Fall, 2008 Name:

COP 4020 — Programming Languages 1
Test on the Message Passing Model,

the Relational Model,
and Programming Models vs. Problems

Special Directions for this Test

This test has 6 questions and pages numbered 1 through 8.

This test is open book and notes.

If you need more space, use the back of a page. Note when you do that on the front.

Before you begin, please take a moment to look over the entire test so that you can budget your time.

Clarity is important; if your programs are sloppy and hard to read, you may lose some points. Correct syntax also
makes a difference for programming questions.

When you write Oz code on this test, you may use anything in the demand-driven declarative concurrent model (as
in chapter 4), the message passing model (chapter 5) or the relational model (chapter 9). The problem will say which
model is appropriate. However, you must not use imperative features (such as cells and assignment) or the library
functions IsDet and IsFree. But please use all linguistic abstractions and syntactic sugars that are helpful.

You are encouraged to define functions or procedures not specifically asked for if they are useful to your program-
ming; however, if they are not in the Oz base environment, then you must write them into your test. (This means you
can use functions in the Oz base environment such as Map, FoldR, Filter, Append, Max, etc.) In the message
passing model you can use NewPortObject and NewPortObject?2 as if they were built-in, and in the relational
model you can use Solve as if it was built-in.

For Grading
Problem | Points | Score
1|10
2| 10
3110
4|15
5135
6 |20

1. (10 points) [Concepts]
(i) Circle the letter of the correct answer, and (ii) give a brief explanation of why that answer is correct.
(a) The NewPort and Send primitives can’t be programmed in the declarative concurrent model as
procedures.

(b) The NewPort and Send primitives can be programmed in the declarative concurrent model as
procedures, using streams and threads.

(c) The NewPort and Send primitives can be programmed in the declarative model, as procedures, using
closures.

2. (10 points) [Concepts]

(i) Circle the letter of the correct answer, and (ii) give a brief explanation of why that answer is correct.

(a) In the message passing model, messages are sent using the synchronous RMI protocol.

(b) The message passing model makes it impossible to program synchronous message sends, such as those
found in the RMI protocol.

(c) The message passing model is deterministic and thus in programs written in that model there can be no
race conditions.

(d) Nondeterminism is an important feature of the message passing model, and is useful in many examples.

3. (10 points) [UseModels]

Using Oz’s message passing model, write a function SynchServer that takes no arguments and returns a
stateless port object that can execute procedure closures that are passed to it. The returned port object responds
to the message synchronized (P), where P is a procedure that takes no arguments. When the port object
receives this message, it simply executes P. Consider the following code, written using the Test function as
in the homework.

declare
SS = {SynchServer}
{Send SS synchronized(proc {$} {Show ’start’} end)}
{Send SS
synchronized (proc {$}
{Show ’"outer-1'"}
{Send SS
synchronized (proc {$} {Show ’inner-a’} {Delay 1000} {Show ’inner-b’} end)}
{Delay 1000}
{Show ’'outer-2'"}
end) }
{Send SS synchronized(proc {$} {Show ’"done for SS’} end)}
Count = {NewCell 0}
proc {IncCount} Count := @Count+l {Delay 1000} Count := @Count+l end
S2 = {SynchServer}
thread {Send S2 synchronized(IncCount)} end
thread {Send S2 synchronized(IncCount)} end
thread {Send S2 synchronized(proc {$} {Test @Count mod 2 '==’ 0} end)} end
{Send S2 synchronized(proc {$} {Test @Count mod 2 ’'==’ 0} end)}

The output of this code must be like the following, in which executions of the procedures sent to the same
server cannot overlap, although executions of procedures sent to different servers may overlap.

start
"outer-1’

0 ==0
"outer-2'
"done for SS’
"inner-a’
"inner-b’

0 ==20

Please write your solution for problem 3 below.

o)

\insert ’NewPortObject.oz’ % so you can use NewPortObject
\insert ’NewPortObject2.oz’ % so you can use NewPortObject2
declare

4. (15 points) [UseModels]

Using Oz’s message passing model, write a function NewRepeat Checker that takes no arguments and
returns a port object that checks for repeated words. (This could be used in a grammar checker, or in a
multi-player game.) The returned port object responds to the following messages:

e word (A R), where A is an atom, and R is an undetermined store variable.

® reset.

When the port object is first created, or immediately after processing the reset message, it is in an initial
state.

When the port object receives the word (A R) message, its response depends on its state. If it is in the initial
state, then it unifies R with £alse, and goes into a state in which it remembers A. If it is not in the initial
state, it has a word A’ that it is remembering; in this state it unifies R with t rue just when A equals A’ and
unifies R with false otherwise.

The following are some examples, written using the Test function as in the homework.

declare

MyRC = {NewRepeatChecker}

{Test {Send MyRC word(blah $)} ==’ false}
{Test {Send MyRC word(blah $)} ’==' true}
{Test {Send MyRC word(blah $)} ==’ true}
{Send MyRC reset}

{Test {Send MyRC word(blah $)} ’==' false}
{Test {Send MyRC word(foo $)} ’'==' false}
{Test {Send MyRC word(foo $)} ’'==' true}
{Test {Send MyRC word(blah $)} ’==' false}
{Test {Send MyRC word(rosebud $)} ==’ false}
{Send MyRC reset}
{Test {Send MyRC word(rosebud $)} ’'==' false}
{Test {Send MyRC word(rosebud $)} ==’ true}
RC2 = {NewRepeatChecker}
{Test {Send RC2 word(rosebud $)} ’==’ false}
{Test {Send RC2 word(rosebud $)} '==' true}
{Test {Send RC2 word(the $)} ==’ false}

