some of the Haskell tutorials. Use the Haskell 2010 Report as a
guide to the details of Haskell. See also the course code examples page (and the course resources page).

https://webcourses2c.instructure.com/
http://www.eecs.ucf.edu/~leavens/COP4020/syllabus.shtml
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutUseModels
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutConcepts
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutUseModels
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutConcepts
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutEvaluateModels
http://www.eecs.ucf.edu/~leavens/COP4020/grading_policy.shtml
http://www.eecs.ucf.edu/~leavens/COP4020/grading_policy.shtml#coop
http://www.eecs.ucf.edu/~leavens/COP4020/contact.shtml
https://webcourses2c.instructure.com/
http://www.eecs.ucf.edu/~leavens/COP4020/running_haskell.shtml
http://www.eecs.ucf.edu/~leavens/COP4020/contact.shtml
http://www.haskell.org/haskellwiki/Tutorials
http://www.haskell.org/haskellwiki/Language_and_library_specification#The_Haskell_2010_report
http://www.eecs.ucf.edu/~leavens/COP4020/examples/index.html
http://www.eecs.ucf.edu/~leavens/COP4020/resources.shtml

2

Problems

Combinations of Previous Techniques
1. [UseModels] This two-part question deals with Artificial Neural Networks (ANNs).

(a) (10 points) An artificial neuron that can process a vector of n inputs can be represented by a list of
n weights, where each weight is a Double.

type Neuron = [Weight]
type Vector = [Double]
type Weight = Double

In this part you will write a function

applyNeuron :: Neuron -> Vector -> Double

that takes a Neuron, which is represented as a list of weights [w1, . . . , wn], and an input vector
[i1, . . . , in] of the same length, and returns tanh(Σn

j=1wj · ij), where tanh is the hyperbolic
tangent function. (You can use the built-in Haskell function tanh to compute tanh.)

(b) (20 points) An artificial neural network can be represented as a list of lists of Neurons.

type NeuralNetwork = [NeuralLayer]
type NeuralLayer = [Neuron]

A properly formed neural network of input size m has the property that if we number its layers
from 1 to n, then a layer j > 1 is such that it takes an input from each of the neurons in layer j − 1,
and thus each neuron in layer j has `j−1 weights, where `j−1 is the number of neurons in layer
j − 1. The neurons in the first layer each have m weights. (For example, m would be 3 if the
inputs are RGB tuples in a pixel.) Properly formed neural networks are constructed by
contructNN, which is found in Figure 1 on the following page.
In this part you will write a function

applyNetwork :: NeuralNetwork -> Vector -> Vector

which takes a properly formed neural network of input size m, nn, and an input vector, iv, of size
m and returns a vector of outputs from the last layer of nn that is the result of applying each neuron
to the vector of the outputs of the neurons in the previous layer. Let us again number the layers
from 1 to n. Then the output from the first layer of nn has as its ith element the result of
(applyNeuron ni iv), where ni is the ith neuron in the first layer. The output of the jth layer is
computed in the same way, using the output of the j − 1st layer instead of the input vector.
Finallly, the result of the whole computation is the result of the last layer.

There are test cases contained in the file ANNTests.hs, which is shown in Figure 1 on the next page.
(These tests use functions already defined FloatTesting.hs, which is shown in Figure 2 on page 4.) To
run our tests, use the ANNTests.hs file. To make that work, you have to put your code in a module ANN,
which will need to be in a file named ANN.hs (or ANN.lhs), in the same directory as ANNTests.hs,
Testing.lhs, and FloatTesting.hs.

As specified on the first page of this homework, turn in both your code file and the output of your
testing. (The code file should be uploaded to Webcourses2, and the test output should be pasted in to the
comments box for that assignment.)

