
COP 4020 — Programming Languages 1 November 25, 2008

Homework 5: Message Passing
Due: problems 1–7, 9–13 on Friday, November 21, 2008 at 11pm; problem 8 on Monday, November 24,

2008 at 11pm.
In this homework you will learn about the message passing model and basic techniques of program-

ming in that model. The programming techniques include using port objects to create agents (state ma-
chines)[Concepts] [UseModels]. A few problems also make comparisons with the other models we have
studied, and also with message passing features in other languages [EvaluateModels] [MapToLanguages].

Your code should be written in the message passing model, so must not use cells and assignment in your
Oz solutions. Furthermore, note that the message passing model does not include the primitive IsDet or the
library function IsFree; thus you are also prohibited from using either of these functions in your solutions.
Although you can simulate cells using the message passing model (see problem 1), you should avoid using
this simulation directly, instead use the message queue of a port object to track the state of a port object;
doing this will both follow the programming model and make it clear what the state of each port object is.

You should use helping functions whenever you find that useful. Unless we specifically say how you are
to solve a problem, feel free to use any functions from the Oz library (base environment), especially functions
like Map and FoldR.

For all Oz programing tasks, you must run your code using the Mozart/Oz system. For these you must
also provide evidence that your program is correct (for example, test cases). Oz code with tests for various
problems is available in a zip file, which you can download from the course resources web page. For testing,
you may want to use tests based on our code in the course library file TestingNoStop.oz.

Turn in (on Webcourses) your code and, if necessary, output of your testing for all questions that require
code. Please upload text files with your code that have the suffix .oz (or .java as appropriate), and text
files with suffix .txt that contain the output of your testing. Please use the name of the main function as the
name of the file. (In any case, don’t put any spaces in your file names!)

If we provide tests and your code passes all of them, you can just indicate with a comment in the code
that your code passes all the tests. Otherwise it is necessary for you to provide us test code and/or test output.
If the code does not pass some tests, indicate in your code with a comment what tests did not pass, and try
to say why, as this enhances communication and makes commenting on the code easier and more specific to
your problem than just leaving the buggy code without comments.

If you’re not sure how to use our testing code, ask us for help.
Your code should compile with Oz, if it doesn’t you probably should keep working on it. If you don’t

have time, at least tell us that you didn’t get it to compile.
Be sure to clearly label what problem each area of code solves with a comment.
Don’t hesitate to contact the staff if you are stuck at some point.
Read Chapter 5 of the textbook [VH04]. (See the syllabus for optional readings.)

Message Passing Semantics and Expressiveness
1. (30 points) [Concepts] [UseModels]

Using Oz’s message passing model, implement a data abstraction <Box>, by writing the following
functions and procedures.

NewBox: <fun {$ <Value>}: <Box>>
BoxExchange: <proc {$ <Box> <Value> <Value>}>
BoxAssign: <proc {$ <Box> <Value>}>
BoxAccess: <fun {$ <Box>}: <Value>>

A Box is like a Cell, in that it holds a value (of any type). The function call {NewBox X} returns
a new Box containing the value X. The procedure call {BoxExchange B Old New} atomically

1

http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutConcepts
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutUseModels
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutEvaluateModels
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutMapToLanguages
http://www.eecs.ucf.edu/~leavens/COP4020/hw-tests/hw5-tests.zip
http://www.eecs.ucf.edu/~leavens/COP4020/resources.shtml
http://www.eecs.ucf.edu/~leavens/COP4020/lib/

binds Old to the value in box B and makes New be the new value contained in Box B. The pro-
cedure call {BoxAssign B V} makes the value V be the new value of Box B. The function call
{BoxAccess B} returns the value contained in Box B.

Your code should pass the tests shown in Figure 1 on the following page

You should use the NewPortObject.oz file, given in the book and supplied with the test cases for
this homework, in your solution. (Hint: represent a Box with a port object, have NewBox return a port,
and have the other functions send messages to the port. The state of the port object will be the Box’s
value.)

You are not allowed to use cells in your solution!

