Fall, 2008 Name:

COP 4Q20 — Programming Languag.es 1 .
Test on Declarative Programming Techniques

Special Directions for this Test

This test has 5 questions and pages numbered 1 through 7.

This test is open book and notes.

If you need more space, use the back of a page. Note when you do that on the front.

Before you begin, please take a moment to look over the entire test so that you can budget your time.

Clarity is important; if your programs are sloppy and hard to read, you may lose some points. Correct syntax also
makes a difference for programming questions.

When you write Oz code on this test, you may use anything in the declarative model (as in chapters 2-3 of our
textbook). So you must not use imperative features (such as cells and assignment) or the library functions IsDet and
IsFree.

You are encouraged to define functions or procedures not specifically asked for if they are useful to your program-
ming; however, if they are not in the Oz base environment, then you must write them into your test. You can use the
built-in functions in the Oz base environment like Append, Filter, Map, and FoldR.

For Grading
Problem | Points | Score
1|15
2|15
3120
4115
5135

1. (15 points) [UseModels] Write an iterative function

Find: <fun {$ <List T> T}: Int>

that takes a list E1lems of values of some type 7" and a value Sought of type T', and returns the first index
(counting from 1) in Elems whose value is equal to Sought (using ==), if it exists. If there is no element in
Elems that is == to Sought, then the result is ~1.

Your solution must have iterative behavior, and must be written using tail recursion. Don’t use any higher-order
functions or the Oz £or loop syntax in your solution. (You are supposed to know what these directions mean.)

The following are examples, that use the Test procedure from the homework.

{Test {Find [a b c d] a} '==’" 1}
{Test {Find [a b c d] e} "==" ~1}

{Test {Find [a b c d e f g] c} "==" 3}

{Test {Find [[99] [86] [12 22] nil [3]] [3]} "==" 5}
{Test {Find [nil [3]] [3]} ’'==" 2}

{Test {Find nil 72} ’'==" ~1}

{Test {Find [penn ohio flor iowa] vote} ’'==" ~1}

2. (15 points) [UseModels] Write a function

RoboCall: <fun {$ <List Atom> <List Atom> <List Atom>}: <List <List Atom>>>

that takes three lists of atoms, Voters, Text1, and Text2, and produces a list of lists of atoms. The
resulting list of lists contains, for each atom V in Voters, a list that contains, in order, the elements of
Text1, V, and then the elements of Text 2. Thus each V appears spliced in between the lists Text 1 and
Text 2. The following are examples.

{Test {RoboCall nil [hi] [give me your votel]} ’'==’ nil}
{Test {RoboCall [jack jane jill Jjoe] [hello there] [please vote ’'for’ me]}
==’ [[hello there jack please vote ’'for’ me]

[hello there jane please vote ’for’ me]

[hello there jill please vote ’for’ me]

[hello there joe please vote ’for’ me]]}
{Test {RoboCall [fanny freddie wamu] [hi] [please give me your vote tuesday]}
'==' [[hi fanny please give me your vote tuesday]

[hi freddie please give me your vote tuesday]

[hi wamu please give me your vote tuesday]]}
{Test {RoboCall [barak joe john sarah] [hey] [please stop calling my phone]}
'==’ [[hey barak please stop calling my phone]

[hey Jjoe please stop calling my phone]

[hey john please stop calling my phone]

[hey sarah please stop calling my phone]]}

3. (20 points) [UseModels] Write a higher-order function

StateTemps: <fun {$ Int Int} : <fun {$ <List Int>}:

<List Int>>>

that takes two integers, Low and High, and returns a function that takes a list of integers Temps and produces
a list that contains the elements of Temps that are between Low and High (inclusive), in their original order.

The following are examples.

local FLTemps = {StateTemps 60 90} in
{Test {FLTemps nil} ==’ nil}
{Test {FLTemps [60 90 32 72]} '=='" [60 90 72]}
{Test {FLTemps [59 91]} ’"==' nil}

[
{Test {FLTemps [100 95 90 85 80 75 70 65 60 55 50 45
[~2 10 5 91 77 3 77 5 89 89 771} '=='

{Test {FLTemps
end
local IATemps = {StateTemps ~30 100} in
{Test {IATemps [60 90 0 ~4 ~30 ~33 32 1721} '=='
{Test {IATemps [~20 10 5 101 100 3 100 5 89 89 10
'==' [~20 10 5 100 3 100 5 89 89 100]}
end

401} "==" [90 85 80 75 70 65 60]}
[77 77 89 89 771}

90 0 ~4

{Test {{StateTemps ~50 65} [~51 ~50 60 ~50]} "==" [~50 60 ~501]}

~30 321}

4. (15 points) [UseModels] Using FoldR, write the function

ApplyList: <fun {$ <List <fun {$ T}: S>> T}: <List S>>

that for some types T and S, takes a list of functions Funs (which has type <List <fun {$ T}: S>>),
and a value X of type T, and returns a list that results from applying each element of Funs to X, and returning a

list of the results (preserving the order of the Funs list). That is, for functions Fi, F5, ..., F},, and value X, we
have:
{ApplyList [Fy Fy ... F,] X} == [{Fy X} {(F, X} ... {F, X}]

The following are examples.