3

-- $Id: ANNTests.hs,v 1.4 2013/02/14 02:29:38 leavens Exp leavens $

module ANNTests where
import ANN

import Testing

import FloatTesting

main = do startTesting "ANNTests $Revision: 1.4 $"

nerrs <- run_test_list 0 ntests

total <- run_test_list nerrs nntests

doneTesting total

-- construction of Neural Networks, for testing, not for you to implement

af = tanh -- hyperbolic tangent is the activation function

initWeight = 1.0 -- initial weight

type Pattern = [Integer] -- used for construction

constructNN :: Pattern -> Integer -> NeuralNetwork

constructNN pattern m = createNN m pattern []

where createNN :: Integer -> Pattern -> NeuralNetwork -> NeuralNetwork

createNN _ [] acc = reverse acc

createNN m (len:densities) acc =

createNN len densities

([[initWeight | _<-[1..m]] | _<- [1..len]]:acc)

-- data for testing below

nn321 = constructNN [3,2,1] 3

demo = [[[1.0,1.0,1.0,1.0],[2.0,2.0,2.0,2.0],[3.0,3.0,3.0,3.0]]]

demo1 = [[[1.0,1.0,1.0],[2.0,2.0,2.0],[3.0,3.0,3.0]]]

demo2 = [[[1.0,1.0,1.0],[2.0,2.0,2.0],[3.0,3.0,3.0]],

[[4.0,4.0,4.0],[5.0,5.0,5.0]]]

iv5678 = [5.0,6.0,7.0,8.0]

iv567 = [5.0,6.0,7.0]

ntests :: [TestCase Double]
ntests = [withinTest (applyNeuron [1.0,1.0] [0.0,0.0])

"~=~" (af (1.0*0.0 + 1.0*0.0))

,withinTest (applyNeuron [1.05,1.0,0.95] [3.0,4.0,5.0])

"~=~" (af (1.05*3.0 + 1.0*4.0 + 0.95*5.0))

,withinTest (applyNeuron [1.05,2.0,0.95] [3.0,4.0,5.0])

"~=~" (af (1.05*3.0 + 2.0*4.0 + 0.95*5.0))

,withinTest (applyNeuron [1.0,1.0,1.0,1.0] [1.0,1.0,1.0,1.0])

"~=~" (af 4.0)]

nntests :: [TestCase [Double]]
nntests =

[vecWithin (applyNetwork demo iv5678)

"~=~" [applyNeuron (demo!!0!!0) iv5678

,applyNeuron (demo!!0!!1) iv5678

,applyNeuron (demo!!0!!2) iv5678]

,vecWithin (applyNetwork demo1 iv567)

"~=~" [applyNeuron (demo1!!0!!0) iv567

,applyNeuron (demo1!!0!!1) iv567

,applyNeuron (demo1!!0!!2) iv567]

,vecWithin (applyNetwork demo2 iv567)

"~=~" (let layer1res = [applyNeuron (demo2!!0!!0) iv567

,applyNeuron (demo2!!0!!1) iv567

,applyNeuron (demo2!!0!!2) iv567]

in [applyNeuron (demo2!!1!!0) layer1res

,applyNeuron (demo2!!1!!1) layer1res])

,vecWithin (applyNetwork nn321 [4.3,2.1,0.5]) "~=~" [0.9633220964607272]

,vecWithin (applyNetwork nn321 [0.0,0.0,0.0]) "~=~" [0.0]

,vecWithin (applyNetwork nn321 [1.0,1.0,1.0]) "~=~" [0.9633007043762163]

,vecWithin (applyNetwork nn321 [10.0,10.0,10.0]) "~=~" [0.9633221051195399]

,vecWithin (applyNetwork nn321 [-1.0,-1.0,-1.0]) "~=~" [-0.9633007043762163]]

Figure 1: Tests for problem 1.

4

-- $Id: FloatTesting.hs,v 1.3 2013/02/22 16:05:21 leavens Exp leavens $

module FloatTesting where
import Testing

withinMaker :: (RealFloat a) => a -> a -> a -> Bool
withinMaker eps x y = abs(x - y) < eps

relativeMaker eps x y = abs(x - y) < eps*abs(y)

(~=~) :: (RealFloat a, Tolerance a) => a -> a -> Bool
(~=~) = withinMaker hwTolerance

(~~~) :: (RealFloat a, Tolerance a) => a -> a -> Bool
(~~~) = relativeMaker hwTolerance

withinTest :: (Show a, RealFloat a, Tolerance a) =>
a -> String -> a -> TestCase a

withinTest = gTest (~=~)

vecWithin :: (Show a, RealFloat a, Tolerance a) =>
[a] -> String -> [a] -> TestCase [a]

vecWithin = gTest (\xs ys -> length xs == length ys

&& all (uncurry (~=~)) (zip xs ys))

class (RealFloat a) => Tolerance a where
hwTolerance :: a

instance Tolerance Float where
hwTolerance = 1.0e-5

instance Tolerance Double where
hwTolerance = 1.0e-9

Figure 2: Testing helpers for floating point numbers.

