
1

Com S 342 Name:
Spring 2004 Section:

Principles of Programming Languages

Exam 4 on Interpreters and Language Semantics
This test has 8 questions and pages numbered 1 through 9.

Reminders

For this test, you can use one (1) page (8.5 by 11 inches, one (1) side, no less than 9pt font) of
notes. Handwriting is okay. No photo-reduction is permitted. Don’t use anything with printing on
the other side, please. These notes are to be handed in at the end of the test. Have your name in
the top right corner. Use of other notes or failure to follow these instructions will be considered
cheating.

If you need more space, use the back of a page. Note when you do that on the front.
This test is timed. We will not grade your test if you try to take more than the time allowed.

Therefore, before you begin, please take a moment to look over the entire test so that you can
budget your time.

For programs, indentation is important to us for “clarity” points; if your code is sloppy or hard
to read, you will lose points. Correct syntax also matters. Check your code over for syntax errors.
You will lose points if your code has syntax errors.

You can use helping procedures whenever you like. If you write recursive helping procedures,
please give a deftype declaration for them.

For Grading

Problem Points
1
2
3
4
5
6
7
8

2

This page just contains reference material for problems on later pages.
Types of helpers from the chapter 3 interpreters used on this test. These ADTs correspond
roughly to those in section 3.7 of the text.

eopl:error : (-> (symbol string datum ...) poof)

;; ---- ProcVal (procedure values) ADT --------
procval? : (type-predicate-for procval)
closure : (-> ((list-of symbol) expression environment) procval)
apply-procval : (-> (procval (list-of Expressed-Value)) Expressed-Value)

;; ---- Expressed-Value ADT --------
;; upcasts
number->expressed : (-> (number) Expressed-Value)
procval->expressed : (-> (Procval) Expressed-Value)
list->expressed : (-> ((list-of Expressed-Value)) Expressed-Value)
;; downcasts
expressed->number : (-> (Expressed-Value) number)
expressed->procval : (-> (Expressed-Value) Procval)
expressed->list : (-> (Expressed-Value) (list-of Expressed-Value))

;; ---- reference ADT --------
a-ref : (forall (T) (-> (number (vector-of T)) (ref-of T)))
deref : (forall (T) (-> ((ref-of T)) T))
setref! : (forall (T) (-> ((ref-of T) T) void))

;; ---- environment ADT ----------
;; type predicate
environment? : (type-predicate-for environment)
;; constructors
empty-env : (-> () environment)
extend-env : (-> ((list-of symbol) (list-of Expressed-Value) environment)

environment)
extend-env-recursively : (-> ((list-of symbol) (list-of (list-of symbol))

(list-of expression) environment)
environment)

;; observers
apply-env : (-> (environment symbol) Expressed-Value)
apply-env-ref : (-> (environment symbol) (ref-of Expressed-Value))
defined-in-env? : (-> (environment symbol) boolean)

3

1. (5 points) Below, complete the definition of the defined language interpreter’s init-env
procedure so that it defines the name true to be the number 1. (You don’t have to worry
about the values of any names other than true.) Once this is done, in the defined language
we would have the following examples:

--> true
1
--> if true then 3 else 42
3

Your code must type check to receive full credit. Hint: look at the operations of the
standard ADTs on page 2.

(deftype init-env (-> () environment))
(define init-env

(lambda ()

2. Suppose we add true as a name to the initial environment, as specified in the previous
problem.

(a) (3 points) With this change, the follow expression is legal. Assuming static scoping,
what is the result of this expression?

let true = 0
in if true then 3 else 77

(b) (2 points) Briefly explain why that output occurs.

4

3. (5 points) Write the code to make truth a reserved word, so that every occurrence of the
expression truth in an expression always denotes 1. This is done by making truth an
expression, instead of defining it in the initial environment. The syntax changes below make
it so that an expression such as let truth = 342 in truth is a syntax error. Your code
will make the following examples work:

--> truth
1
--> if truth then 342 else 104
342

Please fill in your answer in the appropriate places below. We have already completed the
concrete syntax input for SLLGEN.

(define the-grammar
’((program (expression) a-program)

;; ... assume the other parts of the grammar are done
(expression ("truth") truth-exp)))

(define-datatype expression expression?
;; ... assume the other expressions are done and add yours below ...

(deftype eval-expression (-> (expression environment) Expressed-Value))
(define eval-expression

(lambda (exp env)
(cases expression exp

;; ... assume the other expression cases are done,
;; and add yours below...

4. (5 points) This is a question about local binding and statically-scoped procedures in the
defined language. In this problem, the defined language is extended with lists, so that
list(1,2,3) returns the list (1 2 3). What is the result of the following expression?

let a = 99
b = 2

in let a = 700
b = 33
f = proc() list(a, b)
g = proc(a) list(a, b)
h = proc() begin set b = 87; set a = *(a, add1(b)) end

in list(a, b, (f), let b = 5 in (g b))

5

5. (10 points) This is a question about adding a primitive to the defined language. Consider an
interpreter for the defined language extended with procedures. For this interpreter your
task is to add a new built-in primitive, isProcedure. Its semantics is that isProcedure(E)
evaluates E, and returns the interpreter’s representation for true just when the value of E is
a procedure closure. (If E loops forever, so does the call to this primitive.) For example,
once this is done, in the defined language we would have the following examples:

--> let add3 = proc(y) +(y, 3) in isProcedure(add3)
1
--> isProcedure(proc(x) x)
1
--> isProcedure(342)
0

Your code should type check, but you don’t have to check for the proper number of
arguments to the primitive in the defined language. Hint: look at the operations of the
standard ADTs on page 2.