2. (20 points) [Concepts] [UseModels]

Using Cells, but without using the message passing primitives NewPort and Send, define in Oz an
ADT PortAsCell, which acts like the built-in port type, but is represented as a Cell. (For more
about the imperative model and cells, look back at Section 1.12 of the textbook or forward to chapter
6.) The PortAsCell ADT has two operations:

MyNewPort: <fun {$ <Stream>}: <PortAsCell>>
MySend: <proc {$ <PortAsCell> <Value>}>,

which are intended to act like NewPort and Send. That is, the function MyNewPort takes an
undetermined store variable, and returns a <PortAsCell>, which is a Cell that we want to act like
a Port. The procedure MySend takes such a PortAsCell and a Value and adds the Value to the
corresponding stream. In other words, the idea behind the ADT <PortAsCell> is that it should act
like the built-in Port ADT of Oz, but be represented using Cells.

For this problem, don’t worry about catching or prohibiting improper uses of the stream argument to
MyNewPort (see Problem 12 on page 14). Also for the moment, don’t worry about potential race
conditions when multiple threads are used.

Hint: look at the semantics for NewPort and Send in section 5.1 of the textbook, which shows how
these work in terms of the mutable memory. Mutable memory is like a collection of cells. Think of the
port name as being represented by the cell’s identity. The cell holds the undetermined store variable
that is the end of the list. Note how the semantics of Send manipulates the mutable memory and works
with new undetermined store variables.

Your code should pass the tests shown in Figure 2 on page 4.

You are not allowed to use Send, NewPort, or functions that call them (such as NewPortObject)
in your solution.

3. [Concepts] [EvaluateModels]

This problem concerns the expressive power of the message passing model in comparison to the im-
perative model.

(a) (5 points) Can the Box ADT of Problem 1 on the previous page do everything that a Cell can do
in Oz? Briefly explain.

(b) (5 points) Can the PortAsCell ADT of Problem 2 do everything that a Port can do in a sequential
Oz program? Briefly explain.

(c) (10 points) Does your implementation of the PortAsCell ADT of Problem 2 have any poten-
tial race conditions when used in an Oz program with multiple threads? That is, is it possible
that MyNewPort or MySend act differently than NewPort and Send when there are multiple
threads? Briefly explain your answer.

(d) (5 points) Is there any significant difference in expressive power between adding Cells or adding
NewPort and Send to the kernel language?

2

% $Id: BoxTest.oz,v 1.1 2008/11/14 21:51:26 leavens Exp leavens $
\insert ’Box.oz’
\insert ’TestingNoStop.oz’
declare B1 B2 V1old V2old
{StartTesting ’Box operations’}
B1 = {NewBox 1}
B2 = {NewBox 2}
{BoxExchange B1 V1old 7}
{BoxExchange B2 V2old 99}
{Test V1old ’==’ 1}
{Test V2old ’==’ 2}
declare V1x V2x
{BoxExchange B1 V1x 88}
{BoxExchange B2 V2x 333}
{Test V2x ’==’ 99}
{Test V1x ’==’ 7}
{Test {BoxAccess B1} ’==’ 88}
{Test {BoxAccess B2} ’==’ 333}
{Test {BoxAccess B2} ’==’ 333}
{Test {BoxAccess B1} ’==’ 88}
{BoxAssign B1 4}
{Test {BoxAccess B1} ’==’ 4}
{Test {BoxAccess B2} ’==’ 333}
{BoxAssign B1 asymbolliteral}
{Test {BoxAccess B1} ’==’ asymbolliteral}
declare
X=1 Y=2 Z=3
B={NewBox Z}
{StartTesting ’Some equations’}
{Test {BoxAccess {NewBox X}} ’==’ X}
{BoxAssign B Y}
{Test {BoxAccess B} ’==’ Y}

Figure 1: Testing code for Problem 1 on page 1.