5

Higher-Order Functions

These problems are intended to give you an idea of how to use and write higher-order functions.

2. (5 points) [UseModels] In cryptography, one would like to apply functions defined over the type Int to
data of type Char. However, in Haskell, these two types are distinct. In Haskell, write a function

toCharFun :: (Int -> Int) -> (Char -> Char)

that takes a function f, of type is Int -> Int, and returns a function that operates on characters. In your
implementation you can use the fromEnum and toEnum functions that Haskell provides (found in the
Enum instance that is built-in for the type Char).

Hint: note that (fromEnum 'a') is 97 and (toEnum 100) :: Char is 'd'.

There are test cases contained in the file ToCharFunTests.hs, which is shown in Figure 3 on the next
page.

To run our tests, use the ToCharFunTests.hs file. To make that work, you have to put your code in a
module ToCharFun, which will need to be in a file named ToCharFun.hs (or ToCharFun.lhs), in the
same directory as ToCharFunTests.hs and Testing.lhs.

As specified on the first page of this homework, turn in both your code file and the output of your
testing. (The code file should be uploaded to Webcourses2, and the test output should be pasted in to the
comments box for that assignment.)

3. (10 points) [UseModels] Using Haskell’s built-in map function, write the function

mapInside :: (a -> b) -> [[a]] -> [[b]]

that for some types a and b takes a function f of type a -> b, and a list of lists of type a, lls, and
returns a list of type [[b]] that consists of applying f to each element inside each list in lls.

There are test cases contained in the file MapInsideTests.hs, which is shown in Figure 4 on page 7.

Note that your code must use map. For full credit, write a solution that does not use any pattern
matching.

As specified on the first page of this homework, turn in both your code file and the output of your
testing. (The code file should be uploaded to Webcourses2, and the test output should be pasted in to the
Comments box.)

6

-- $Id: ToCharFunTests.hs,v 1.1 2013/02/11 02:51:06 leavens Exp leavens $

module ToCharFunTests where
import ToCharFun -- your solution goes in this module

import Testing

main = dotests "ToCharFunTests $Revision: 1.1 $" tests

tests :: [TestCase Char]
tests = [eqTest (toCharFun (+3) 'a') "==" 'd'

,eqTest (toCharFun (+1) 'b') "==" 'c'

,eqTest (toCharFun (+7) 'a') "==" 'h'

,eqTest (toCharFun (\c -> 10*c `div` 12) 'h') "==" 'V'

]

Figure 3: Tests for problem 2.

7

-- $Id: MapInsideTests.hs,v 1.1 2013/02/11 02:51:06 leavens Exp leavens $

module MapInsideTests where
import Testing

import ToCharFun -- used for testing

import MapInside -- you have to put your solutions in module MapInside

version = "MapInsideTests $Revision: 1.1 $"

-- do main to run our tests

main :: IO()
main = do startTesting version

errs_ints <- run_test_list 0 int_tests

total_errs <- run_test_list errs_ints string_tests

doneTesting total_errs

int_tests :: [TestCase [[Int]]]
int_tests =

[eqTest (mapInside (+1) []) "==" []

,eqTest (mapInside (+1) [[]]) "==" [[]]

,eqTest (mapInside (*2) [[3,4,5],[4,0,2,0],[],[8,7,6]])

"==" [[6,8,10],[8,0,4,0],[],[16,14,12]]

,eqTest (mapInside (*2) [[1 .. 10], [2,4 .. 20], [7]])

"==" [[2,4 .. 20], [4,8 .. 40], [14]]

,eqTest (mapInside (3*) [[0 .. 10], [0,2 .. 10], [7]])

"==" [[0,3 .. 30], [0,6 .. 30], [21]]

,eqTest (mapInside (\n -> 3*n + 1) [[0,7,17,27], [94,5]])

"==" [[1,22,52,82],[283,16]]

]

string_tests :: [TestCase [[Char]]]
string_tests =

[eqTest (mapInside (toCharFun (+1)) ["A string", "is a list!"])

