
1

Spring, 2009 Name:

COP 4020 — Programming Languages I

Test on the Declarative Model

Special Directions for this Test
This test has 9 questions and pages numbered 1 through 6.
This test is open book and notes.
If you need more space, use the back of a page. Note when you do that on the front.
Before you begin, please take a moment to look over the entire test so that you can budget your time.
Clarity is important; if your programs are sloppy and hard to read, you may lose some points. Correct syntax also
makes a difference for programming questions.
When you write Oz code on this test, you may use anything we have seen in chapters 1–2 of our textbook. But unless
specifically directed, you should not use imperative features (such as cells) or the library functions IsDet and IsFree.
Problems relating to the kernel syntax can only use features of the kernel language.
You are encouraged to define functions or procedures not specifically asked for if they are useful to your
programming; however, if they are not in the Oz base environment, then you must write them into your test.

For Grading

Question: 1 2 3 4 5 6 7 8 9 Total

Points: 8 15 5 6 16 15 10 10 15 100

Score:

2

The first three problems ask for sets of free or bound variable identifiers that occur bound in the statement above.
Write the entire requested set in brackets. For example, write {V,W}, or if the requested set is empty, write {}.

1. Consider the following Oz statement in the kernel language.

local I in
local J in

I = 4020

{DoIt I J}

Q = J

end
end

(a) (4 points) [Concepts] Write the entire set of the variable identifiers that occur free in the statement above.

(b) (4 points) [Concepts] Write the entire set of the variable identifiers that occur bound in the statement above.

2. Consider the following Oz statement in the kernel language.

fun {Add X Y} X+Y end
Compose = proc {$ F G X R}

local Temp in
{G X Temp}

{F Temp R}

end
end

Add1 = proc {$ Y Result}

local One in
local Two in

One = 1

{Add Y One Result}

end
end

end
local Ret in

local Three in
Three = 3

{Compose Add1 Id Three Ret}

end
end

(a) (6 points) [Concepts] Write the entire set of the variable identifiers that occur free in the statement above.

(b) (9 points) [Concepts] Write the entire set of the variable identifiers that occur bound in the statement above.

3. [Concepts]

(a) (3 points) Name a programming language that uses static type checking.

(b) (2 points) Name a programming language that uses dynamic type checking.

3

4. [Concepts] Consider the following Java method declaration.

public void find(int[] arr, int sought) {

for (int j = 0; j < len(arr); j++) {

if (f(arr[j]) == sought) { res = j; }

}

}

(a) (3 points) Write below, in set brackets, the entire set of variable identifiers that occur free in the Java code
above.

(b) (3 points) Write below, in set brackets, the entire set of variable identifiers that occur bound in the Java code
above.

4

5. [Concepts] Consider the following Oz code.

local G in
local Last in

Last = proc {$ Ls Prev ?R}

case Ls of
H|T then

%% Parts (c) and (e) ask about the call below (line 7)

{Last T H R}

else R = Prev

end
end

G = Last

end
local Temp in

local MyList in
MyList = a|b|c|nil

%% Parts (b), (d), and (e) ask about the call below (line 17)

{G MyList a Temp}

{Browse Temp}

end
end

end

(a) (2 points) When the above code runs, what output, if any, appears in the browser?

(b) (4 points) At the point of the call of F on line 18 (just below the second comment), is there a binding for G
in the current environment? Give a brief explanation.

(c) (4 points) Will the call to Last on line 7 work properly and make a successful call? If so, briefly explain
why, if not, then say what happens.

(d) (3 points) Is the call on line 18 in the declarative kernel language? If not, briefly explain why it is not.

(e) (3 points) Suppose Oz used dynamic scoping. In that case, would the calls on lines 18 and 7 both be
successful? If so, briefly explain why, if not, then say what would happen.

5

6. (15 points) [Concepts] Desugar the following Oz code into kernel syntax by expanding all syntactic sugars.
(Assume that the identifier Result, and the function identifiers SumTo and SumIter are declared elsewhere.)

fun {Product Ls} {ProdIter Ls 1} end
Result = {Product [3 4]}

7. (10 points) [Concepts] What happens when the following code executes in Oz? Briefly explain why that
happens.

local SetIt It in
It = good

SetIt = proc {$ X}

It = X

end
{SetIt bad}

{Browse ’It is ’#It}

end

6

8. (10 points) [Concepts] What is the output, if any, of the following code in Oz? Briefly explain why that output
appears.

local MyShoe Y in
MyShoe = nike(model: mavrk num: 6.0 topcolor: black cost: 62.99)

Y = 3

case MyShoe of
addidas(model: M num: N topcolor: C cost: Y) then {Browse first#M#N#C#Y}

[] nike(model: M num: N topcolor: C cost: Y) then {Browse second#M#N#C#Y}

[] nike(model: M num: N topcolor: C cost: Y) then {Browse third#M#N#C#Y}

[] nike(model: M) then {Browse fourth#M}

else {Browse none(Y)}

end
end

9. [Concepts] Both Java and C# recently expanded by adding enhanced for loops. These are defined by telling
programmers that use of such an enhanced for loop expands into an iterator call, a while statement, the given
loop body, and another call to the iterator. The expanded version of a for loop is thus a statement that would be
legal in older versions of the language.

(a) (5 points) What is the term for this concept?

(b) (10 points) Briefly describe one advantage of extending a language in this way.