3

% $Id: PortAsCellTest.oz,v 1.1 2008/11/14 21:51:26 leavens Exp leavens $
\insert ’PortAsCell.oz’
\insert ’TestingNoStop.oz’

{StartTesting ’MyNewPort’}
% Simulating basic semantics of NewPort and Send
declare Strm Port in
Port = {MyNewPort Strm}
{StartTesting ’MySend’}
{MySend Port 3}
{MySend Port 4}
% Must use List.take, otherwise Test suspends...
{Test {List.take Strm 2} ’==’ [3 4]}
{MySend Port 5}
{MySend Port 6}
{Test {List.take Strm 4} ’==’ [3 4 5 6]}

{StartTesting ’MyNewPort second part’}
declare S2 P2 U1 U2 in
P2 = {MyNewPort S2}
{StartTesting ’MySend second part’}
{MySend P2 7}
{MySend P2 unit}
{MySend P2 true}
{MySend P2 U1}
{MySend P2 hmmm(x:U2)}
U1 = 4020
{Test {List.take S2 5} ’==’ [7 unit true 4020 hmmm(x:U2)]}
{Test {List.take Strm 4} ’==’ [3 4 5 6]}

Figure 2: Testing code for Problem 2 on page 2.

4

Message Passing Programming
4. (10 points) [UseModels]

Using Oz’s message passing model, write a function NewGauge that takes no arguments and returns
a port object. The returned port object should store an integer value in its state and can respond to
the messages up, down, and fetch(Var). Initially the value stored in the port object is 0. The
message up increments this value and down decrements it. The fetch(Var) message binds Var to
the current value. Figure 3 contains some examples.

You should use NewPortObject in your solution (see the textbook, and the NewPortObject.oz
file supplied with the test cases for this homework).

\insert ’Gauge.oz’
\insert ’TestingNoStop.oz’
declare
MyGauge = {NewGauge}
{Test local R in {Send MyGauge fetch(R)} R end ’==’ 0}
{Send MyGauge up}
{Test {Send MyGauge fetch($)} ’==’ 1}
{Send MyGauge up}
{Test {Send MyGauge fetch($)} ’==’ 2}
{Send MyGauge down}
{Test {Send MyGauge fetch($)} ’==’ 1}
{Send MyGauge up}
{Send MyGauge up}
{Test {Send MyGauge fetch($)} ’==’ 3}

MyGauge2 = {NewGauge}
{Test {Send MyGauge2 fetch($)} ’==’ 0}
{Send MyGauge2 down}
{Test {Send MyGauge2 fetch($)} ’==’ ~1}
{Send MyGauge2 down}
{Test {Send MyGauge2 fetch($)} ’==’ ~2}
for I in 1..12 do {Send MyGauge2 up} end
{Test {Send MyGauge2 fetch($)} ’==’ 10}

Figure 3: Testing code for Problem 4.

5. (40 points) [UseModels]

Using Oz’s message passing model, write a function NewCatalog that takes no arguments and returns
a port object that acts as a catalog.

The returned port object understands several messages. The add(Key Value) message adds an
association between the Key and the Value; the added association replaces any previous association
in the catalog whose key is Key. The lookup(Key WhatValue) message takes key value, Key,
and an undetermined store variable, WhatValue; if Key is associated with a value, that value is
unified with WhatValue; if Key is not associated with a value, then the port object remembers the
lookup request and if an add message of the form add(K V) arrives, where K == Key, then the
port object binds WhatValue to V .

Figure 4 on the following page contains some examples.

You should use NewPortObject in your solution.

Hint: you may want to use helping functions or procedures.

6. (20 points) [UseModels]

Using Oz’s message passing model, write a function NewAuctioneer that takes no arguments and
returns a port object that acts as an auctioneer (an agent that is selling an item in an auction).