"==" ["B!tusjoh","jt!b!mjtu\""]

,eqTest (mapInside (toCharFun (\x -> x-7)) ["UCF","CS","is","great"])

"==" ["N<?","<L","bl","`k^Zm"]

,eqTest (mapInside (toCharFun (+7)) ["N<?","<L","bl","`k^Zm"])

"==" ["UCF","CS","is","great"]

]

Figure 4: Tests for problem 3.

8

Functions as Data and Abstract Data Types

4. (15 points) [UseModels] Write a function

composeList :: [(a -> a)] -> (a -> a)

that takes a list of functions, and returns a function which is their composition.

Hint: note that compose [] is the identity function.

There are test cases contained in the file ComposeListTests.hs, which is shown in Figure 5.

-- $Id: ComposeListTests.hs,v 1.1 2013/02/12 19:10:51 leavens Exp leavens $

module ComposeListTests where
import ComposeList

import Testing

main = dotests "ComposeListTests $Revision: 1.1 $" tests

tests :: [TestCase Bool]
tests =

[assertTrue ((composeList [] [1,2,3]) == [1,2,3])

,assertTrue ((composeList [(*5),(+2)] 4) == 30)

,assertTrue ((composeList [tail,tail,tail] [1,2,3,4,5]) == [4, 5])

,assertTrue ((composeList [(3*),(4+),(10*)] 1) == (3*(4+10)))

,assertTrue ((composeList [(\x -> 3:x),(\y -> 4:y)] []) == 3:(4:[]))

,assertTrue ((composeList [(\x -> 'a':x),(\y -> ' ':y)] "star") == "a star")

,assertTrue ((composeList (map (+) [1 .. 1000]) 0) == (sum [1 .. 1000]))

]

Figure 5: Tests for problem 4.

9

5. (30 points) [UseModels] In this problem you will write operations for an abstract data type Matrix, by
writing definitions for the module Matrix that completes the module definition in Figure 6.

module Matrix (Matrix, fillWith, fromRule, numRows, numColumns,

at, mtranspose, mmap) where

newtype Matrix a = Mat ((Int,Int), (Int,Int) -> a)

fillWith :: (Int,Int) -> a -> (Matrix a)

fromRule :: (Int,Int) -> ((Int,Int) -> a) -> (Matrix a)

numRows :: (Matrix a) -> Int
numColumns :: (Matrix a) -> Int
at :: (Matrix a) -> (Int, Int) -> a

mtranspose :: (Matrix a) -> (Matrix a)

mmap :: (a -> b) -> (Matrix a) -> (Matrix b)

Figure 6: Start of the module Matrix.

That is, you are to complete the module by writing a function definition for each function declared in
the module. To explain these, note that an m× n matrix is one with m rows and n columns. Element
indexes range from 1 to the number of rows or columns (unlike the convention in C or Haskell). With
that convention you are to implement the following functions:

• fillWith takes a pair (m,n) and an element e and produces an m× n matrix each of whose
elements are e.

• fromRule takes a pair (m,n) and a function g (the rule), and produces an m× n matrix whose
(i, j)th element is g(i, j).

• numRows takes an m× n matrix and returns the number of rows in the matrix, m.

• numColumns takes an m× n matrix and returns the number of columns in the matrix, n.

• at takes an m× n matrix and a pair of Ints, (i, j), and returns the (i, j)th element of the matrix,
provided that 1 ≤ i ≤ m and 1 ≤ j ≤ n. If either index is outside of those ranges, an error occurs
(at runtime).

• mtranspose takes an m× n matrix and returns an n×m matrix where the (i, j)th element of the
result is the (j, i)th element of the argument matrix.

• mmap takes an m× n matrix and a function f and returns an m× n matrix whose (i, j)th element
is the result of applying f to the (j, i)th element of the argument matrix.