Please fill in your answer in the appropriate places below. We have already completed the
concrete syntax input for SLLGEN.

(define the-grammar
’((program (expression) a-program)

;; ... assume the other parts of the grammar are done
(primitive ("isProcedure") isProcedure-prim)))

(define-datatype primitive primitive?
;; ... assume the other primitives are done and add yours below ...

(deftype apply-primitive
(-> (primitive (list-of Expressed-Value)) Expressed-Value))

(define apply-primitive
(lambda (prim args)

(cases primitive prim
;; ... assume the other primitive cases are done,
;; and add yours below...

6

6. (10 points) This is a question about dynamic scoping (dynamic binding). Consider the
following code in the defined language (As in the homework, greater?(v1,v2) is true when
v1 > v2, and false otherwise, and less?(v1,v2) is true when v1 < v2, and false otherwise.)

let total = 0
in let overflowHandler = proc () begin set total = 999; total end

underflowHandler = proc() begin set total = 0; total end
ok = proc(n) begin set total = n; total end

in let f = proc(a,b)
let total = +(a,b)
in if greater?(total, 999)

then (overflowHandler)
else if less?(total, 0)

then (underflowHandler)
else (ok total)

in let x = begin (f 998 2); total end
in let y = begin (f -(0,2000) 2); total end

in list(x, y)

What is the result of the expression above in an interpreter that uses dynamic scoping?

7

7. This is a problem about parameter passing mechanisms. Consider the following code,
written in the defined language with static scoping, assignment, and lists.

let q = 1
r = 5

in let p = proc (a, b) begin
set b = +(r,a);
set q = *(a,b);
list(a, b, q, r)

end
in let result = (p +(q, 2) r)

in cons(q, cons(r, result))

(a) (10 points) What is the result of the above program if call-by-value is used as the
parameter passing mechanism?

(b) (10 points) What is the result of the above program if call-by-reference is used as the
parameter passing mechanism?

(c) (10 points) What is the result of the above program if call-by-value-result is used as
the parameter passing mechanism? (Use left-to-right ordering if necessary.)

8

8. (30 points) In this problem you will implement the following syntax for an expression in the
defined language.
〈expression〉 ::= typecase 〈expression〉 {〈typeexp〉 ==> 〈expression〉}* end | . . .
〈typeexp〉 ::= number | procedure | list | any

Use the following as the abstract syntax for the typecase-expression and for 〈typeexp〉.

(define-datatype expression expression?
;; ...
(typecase-exp (tested-exp expression?)

(types (list-of typeexp?)) (bodies (list-of expression?)))
(define-datatype typeexp typeexp?

(number-type) (procedure-type) (list-type) (any-type))

To evaluate a typecase-expression, of the form

typecase E0

T1 ==> E1 . . . Tn ==> En

end

the interpreter first evaluates the expression E0. Suppose this evaluation of E0 yields a
value, v0. Then each clause of the form Ti ==> Ei, is tested in order from left to right, and if
v0 has a type that matches Ti (but not any Tj with j < i), then the value of the entire
expression is the value of Ei. If none of the types Ti matches the value v0, then the result of
the entire expression is 0.

An expressed value matches the 〈typeexp〉 number if it is a number, it matches the
〈typeexp〉 procedure if it is a procedure closure, it matches the 〈typeexp〉 list if it is a list
of expressed values. All expressed values match the 〈typeexp〉 any.
Thus the following are examples in the defined language:

--> typecase +(5, 3)
number ==> 7 procedure ==> 541 any ==> 342

end
7
--> let id = proc (x) x

in typecase (id id)
number ==> (id 7) procedure ==> (id 541)
procedure ==> 88 any ==> (id 342)

end
541
--> let myList = list(1, proc() 3, 51)

in typecase myList
number ==> car(myList) procedure ==> car(cdr(myList))
any ==> +(291, car(cdr(cdr(myList)))) list ==> 6

end
342
--> typecase 342 end
0

9

You should implement typecase in eval-expression directly, by filling in the code for the
typecase-exp case of eval-expression below. You may also need to write one or more
helping procedures. (Hint, you can use the operations on page 2 as well as Scheme’s
number? and list? predicates.)

To save time, only give the code for the typecase-exp case, and any auxiliary procedures
that you call in that case.

(deftype eval-expression (-> (expression environment) Expressed-Value))
(define eval-expression

(lambda (exp env)
(cases expression exp

(lit-exp (datum)
(number->expressed datum))

;; ... assume that the rest of this is done
(typecase-exp