{Test {ApplyList [Not Not] true} ’'==' [false false]}
{Test {ApplyList [fun {$ X} bread#X#bread end fun {$ X} pita#X#pita end]
turkey}
'==' [bread#turkey#bread pita#turkey#pital}
{Test {ApplyList nil 33} ’==’' nil}
{Test {ApplyList [fun {$ X} X+1 end] 4020} ’'==' [4021]}
{Test {ApplyList [fun {$ X} X+1 end fun {$ X} X+2 end] 4020} ’'==’ [4021 4022]}
{Test {ApplyList
local AddC = fun {$ Y} fun {$ X} X+Y end end in
{Map [1 2 3 4 5 2 27 999] AddC}
end
1000}
'==’ [1001 1002 1003 1004 1005 1002 1027 199971}

Since you must use FoldR, write your answer by filling in the following outline (you can also write helping
functions if you wish).

fun {ApplyList Funs X}
{FoldR

end

5. (35 points) [UseModels] This problem is about the ‘statement and expression”” grammar:

Statement) ::= expStmt ({(Expression))
p
| assignStmt ((Atom) (Expression)) | ifStmt ((Expression) (Statement))
(Expression) ::= varExp ({(Atom)) | numExp ((Number))

| equalsExp ((Expression) (Expression)) | beginExp ((List Statement) (Expression))

Write a function OptimizeIfs: <fun {$ <Statement>}: <Statement>> thatoptimizes a
statement, Stmt, by returning a statement that is just like Stmt except that each statement of the form
ifstmt (£ S), where F is necessarily true, is replaced by an optimized version of S. Expression E is
necessarily true if it is an equal sExp with both arguments the same variable or number. In your solution,
you can use function on the following page, NecessarilyTrue, that computes this. The following are
examples using the Test function from the homework. Note that the process occurs recursively for all
subparts of Stmt, even the expression part of an i £ Stmt and within replaced parts of statements.

{Test {OptimizeIfs ifStmt (varExp(b) assignStmt (x numExp (3)))}
r==' 1fStmt (varExp (b) assignStmt (x numExp(3))) }
{Test {OptimizeIfs ifStmt (equalsExp (varExp (b) varExp (b))
assignStmt (g numExp (53)))}
==’ assignStmt (g numExp (53)) }
{Test {OptimizeIfs ifStmt (equalsExp (numExp (402) numExp (402))
ifStmt (equalsExp (varExp (b) varExp (b))
assignStmt (i numExp (22))))}
==’ assignStmt (i numExp (22)) }
{Test {OptimizeIfs
expStmt (beginExp ([1fStmt (equalsExp (varExp (b) varExp (b))
assignStmt (x numExp (3)))
assignStmt (y numExp (4))]
varExp (y)))}
==’ expStmt (beginExp ([assignStmt (x numExp (3)) assignStmt (y numExp (4))]
varExp (y)))}
{Test {OptimizeIfs expStmt (beginExp ([1fStmt (equalsExp (numExp (402) numExp (3))
ifStmt (equalsExp (varExp (b) varExp (b))
assignStmt (1 numExp (22))))]
varExp (i)))}
r'==' expStmt (beginExp ([1ifStmt (equalsExp (numExp (402) numExp (3))
assignStmt (1 numExp (22)))]
varExp (i)))}
{Test {OptimizeIfs
ifStmt (beginExp ([1fStmt (equalsExp (numExp (4020) numExp (4020))
ifStmt (equalsExp (varExp (b) varExp (b))
assignStmt (g numExp (53))))
assignStmt (y numExp (4))]
equalsExp (varExp (y) varExp(q)))
assignStmt (z numExp (55))) }
'==' 1fStmt (beginExp ([assignStmt (g numExp (53)) assignStmt (y numExp (4))]
equalsExp (varExp (y) varExp(q)))
assignStmt (z numExp (55))) }
% The following illustrate base cases and other recursive cases
{Test {OptimizeIfs expStmt (numExp(3))} ’'==' expStmt (numExp(3)) }
{Test {OptimizeIfs expStmt (varExp(y))} ’'==' expStmt (varExp(y))}
{Test {OptimizeIfs expStmt (equalsExp (varExp(y) varExp(z)))}
r'==" expStmt (equalsExp (varExp(y) varExp(z)))}
{Test {OptimizeIfs expStmt (equalsExp (varExp(y) varExp(y)))}
==’ expStmt (equalsExp (varExp(y) varExp(y)))}
{Test {OptimizeIfs assignStmt (x numExp (3))} ==’ assignStmt (x numExp (3)) }
{Test {OptimizeIfs expStmt (beginExp (nil numExp(3)))} ’'==" expStmt (beginExp (nil numExp (3))) }

There is space for your answer on the next page.

Put your answer to the OptimizeIfs problem below.

oo oo
oo oo

Assume this function in your solution
NecessarilyTrue <fun {$ <expression>}: Bool>
fun {NecessarilyTrue Exp}

case Exp of
equalsExp (varExp (V1) varExp(V2)) then V1 == V2
[1 equalsExp (numExp (N1) numExp (N2)) then N1 == N2
else false
end
end