There are test cases contained in MatrixTests.hs, which is shown in Figure 7 on the next page.

To aid in testing, we have also provided code to make Matrix an instance of the Haskell type classes
Show and Eq. These instances are found in the file MatrixInstances.hs.

To make the tests work, you have to put your code in a module named Matrix. As specified on the first
page of this homework, turn in both your code file and the output of your testing.

10

-- $Id: MatrixTests.hs,v 1.1 2013/02/11 02:51:06 leavens Exp $

module MatrixTests where
import Matrix

import MatrixInstances

import Testing

main = dotests "MatrixTests $Revision: 1.1 $" tests

-- helpful definitions follow, NOT for you to timplement!

allIndexes :: (Int,Int) -> [(Int,Int)]
allIndexes (m,n) = [(i,j) | i <- [1..m], j <- [1..n]]

initial = (fillWith (2,3) "initial")

m10x3 = fillWith (10,3) "u"

m5x7 = fromRule (5,7) (\(i,j) -> show (i,j))

m10ipj = fromRule (5,7) (\(i,j) -> show (10*i+j))

tests :: [TestCase String] -- the actual tests

tests = (map (\(i,j) -> eqTest (initial `at` (i,j)) "==" "initial")

(allIndexes (2,3)))

++ (map (\(i,j) -> eqTest (m10x3 `at` (i,j)) "==" "u")

(allIndexes (10,3)))

++ (map (\(i,j) -> eqTest (m5x7 `at` (i,j)) "==" (show (i,j)))

(allIndexes (5,7)))

++ (map (\(i,j) -> eqTest (m10ipj `at` (i,j)) "==" (show (10*i+j)))

(allIndexes (5,7)))

++ (map (\(i,j) -> eqTest ((mtranspose m5x7) `at` (i,j))

"==" (show (j,i)))

(allIndexes (7,5)))

++ (map (\(i,j) -> eqTest ((mmap reverse m10ipj) `at` (i,j))

"==" (reverse (show (10*i+j))))

(allIndexes (5,7)))

Figure 7: Tests for problem 5. In these tests f is one of your solutions.

11

6. (20 points) [UseModels] Complete the module definition in Figure 8 below, by defining the functions
sameShape, pointwiseApply, add, and sub.

-- $Id: MatrixAdd.hs,v 1.1 2013/02/11 14:53:44 leavens Exp leavens $

module MatrixAdd where
import Matrix

import MatrixInstances

sameShape :: (Matrix a) -> (Matrix a) -> Bool
pointwiseApply :: (a -> a -> b) -> (Matrix a) -> (Matrix a) -> (Matrix b)

add :: (Num a) => (Matrix a) -> (Matrix a) -> (Matrix a)

sub :: (Num a) => (Matrix a) -> (Matrix a) -> (Matrix a)

Figure 8: Beginning of the module MatrixAdd, for you to complete.

The predicate sameShape takes arguments of type Matrix a and returns True when they have the same
dimensions. The function pointwiseApply takes a curried function op of two arguments and two
matricies, m1, and m2, which have the same shape and whose elements are the same type as the argument
types of op, and returns a matrix of the same shape as m1 and m2, in which the (i,j)th element is
(m1 `at` (i,j)) `op` (m2 `at` (i,j)). If the two matrices do not have the same shape, then an
error should be raised (using Haskell’s error function). The add and sub operations are the usual
pointwise addition and subtraction of matrices, and must be defined by using pointwiseApply.

There are test cases contained in MatrixAddTests.hs, which is shown in Figure 9 on the next page.

As always, after writing your code, run our tests, and turn in your solution and the output of our tests as
specified on the first page of this homework.

