
COP 5021 — Program Analysis April 12, 2016

Interprocedural Version of the
Reaching Definitions Analysis

This is based on the version typeset by Kristina Boysen, with corrections from Jing Liu, Ru He,
Cui Ye and Neeraj Khanolkar, Samik Basu, and ultimately on the book Principles of Programming
Analysis [1].

The property space for the intraprocedural version is L = P(Var? × Lab?
?), so the property

space for the interprocedural analysis is as follows.

L̂ = ∆→ P(Var? × Lab?
?)

∆ = Lab∗

The dataflow equations in this case are as follows (recall that S? is the main statement, whereas
P? is the entire program, including D?).

RDentry(`)(δ) =

{
{(x, ?) | x ∈ FV(S?)}, if δ = [] ∧ ` ∈ init(S?)⋃
{RDexit(`

′)(δ) | (`′, `) ∈ flow(P?)}, otherwise

RDexit(`)(δ) =


f̂1` (RDentry(`))(pop(δ)), if call(`)

f̂2`c,`(RDentry(`c),RDentry(`))(δ), if return(`c, `)

f̂`(RDentry(`))(δ), otherwise

where

f̂`(Y)(δ) = (Y (δ) \ killRD(B`)) ∪ genRD(B`)
where B` ∈ Blocks?

f̂1`c(Y)(δ) = (Y (δ) \ {(x, `′) | x ∈ formals(`c), `
′ ∈ Lab?

?})
∪{(x, `c) | x ∈ val-formals(`c)}
∪{(y, ?) | y ∈ res-formals(`c)}

f̂2`c,`r (X,Y)(δ) = (({(x, `) | (x, `) ∈ X(δ), x ∈ formals(`r), ` ∈ Lab?
?}

∪ (Y (δ : `c) \ {(x, `′) | x ∈ formals(`r), `′ ∈ Lab?
?}))

\ {(z, `′) | z ∈ res-actuals(`r), `′ ∈ Lab?
?})

∪ {(z, `r) | z ∈ res-actuals(`r)}
pop(δ : `) = δ
call(`) = (∃`x, `n, `r ∈ Lab? :: (`, `n, `x, `r) ∈ inter-flow?)
return(`c, `) = (∃`x, `n ∈ Lab? :: (`c, `n, `x, `) ∈ inter-flow?)
formals(`) = val-formals(`) ∪ res-formals(`)
val-formals(`) = {x | calledAt(`, p), proc p(val x, res y) is`n S end`x ∈ D?}
res-formals(`) = {y | calledAt(`, p), proc p(val x, res y) is`n S end`x ∈ D?}
res-actuals(`) = {z | [call p(a, z)]

`
`r
∈ Blocks? ∨ [call p(a, z)]

`c
` ∈ Blocks?}

calledAt(`, p) = [call p(a, z)]
`
`r
∈ Blocks? ∨ [call p(a, z)]

`c
` ∈ Blocks?

Note that killRD and genRD have to be extended to is and end blocks as follows. (There is no
need to extend the definiton to call blocks, because these functions are not used for such blocks.)

killRD(is`) = {}
killRD(end`) = {}
genRD(is`) = {}
genRD(end`) = {}

Neeraj pointed out some problems with scoping rules may still remain. There may be several
ways to fix these problems, however, it seems that one way is to assume that the formal parameters

1

in all procedures are distinct (across procedures). To keep things relatively simple, we’ll make that
assumption.

After many corrections, it seems that the only way to be sure this analysis is right is to do a
correctness proof. But short of doing that, it helps to work some examples.

Here’s a simple example:

begin

proc p(val n, res r) is1

[r := n]2

end3

[y := n]4

[call p(y, q)]56
end

According to my informal understanding of Reaching Definitions, this program should have the
following solution to its dataflow equations.

RDentry(4)([]) = {(n, ?), (q, ?), (y, ?)}
RDexit(4)([]) = {(n, ?), (q, ?), (y, 4)}
RDentry(5)([]) = {(n, ?), (q, ?), (y, 4)}
RDexit(5)([5]) = {(n, 5), (q, ?), (r, ?), (y, 4)}
RDentry(1)([5]) = {(n, 5), (q, ?), (r, ?), (y, 4)}
RDexit(1)([5]) = {(n, 5), (q, ?), (r, ?), (y, 4)}
RDentry(2)([5]) = {(n, 5), (q, ?), (r, ?), (y, 4)}
RDexit(2)([5]) = {(n, 5), (q, ?), (r, 2), (y, 4)}
RDentry(3)([5]) = {(n, 5), (q, ?), (r, 2), (y, 4)}
RDexit(3)([5]) = {(n, 5), (q, ?), (r, 2), (y, 4)}
RDentry(6)([5]) = {(n, 5), (q, ?), (r, 2), (y, 4)}
RDexit(6)([]) = {(n, ?), (q, 6), (y, 4)}

The crucial parts of the above are the computations of RDexit(5)([5]) and RDexit(6)([]). To check
these we calculate as follows.