5

\insert ’Catalog.oz’
\insert ’TestingNoStop.oz’
{StartTesting ’NewCatalog’}
declare
MyCat = {NewCatalog} % (Meow! :-)
local What BKStre What2 What3 What4 What27 What5 in

{StartTesting ’add then lookup’}
{Send MyCat add(true false)}
{Test {Send MyCat lookup(true $)} ’==’ false}
{Send MyCat add("EBay" ebay)}
{Send MyCat lookup("EBay" What)}
{Test What ’==’ ebay}
{Test {Send MyCat lookup("EBay" $)} ’==’ ebay}
{StartTesting ’lookup then add’}
{Send MyCat lookup("Amazon" BKStre)}
{Send MyCat add("Amazon" bookstore)}
{Test BKStre ’==’ bookstore}
{StartTesting ’persistence’}
{Test {Send MyCat lookup("Amazon" $)} ’==’ bookstore}
{Send MyCat lookup("EBay" What2)}
{Test What2 ’==’ ebay}
{StartTesting ’changing added value’}
{Send MyCat add("EBay" ’auction house’)}
{Send MyCat lookup("EBay" What3)}
{Test What3 ’==’ ’auction house’}
{Send MyCat lookup(27 What27)}
{Send MyCat lookup(4 What4)}
{Send MyCat add(5 ’first try’)}
{Test {Send MyCat lookup(5 $)} ’==’ ’first try’}
{Send MyCat add(4 ’not a prime’)}
{Send MyCat add(27 ’good hailstone argument’)}
{Send MyCat add(5 ’second try’)}
{Test {Send MyCat lookup(5 $)} ’==’ ’second try’}
{Send MyCat add(5 ’first odd non prime’)}
{Send MyCat lookup(5 What5)}
{Test What4 ’==’ ’not a prime’}
{Test What27 ’==’ ’good hailstone argument’}
{Test What5 ’==’ ’first odd non prime’}

end
DotCom = {NewCatalog}
local WhatCat WhatCat2 WhatStore WhatPaper What4 WhatMore
in

{Send DotCom add(’MyCat’ MyCat)}
{Send DotCom lookup(’MyCat’ WhatCat)}
{Send WhatCat lookup("Amazon" WhatStore)}
{Test WhatStore ’==’ bookstore}
{Send DotCom lookup(’New York Times’ WhatPaper)}
{Send DotCom add(’New York Times’ ’the New York Times website’)}
{Test WhatPaper ’==’ ’the New York Times website’}
{Send DotCom lookup(’MyCat’ WhatCat2)}
{Send WhatCat2 lookup(4 What4)}
{Test What4 ’==’ ’not a prime’}
thread {Test WhatMore ’==’ ’delayed’} end
{Send WhatCat lookup(’More’ WhatMore)}
{Send WhatCat add(’More’ ’delayed’)}

end

Figure 4: Testing for Problem 5 on the previous page.

6

This port object understands several messages. The bid(Amt DidIWin) message places a bid
on the item, where Amt is a non-negative integer (the number of dollars bid) and DidIWin is an
undetermined store variable.

The stop message ends the auction. When the stop message is received, the DidIWin variable in
the first bid message received whose Amt was the largest is bound to true, and all other DidIWin
variables in other bid messages are bound to false. (Note that there may be no bids. In case of a
tie, the first bid message received by the port with the highest amount wins. If any bid message is
received after the stop message, it does not win. You can assume that only one stop message is ever
sent to the port object.)

Figure 5 on the following page contains some examples.

You should use NewPortObject in your solution (see the textbook, and the NewPortObject.oz
file supplied with the test cases for this homework).

Hint: you may want to use helping functions or procedures.

7. (30 points) [UseModels]

Using Oz’s Message Passing model, write a function NewThermostat that takes a port object
Heater as an argument, and returns a port object. The returned port object acts as a thermostat
that controls the heater by sending it messages of the form run(N), where N is a number between 0
and 10 (inclusive), with level 0 being “off” and level 10 being maximum heat.

The thermostat port object responds to the following messages:

• currentReading(T), where T is an integer, which tells the thermostat that the temperature
of the system is T degrees.

• setPoint(S), where S is an integer, which tells the thermostat the user’s wish for the system’s
desired temperature.

When created the thermostat first sends a run(0) message to the heater port object. This makes the
heater’s level (N) start at 0. The initial set point (desired temperature, S) of the system is 80 degrees.
We also assume that the current temperature (T) at the start is also 80 degrees.

Following this initialization the thermostat responds to each message it receives by sending a message
to the heater. Suppose the heater is currently set to run at level N , the current set point is S, and the
current system temperature is T .