12

-- $Id: MatrixAddTests.hs,v 1.1 2013/02/11 14:53:44 leavens Exp leavens $

module MatrixAddTests where
import Matrix

import MatrixInstances

import MatrixAdd

import Testing

main = dotests "MatrixAddTests $Revision: 1.1 $" tests

-- helpers for testing below, NOT something you have to implement

allIndexes :: (Int,Int) -> [(Int,Int)]
allIndexes (m,n) = [(i,j) | i <- [1..m], j <- [1..n]]

zeros = fillWith (4,3) 0

id4x3 = fromRule (4,3) (\(i,j) -> if i == j then 1 else 0)

m4x3 = fromRule (4,3) (\(i,j) -> 10*i+j)

m9 = fillWith (4,3) 9

tests :: [TestCase (Matrix Int)]
tests =

[eqTest (zeros `add` id4x3) "==" id4x3

,eqTest (m9 `sub` zeros) "==" m9

,eqTest (m9 `sub` id4x3)

"==" (fromRule (4,3) (\(i,j) -> if i == j then 8 else 9))

,eqTest (m9 `sub` m4x3)

"==" (fromRule (4,3) (\(i,j) -> 9 - (10*i+j)))

,eqTest (m9 `add` m4x3)

"==" (fromRule (4,3) (\(i,j) -> 9 + (10*i+j)))

,eqTest (m9 `add` m4x3)

"==" (fromRule (4,3) (\(i,j) -> 9 + (10*i+j)))

]

Figure 9: Tests for problem 6.

13

7. (30 points) [Concepts] [UseModels] A set can be described by a “characteristic function” (whose range
is Bool) that determines if an element occurs in the set. For example, the function φ such that
φ(”coke”) = φ(”pepsi”) = True and for all other arguments x, φ(x) = False is the characteristic
function for a set containing the strings "coke" and "pepsi", but nothing else. Allowing the user to
construct a set from a characteristic function gives one the power to construct sets that may “contain” an
infinite number of elements (such as the set of all prime numbers).

In a module named InfSet, you will declare a polymorphic type constructor Set, which can be declared
something like as follows:

type Set a = ...
-- or perhaps something like --
data Set a = ...

Hint: think about using a function type as part of your representation of sets.

Then fill in the operations of the module InfSet, which are described informally as follows.

1. The function

fromFunc :: (a -> Bool) -> (Set a)

takes a characteristic function, f and returns a set such that each value x (of type a) is in the set
just when fx is True.

2. The function

unionSet :: Set a -> Set a -> Set a

takes two sets, with characteristic functions f and g, and returns a set such that each value x (of
type a) is in the set just when either (fx) or (gx) is true.

3. The function

intersectSet :: Set a -> Set a -> Set a

takes two sets, with characteristic functions f and g, and returns a set such that each value x (of
type a) is in the set just when both (fx) and (gx) are true.

4. The function

inSet :: a -> Set a -> Bool

tells whether the first argument is a member of the second argument.

5. The function

complementSet :: Set a -> Set a

which returns a set that contains everything (of the appropriate type) not in the original set.

Tests for this are given in the Figure 10 on the following page.

Note (hint, hint) that the following equations must hold, for all f, g, and x of appropriate types.

inSet x (unionSet (fromFunc f) (fromFunc g)) == (f x) || (g x)
inSet x (intersectSet (fromFunc f) (fromFunc g)) == (f x) && (g x)
inSet x (fromFunc f) == f x
inSet x (complementSet (fromFunc f)) == not (f x)

14

-- $Id: InfSetTests.hs,v 1.1 2013/02/12 03:34:52 leavens Exp $

module InfSetTests where
import InfSet

import Testing

main = dotests "InfSetTests $Revision: 1.1 $" tests

tests :: [TestCase Bool]
tests =

[assertTrue (inSet "coke" (fromFunc (\ x -> x == "coke")))

,assertFalse (inSet "pepsi" (fromFunc (\ x -> x == "coke")))

,assertFalse (inSet "coke" (complementSet (fromFunc (\x -> x == "coke"))))

,assertTrue (inSet "oil" (complementSet (fromFunc (\x -> x == "coke"))))

,assertTrue (inSet "pepsi" (unionSet (fromFunc (\ x -> x == "coke"))

(fromFunc (\ x -> x == "pepsi"))))

,assertTrue (inSet "coke" (unionSet (fromFunc (\x -> x == "coke"))

(fromFunc (\x -> x == "pepsi"))))

,assertFalse (inSet "sprite" (unionSet (fromFunc (\x -> x == "coke"))

(fromFunc (\x -> x == "pepsi"))))