First, assume that RDentry(5)([]) is {(n, ?), (q, ?), (y, 4)}. Then we can calculate RDexit(5)([5])
as follows.

RDexit(5)([5])
= 〈by definition, since call(5) is true〉

f̂15 (RDentry(5))(pop([5]))
= 〈by definition of pop〉

f̂15 (RDentry(5))([])

= 〈by definition of f̂15 〉
(RDentry(5)([]) \ {(x, `′) | x ∈ formals(5), `′ ∈ Lab?

?})
∪{(x, 5) | x ∈ val-formals(5)}
∪{(y, ?) | y ∈ res-formals(5)}

= 〈by the program and definitions of auxiliary functions〉
(RDentry(5)([]) \ {(x, `′) | x ∈ {n, r}, `′ ∈ {1, 2, 3, 4, 5, 6}})
∪{(x, 5) | x ∈ {n}}
∪{(y, ?) | y ∈ {r}}

= 〈by assumption that RDentry(5)([]) is {(n, ?), (q, ?), (y, 4)}〉
({(n, ?), (q, ?), (y, 4)} \ {(x, `′) | x ∈ {n, r}, `′ ∈ {1, 2, 3, 4, 5, 6}})
∪{(x, 5) | x ∈ {n}}
∪{(y, ?) | y ∈ {r}}

= 〈by set theory〉

2

({(q, ?), (y, 4)} ∪ {(x, 5) | x ∈ {n}} ∪ {(y, ?) | y ∈ {r}}
= 〈by set theory〉

{(n, 5), (q, ?), (r, ?), (y, 4)}

Now, assume that RDentry(6)([5]) is {(n, 5), (q, ?), (r, 2), (y, 4)} and that RDentry(5)([]) has value
{(n, ?), (q, ?), (y, 4)}. Then we can calculate the value of RDexit(6)([]) as follows.

RDexit(6)([])
= 〈by definition, since return(5, 6)〉

f̂25,6(RDentry(5),RDentry(6))([])

= 〈by definition of f̂25,6〉
(({(x, `) | (x, `) ∈ RDentry(5)([]), x ∈ formals(6), ` ∈ Lab?

?}
∪ (RDentry(6)([] : 5) \ {(x, `′) | x ∈ formals(6), `′ ∈ Lab?

?}))
\ {(z, `′) | z ∈ res-actuals(6), `′ ∈ Lab?

?})
∪ {(z, 6) | z ∈ res-actuals(6)}

= 〈by the program and definitions of auxiliary functions〉
(({(x, `) | (x, `) ∈ RDentry(5)([]), x ∈ {n, r}, ` ∈ Lab?

?}
∪ (RDentry(6)([] : 5) \ {(x, `′) | x ∈ {n, r}, `′ ∈ Lab?

?}))
\ {(z, `′) | z ∈ {q}, `′ ∈ Lab?

?})
∪ {(z, 6) | z ∈ {q}}

= 〈by assumptions〉
(({(x, `) | (x, `) ∈ {(n, ?), (q, ?), (y, 4)}, x ∈ {n, r}, ` ∈ Lab?

?}
∪ ({(n, 5), (q, ?), (r, 2), (y, 4)} \ {(x, `′) | x ∈ {n, r}, `′ ∈ Lab?

?}))
\ {(z, `′) | z ∈ {q}, `′ ∈ Lab?

?})
∪ {(z, 6) | z ∈ {q}}

= 〈by set theory〉
(({(n, ?)} ∪ {(q, ?)(y, 4)})
\ {(z, `′) | z ∈ {q}, `′ ∈ Lab?

?})
∪ {(z, 6) | z ∈ {q}}

= 〈by set theory〉
{(n, ?), (y, 4)} ∪ {(q, 6)}

= 〈by set theory〉
{(n, ?), (q, 6), (y, 4)}

References

[1] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program Analysis.
Springer-Verlag, second printing edition, 2005.

3