'==' false}

(
(

{Test {Send RC2 word(good $)}

{Test {Send RC2 word(good $)} ’'==' true}
()}

{Test {Send RC2 word(ship $ '==" false}
{Send RC2 reset}

{Send RC2 reset}

RC = {NewRepeatChecker}

{Send RC reset}

{Test {Send RC word(the $)} ’==’ false}
{Test {Send RC word(the $)} ’'==’ true}
{Test {Send MyRC word(the $)} ==’ false}
{Test {Send RC2 word(the $)} ’'==’ false}
{Test {Send RC word(the $)} ’'==’ true}
{Test {Send RC word(taking $)} ==’ false}
{Test {Send RC word(up $)} ’'==’ false}
{Test {Send RC word(vertical $)} ==’ false}
{Test {Send RC word(space $)} ’'==' false}

There is room for your solution on the next page

Please write your solution for problem 4 below.

)

\insert ’NewPortObject.oz’ % so you can use NewPortObject
declare

5. (35 points) [UseModels]

Using Oz’s message passing model, write a function NewTaskManager that takes no arguments and returns
a port object that acts as a task manager. The returned port object responds to the following messages:

e schedule (F'), where F' is a function of no arguments, and

e request (V), where V is an undetermined store variable.

The port object remembers schedule and request messages, and pairs up a schedule message with the oldest
unpaired request message, unifying the variable V' in the request message with the function F' in the schedule
message. That is, when the port object receives the schedule (F') message, it binds F' to the variable V/
from the oldest unpaired request message received so far; if there is no such unpaired request, it just remembers
F. Similarly, when the port object receives the request (V') message, it binds to the variable V' the function
F' from the oldest unpaired schedule message received so far; if there is no such unpaired schedule message, it
just remembers V.

The following tests are written using the Test function as in the homework.

declare

fun {GenericTask Num} schedule (fun {$} task (Num) end) end $% for testing

™™ = {NewTaskManager}

{Send TM {GenericTask 1}}

{Send TM {GenericTask 2}}

{Send TM {GenericTask 3}}

{Send TM {GenericTask 4}}

{Send TM {GenericTask 5}}

local T1 in {Send TM request (T1l)} {Test {Tl} ’'==' task(l)} end

local T2 in T2={Send TM request ($)} {Test {T2} ’'==' task(2)} end

{Send TM {GenericTask 6}}

{Test {{Send TM request ($)}} ’'==’ task(3)} % calls result of request, as above

{Test {{Send TM request($)}} ==’ task(4)}

{Test {{Send TM request ($)}} ’'==’ task(5)}

thread {Test {{Send TM request($)}} ==’ task(6)} end

thread {Test {{Send TM request($)}} ==’ task(7)} end

{Send TM {GenericTask 7}}

thread {Test {{Send TM request($)}} ==’ task(8)} end

{Send TM {GenericTask 8}}

TM2 = {NewTaskManager}

thread {Test {{Send TM2 request ($)}} }
{Test {{Send TM2 request($)}} ’"==' task(b)}
{Test {{Send TM2 request ($)}} }

use threads so testing
doesn’t suspend

de op

end

{Send TM2 {GenericTask a}}

{Send TM2 {GenericTask b}}

{Send TM2 {GenericTask c}}

thread {Test {{Send TM request($)}} ==’ task(9)} end
{Send TM {GenericTask 9}}

The output of the above looks like

task(l) == task (1)
task (2) == task(2)
% similarly for task(3)...task(8)
task (9) == task(9)
task (a) == task(a)
task (b) == task (b)
task (c) == task (c)

There is room for your solution on the next page

Please write your solution for problem 5 below.

)

\insert ’NewPortObject.oz’ % so you can use NewPortObject
declare

6. (20 points) [EvaluateModels] For each of the following programming problems, (i) name the best
programming model for solving the problem, and (ii) briefly explain why that model is best for the problem.
Your answer should favor the least expressive model (i.e., the one with the fewest features) that can solve the
problem. (Choose from among the programming models we studied this semester.)

(a)

(b)

(©

(d)

A program that maintains traffic reports from different sensors in a metropolitan area (like Orlando).
Reports from different sensors are short records that can arrive concurrently and at unpredictable times.
Also, police and news organizations can independently send short queries to the program to find the status
of various roadways in the area. The load is not expected to be too heavy, so the program only needs to
handle one sensor report or query at a time.

A program that takes an XML record (which is tree-structured) and produces a similar XML record, but
with a given record inserted as a new field in each subrecord with a given label. This program would be
used as part of an XML editing application, which would supply the three arguments (the record, the new
part, and the label), and would track the result.

A program that help your mother find a satisfactory seating arrangement for guests at a dinner party she is
throwing at her home. She has helpfully typed into her computer facts describing which guests can sit
next to what other guests, and which guests each person will not sit next to. (Some of her guests don’t
like each other.) But she can’t find a good arrangement of the guests, as the problem is too complex for
her (and for you) to do by hand. Her dinner party is next week and you are only home for the weekend.

A program that controls humidity sensor, that receives a potentially infinite series of readings (numbers)
from the sensor, and has to filter them to smooth out the readings and reject temporarily senseless
(spurious) readings that sometimes occur. The program simply produces a potentially infinite series of the
filtered readings (which another, different program reads and logs).