,assertFalse (inSet "coke" (intersectSet (fromFunc (\x -> x == "coke"))

(fromFunc (\x -> x == "pepsi"))))

,assertFalse (inSet "pepsi" (intersectSet (fromFunc (\x -> x == "coke"))

(fromFunc (\x -> x == "pepsi"))))

,assertTrue (inSet "dr. p" (intersectSet (fromFunc (\x -> "coke" <= x))

(fromFunc (\x -> x <= "pepsi"))))

,assertTrue (inSet "pepsi" (intersectSet (fromFunc (\x -> "coke" <= x))

(fromFunc (\x -> x <= "pepsi"))))

,assertFalse (inSet "beer" (intersectSet (fromFunc (\x -> "coke" <= x))

(fromFunc (\x -> x <= "pepsi"))))

,assertFalse (inSet "wine" (intersectSet (fromFunc (\x -> "coke" <= x))

(fromFunc (\x -> x <= "pepsi"))))

,assertTrue (inSet "wine" (unionSet (fromFunc (\x -> "coke" <= x))

(fromFunc (\x -> x <= "pepsi"))))

]

Figure 10: Tests for the module InfSet. Recall that assertTrue e is equivalent to eqTest e "==" True,
and assertFalse e is equivalent to eqTest e "==" False.

15

Functional Abstractions of Programming Patterns

8. (10 points) [UseModels] [Concepts] Using Haskell’s built-in foldr function, write the polymorphic
function

concatMap :: (a -> [b]) -> [a] -> [b]

This function can be considered to be an abstraction of problems like deleteAll from Homework 3. An
application such as (concatMap f ls) applies f to each element of ls, and concatenates the results of
those applications together (preserving the order). Note that application of f to an element of type a
returns a list (of type [b]), and so the overall process collects the elements of these lists together into a
large list of type [b]. Your solution must have the following form:

module ConcatMap where
import Prelude hiding (concatMap)
concatMap :: (a -> [b]) -> [a] -> [b]
concatMap f ls = foldr ...

where the “...” is where you will put the arguments to foldr in your solution. Note: your code in ...
should not call concatMap (let foldr do the recursion).

There are test cases contained in ConcatMapTests.hs, which is shown in Figure 11.

-- $Id: ConcatMapTests.hs,v 1.1 2013/02/13 18:12:59 leavens Exp leavens $

module ConcatMapTests where
import Prelude hiding (concatMap)

import ConcatMap

import Testing

main :: IO()
main = dotests "ConcatMapTests $Revision: 1.1 $" tests

-- some definitions using concatMap, for testing, not for you to implement

deleteAll toDel ls = concatMap (\e -> if e == toDel then [] else [e]) ls

xerox ls = concatMap (\e -> [e,e]) ls

tests :: [TestCase Bool]
tests =

[assertTrue ((deleteAll 'c' "abcdefedcba") == "abdefedba")

,assertTrue ((deleteAll 3 [3,3,3,7,3,9]) == [7,9])

,assertTrue ((deleteAll 3 []) == [])

,assertTrue ((xerox "") == "")

,assertTrue ((xerox "okay") == "ookkaayy")

,assertTrue ((xerox "balon") == "bbaalloonn")

]

Figure 11: Tests for problem 8.

16

9. (30 points) [UseModels] [Concepts] In this problem you will write a function

foldWindowLayout :: ((String,Int,Int) -> r) -> ([r] -> r) -> ([r] -> r)
-> WindowLayout -> r

that abstracts from all the WindowLayout examples we have seen (such as those in homework 3 and on
the course examples page). For each type r, the function foldWindowLayout takes 3 functions: wf, hf,
and vf, which correspond to the three variants in the grammar for WindowLayout. In more detail:

• wf, operates on a tuple of the information from a Window variant and returns a value of type r,

• hf, takes a list of the results of mapping (foldWindowLayout wf hf vf) over the list in a
Horizontal variant, and

• vf, takes a list of the results of mapping (foldWindowLayout wf hf vf) over the list in a
Vertical variant.

There are test cases contained in FoldWindowLayoutTests.hs, which is shown in Figure 12 on the
following page and Figure 13 on page 18.

Points
This homework’s total points: 180.