If a message currentReading(T ′) arrives, then the thermostat sends the message run(N ′) to
the heater, where N ′ is 0 if N is 0 and −2 ≤ T ′ − S, and otherwise (if either N is nonzero and
T ′ − S < −2) it makes N ′ be the minimum of b−(T ′ − S)/2c and 10.

If a message setPoint(S′) arrives, then the thermostat sends the message run(N ′) to the heater,
where N ′ is 0 if N is 0 and −2 ≤ T − S′, and otherwise (if either N is nonzero and T − S′ < −2) it
makes N ′ be the minimum of b−(T − S′)/2c and 10.

Also, whenever a message is received the current heater level, system temperature, and set point are
appropriately updated.

You should assume that no other agents send messages to the heater object; thus the heater object
passed as the argument to the NewThermostat function is “owned” by that function.

Your code should not have any repeated code; we will take points off for repeated code.

Hints: Recall that in Oz, D div 2 computes bD/2c. Use NewPortObject. To avoid repeated code,
you may need to use local to declare dataflow variables, and some statements that define the values
of these dataflow variables. (But remember that you cannot use Cells in this problem.) Note that in Oz,
when an expression is needed, you can use a series of statements followed by an expression.

Figure 6 on page 9 contains some examples.

7

\insert ’Auctioneer.oz’
\insert ’TestingNoStop.oz’
declare
MyAer = {NewAuctioneer}
local Status1 Status2 Status3 Status4 in

{Send MyAer bid(8 Status1)}
{Send MyAer bid(17 Status2)}
{Send MyAer bid(27 Status3)}
{Send MyAer bid(24 Status4)}
{Send MyAer stop}
{Test Status1 ’==’ false}
{Test Status2 ’==’ false}
{Test Status3 ’==’ true}
{Test Status4 ’==’ false}

end

MyAer2 = {NewAuctioneer}
local Status1 Status2 Status3 Status4

Status5 Status6 Status7
in

{Send MyAer2 bid(100 Status1)}
{Send MyAer2 bid(15 Status2)}
{Send MyAer2 bid(99 Status3)}
{Send MyAer2 bid(99 Status4)}
{Send MyAer2 bid(100 Status5)}
{Send MyAer2 bid(100 Status6)}
{Send MyAer2 bid(100 Status7)}
{Send MyAer2 stop}
% first of the highest bids wins
{Test Status1 ’==’ true}
{Test Status2 ’==’ false}
{Test Status3 ’==’ false}
{Test Status4 ’==’ false}
{Test Status5 ’==’ false}
{Test Status6 ’==’ false}
{Test Status7 ’==’ false}

end

% Stopping with no bids
MyAer3 = {NewAuctioneer}
{Send MyAer3 stop}
% Bidding after an auction is over

Figure 5: Testing for Problem 6 on page 5.

8

\insert ’Thermostat.oz’
declare
local Commands Heater Thermo in

Heater = {NewPort Commands}
Thermo = {NewThermostat Heater}
{Test {List.take Commands 1} ’==’ [run(0)]}
{Send Thermo currentReading(78)}
{Test {List.take Commands 2} ’==’ [run(0) run(0)]}
{Send Thermo currentReading(77)}
{Test {List.take Commands 3} ’==’ [run(0) run(0) run(1)]}
{Send Thermo currentReading(70)}
{Test {Nth Commands 4} ’==’ run(5)}
{Send Thermo setPoint(72)}
{Test {Nth Commands 5} ’==’ run(1)}
{Send Thermo currentReading(68)}
{Test {Nth Commands 6} ’==’ run(2)}
{Send Thermo currentReading(71)}
{Test {Nth Commands 7} ’==’ run(0)}
{Send Thermo currentReading(70)}
{Test {Nth Commands 8} ’==’ run(0)}

end
local Commands Heater Thermo in

Heater = {NewPort Commands}
Thermo = {NewThermostat Heater}
{Test {Nth Commands 1} ’==’ run(0)}
{Send Thermo setPoint(82)}
{Test {Nth Commands 2} ’==’ run(0)}
{Send Thermo setPoint(83)}
{Test {Nth Commands 3} ’==’ run(1)}
{Send Thermo setPoint(84)}
{Test {Nth Commands 4} ’==’ run(2)}
{Send Thermo currentReading(77)}
{Test {Nth Commands 5} ’==’ run(3)}
{Send Thermo currentReading(54)}
{Test {Nth Commands 6} ’==’ run(10)}
{Send Thermo currentReading(64)}
{Test {Nth Commands 7} ’==’ run(10)}
{Send Thermo setPoint(70)}
{Test {Nth Commands 8} ’==’ run(3)}
{Send Thermo currentReading(69)}
{Test {Nth Commands 9} ’==’ run(0)}
{Send Thermo setPoint(71)}
{Test {Nth Commands 10} ’==’ run(0)}

end

Figure 6: Testing for Problem 7 on page 7.

9

8. (80 points) [Concepts] [UseModels] [MapToLanguages]

Do problem 7 in section 5.9 of the textbook [VH04] (Erlang’s receive as a control abstraction). Put
your code that solves this problem in a file Mailbox.oz.

Note that, according to the book’s errata, when the D argument to Mailbox.receive has the form
T#E, then E should be a zero-argument function.

Some testing for this is shown in Figure 7 on the following page and Figure 8 on page 12.

Some hints follow.

Be sure to read section 5.7.3 in the textbook. Figure 5.21 in particular explains the semantics of
receive, although you are not going to code that directly.

In the problem, the name Mailbox is a variable identifier that is bound to a record containing three
fields: new, send, and receive. Thus in outline your code should do something like the following.

declare
local

% ...
fun {New} ... end
proc {MSend C M} ... end
fun {MReceive C PGL D} ... end

in
Mailbox = mailbox(new:New send:MSend receive:MReceive)

end

Now Mailbox.new denotes the function New, since it does a record selection on the Mailbox
record.

In essence, your function Newwill return a port object (or something that contains a port object), which
you will make by calling NewPortObject. Then MSend and MReceive will send messages to the
port object passed as their first argument (or contained in their first argument). However, MSend and
MReceive do very little themselves. In particular, MReceive can pass along its arguments PGL and
D in a message, so that the port object (which has the appropriate state) can do the work.

The port object should contain a list (or queue) of unprocessed messages in its state. It is helpful to
think of the port object as having two states, one in which it is receiving (i.e., still processing a receive),
and another in which it is not receiving. You can use a timer like the one in Figure 5.8 for timeouts, but
you may need to modify it to suit this problem. You may also find it helpful to write out a finite state
machine in order to help your design.

10

\insert ’Mailbox.oz’
\insert ’TestingNoStop.oz’
declare
%% conditions for testing (guards), used only for testing purposes
fun {Else X} true end
fun {Equals Val} fun {$ X} X == Val end end
fun {GreaterThan Val} fun {$ X} X > Val end end
fun {LessThan Val} fun {$ X} X < Val end end
fun {And C1 C2} fun {$ X} {C1 X} andthen {C2 X} end end
fun {Or C1 C2} fun {$ X} {C1 X} orelse {C2 X} end end
fun {Negate C} fun {$ X} {Not {C X}} end end
%% bodies for when guards are true, used only for testing purposes
fun {Id X} X end
fun {Add Y} fun {$ X} X+Y end end
%% Bodies for timeouts,
%% note that this is a zero-argument procedure, contrary to the book!
fun {Timedout} timedout end

{StartTesting ’Mailbox’}
MB={Mailbox.new}
{StartTesting ’send’}
{Mailbox.send MB 4020}
{StartTesting ’receive’}
{Test {Mailbox.receive MB [Else#Id] infinity} ’==’ 4020}

{StartTesting ’send and receive of unbound’}
{Mailbox.send MB _}
{Test {Not {IsDet {Mailbox.receive MB [Else#Id] infinity}}} ’==’ true}