17

-- $Id: FoldWindowLayoutTests.hs,v 1.1 2013/02/13 18:12:59 leavens Exp leavens $

module FoldWindowLayoutTests where
import WindowLayout

import FoldWindowLayout

import Testing

main = dotests "FoldWindowLayoutTests $Revision: 1.1 $" tests

-- uses of foldWindowLayout for testing purposes, not for you to implement

watching' = foldWindowLayout (\(wn,_,_) -> [wn]) concat concat

changeChannel new old =

let changeName new old nm = if nm == old then new else nm

in foldWindowLayout

(\(nm,w,h) -> Window {wname = changeName new old nm,

width = w, height = h})

Horizontal

Vertical

doubleSize = foldWindowLayout

(\(wn,w,h) -> Window {wname = wn, width = 2*w, height = 2*h})

Horizontal

Vertical

addToSize n = foldWindowLayout

(\(wn,w,h) -> Window {wname = wn, width = n+w, height = n+h})

Horizontal

Vertical

multSize n = foldWindowLayout

(\(wn,w,h) -> Window {wname = wn, width = n*w, height = n*h})

Horizontal

Vertical

totalWidth = foldWindowLayout

(\(_,w,_) -> w)

sum
sum

-- a WindowLayout for testing

hlayout =

(Horizontal

[(Vertical [(Window {wname = "Tempest", width = 200, height = 100})

,(Window {wname = "Othello", width = 200, height = 77})

,(Window {wname = "Hamlet", width = 1000, height = 600})])

,(Horizontal [(Window {wname = "baseball", width = 50, height = 40})

,(Window {wname = "track", width = 100, height = 60})

,(Window {wname = "golf", width = 70, height = 30})])

,(Vertical [(Window {wname = "Star Trek", width = 40, height = 100})

,(Window {wname = "olympics", width = 80, height = 33})

,(Window {wname = "news", width = 20, height = 10})])])

Figure 12: Tests for problem 9, part 1.

18

tests :: [TestCase Bool]
tests =

[assertTrue ((totalWidth hlayout) == 1760)

,assertTrue ((doubleSize hlayout) == (multSize 2 hlayout))

,assertTrue ((watching' hlayout)

== ["Tempest","Othello","Hamlet","baseball","track","golf",

"Star Trek","olympics","news"])

,assertTrue

((changeChannel

"pbs" "news"

(Vertical [(Window {wname = "news", width = 10, height = 5})

,(Window {wname = "golf", width = 50, height = 25})

,(Window {wname = "news", width = 30, height = 70})]))

==

(Vertical [(Window {wname = "pbs", width = 10, height = 5})

,(Window {wname = "golf", width = 50, height = 25})

,(Window {wname = "pbs", width = 30, height = 70})]))

,assertTrue

((addToSize 100 hlayout)

==

(Horizontal

[(Vertical [(Window {wname = "Tempest", width = 300, height = 200})

,(Window {wname = "Othello", width = 300, height = 177})

,(Window {wname = "Hamlet", width = 1100, height = 700})])

,(Horizontal [(Window {wname = "baseball", width = 150, height = 140})

,(Window {wname = "track", width = 200, height = 160})

,(Window {wname = "golf", width = 170, height = 130})])

,(Vertical [(Window {wname = "Star Trek", width = 140, height = 200})

,(Window {wname = "olympics", width = 180, height = 133})

,(Window {wname = "news", width = 120, height = 110})])]))

,assertTrue

((doubleSize hlayout)

==

(Horizontal

[(Vertical [(Window {wname = "Tempest", width = 400, height = 200})

,(Window {wname = "Othello", width = 400, height = 154})

,(Window {wname = "Hamlet", width = 2000, height = 1200})])

,(Horizontal [(Window {wname = "baseball", width = 100, height = 80})

,(Window {wname = "track", width = 200, height = 120})

,(Window {wname = "golf", width = 140, height = 60})])

,(Vertical [(Window {wname = "Star Trek", width = 80, height = 200})

,(Window {wname = "olympics", width = 160, height = 66})

,(Window {wname = "news", width = 40, height = 20})])]))

]

Figure 13: Tests for problem 9, part 2.