{StartTesting ’Multiple sends and receives’}
{Mailbox.send MB 340}
{Mailbox.send MB 99}
{Test {Mailbox.receive MB [Else#Id] infinity} ’==’ 340}
{Test {Mailbox.receive MB [Else#Id] infinity} ’==’ 99}

{StartTesting ’Receive based on guards’}
{Mailbox.send MB 11}
{Mailbox.send MB 340}
{Mailbox.send MB 99}
{Mailbox.send MB 33}
{Test {Mailbox.receive MB [{Equals 99}#Id] infinity} ’==’ 99}
{Test {Mailbox.receive MB [Else#Id] infinity} ’==’ 11}
{Test {Mailbox.receive MB [{Equals 33}#Id] infinity} ’==’ 33}
{Test {Mailbox.receive MB [Else#Id] infinity} ’==’ 340}

Figure 7: Testing for the textbook’s problem 7 (Problem 8 on the preceding page), part 1.

11

{StartTesting ’Receive with multiple guards’}
{Mailbox.send MB 11}
{Mailbox.send MB 340}
{Mailbox.send MB 99}
{Mailbox.send MB 33}
{Mailbox.send MB 10}
{Mailbox.send MB 20}
{Mailbox.send MB 30}
{Test {Mailbox.receive MB [{Equals 99}#Id] infinity} ’==’ 99}
{Test {Mailbox.receive MB [{Equals 99}#Id Else#Id] infinity} ’==’ 11}
{Test {Mailbox.receive MB [{Equals 4}#Id {LessThan 34}#Id Else#Id] infinity}
’==’ 340}

{Test {Mailbox.receive MB [Else#Id Else#{Add 7}] infinity} ’==’ 33}
{Test {Mailbox.receive MB [{Equals 30}#Id {Equals 20}#Id {Equals 10}#{Add 7}]

infinity}
’==’ 17}

{Test {Mailbox.receive MB [{Equals 30}#Id {Equals 20}#Id {Equals 10}#{Add 7}]
infinity}

’==’ 20}
{Test {Mailbox.receive MB [{Equals 30}#Id {Equals 20}#Id {Equals 10}#{Add 7}]

infinity}
’==’ 30}

% Note that receive in Erlang must be done in a process’s mailbox, so,
% while they can be nested there aren’t multiple receive’s happening
% simultaneously.
%% But sends can come from other processes, so can be in threads.
{StartTesting ’Receive that blocks, unblocked by send’}
thread {Delay 1000} {Mailbox.send MB 99} end
thread {Delay 3000} {StartTesting ’sending 5’} {Mailbox.send MB 5} end
thread {Delay 6000} {StartTesting ’sending 72’} {Mailbox.send MB 72} end
{Test {Mailbox.receive MB [{Equals 99}#Id] infinity} ’==’ 99}
{Test {Mailbox.receive MB [{Equals 72}#Id] infinity} ’==’ 72}
{Test {Mailbox.receive MB [{Equals 5}#Id] infinity} ’==’ 5}

%% Note that timeout procedures (like Timedout) are zero-argument procedures
{StartTesting ’Receive with nonzero timeout’}
thread {Delay 1000} {Mailbox.send MB 99} end
thread {Delay 3000} {StartTesting ’sending 5’} {Mailbox.send MB 5} end
thread {Delay 6000} {StartTesting ’sending 72’} {Mailbox.send MB 72} end
{Test {Mailbox.receive MB [{Equals 99}#Id] 20#Timedout} ’==’ timedout}
{Test {Mailbox.receive MB [{Equals 72}#Id] 2000#Timedout} ’==’ timedout}
{Test {Mailbox.receive MB [{Equals 5}#Id] infinity} ’==’ 5}
{Test {Mailbox.receive MB [{Equals 72}#Id] 40000#Timedout} ’==’ 72}
{Test {Mailbox.receive MB [{Equals 99}#Id] infinity} ’==’ 99}

{StartTesting ’Receive with zero timeout’}
{Mailbox.send MB 27}
{Mailbox.send MB 42}
{Test {Mailbox.receive MB [{Equals 42}#Id] 0#Timedout} ’==’ 42}
{Test {Mailbox.receive MB [{Equals 27}#Id] 0#Timedout} ’==’ 27}
{Test {Mailbox.receive MB [{Equals 313}#Id] 0#Timedout} ’==’ timedout}

{StartTesting ’All done’}

Figure 8: Second part of testing for the textbook’s problem 7 (Problem 8 on page 10).

12

Comparisons Among Models
9. (10 points) [EvaluateModels]

Would it have been easier to use the message passing model to solve the square root approximation and
differentiation exercises (numbers 13, 14, and 16) of homework 4? Briefly explain your answer. (You
don’t have to actually solve these problems with the message passing model.)

10. (10 points) [EvaluateModels]

Suppose you are asked to program a simulation of an agent-based auction system for someone do-
ing research in economics. This system consists of several independent agents, each of which must
communicate with a central auction server to evaluate merchandise, place bids, and make payments.

Among the programming models we studied this semester, what is the most restrictive (i.e., the least
expressive or smallest) programming model that can practically be used program the overall structure
of such a system? Briefly justify your answer.

11. (25 points) [EvaluateModels]

Update your table from homework 4 that lists all the different programming techniques, the character-
istics of problems that are best solved with these techniques (i.e., when to use the techniques), and the
name of at least one example of that technique. In this update, take into account comments from the
staff from homework 4, and add entries for the new row on “message passing.”

programming problem
technique characteristics example(s)
recursion (over grammars)
higher-order functions
stream programming
lazy functions
message passing

13

Extra Credit Problems
12. (20 points; extra credit) [Concepts] [UseModels]

Using read-only views (see Sections 3.7.5 and 13.1.14 of our textbook [VH04]), fix your solution to
Problem 2 on page 2 so that your code has the same behavior for improper uses of the stream argument
passed to MyNewPort as does Oz’s built-in NewPort primitive.

You must show, by running your own tests, that your code has the required behavior for such (improper)
uses. Testing is up to you and an important part of this exercise.

13. (60 points; extra credit) [UseModels]

Do part (a) of problem 3 in section 5.9 of the textbook [VH04] (Fault tolerance for the lift control
system).

You can get the code for the book’s figures from the textbook’s supplementary web site, which is:
http://www.info.ucl.ac.be/~pvr/ds/mitbook.html or more directly from the book’s
supplementary web directory: http://www.info.ucl.ac.be/~pvr/bookfigures/ or even
more directly from Webcourses.

Note that in part (a) “when the floor is called” refers to call messages sent to a Floor port object.

Feel free to make other changes to the code to make it more easy for you to understand and more
sensible.

Since deciding when the code works correctly is not easy, you are responsible for your own testing for
this problem. In essence, you should set up a situation where a lift gets blocked on some floor, and
make sure that the floor’s timer is reset and that the blocked lift’s schedule is distributed to other lifts
and that the floors aren’t calling the blocked lift. You can should add extra outputs to see whether the
system is functioning as you intend.

Now for some hints.

To get started, overall it’s useful to understand how the state diagrams (like Figure 5.7) relate to the
code (like Figure 5.8’s Timer class). Think about the design at the level of the state diagrams, and
then make the corresponding changes to the code. You may find it useful to look at the diagrams to
understand the code (and vice versa). Also don’t be afraid to introduce new state (or parts of state) and
new kinds of messages.

To get started coding, look at the Floor component in Figure 5.10. When it’s in the doorsopen
state and it gets a call message is when the lift is being blocked at a floor. You’ll have to change the
code in that spot to start with. Get it to work reset the timer, perhaps by having the floor remember
how many stoptimer messages it should wait for before telling the lift to close the doors. Then
add to the Lift a way to get the schedule, and then figure out what component should ask for it and
redistribute the schedule to other lifts.

Be sure to mark, with comments, any changes you made to the code to solve the problem.

References
[VH04] Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of Computer Programming. The

MIT Press, Cambridge, Mass., 2004.

14

http://www.info.ucl.ac.be/~pvr/ds/mitbook.html
http://www.info.ucl.ac.be/~pvr/bookfigures/

