
1

Spring, 1996 Name:

. My Section Day and Time :

Com S 342 | Principles of Programming Languages

Test on EOPL Chapters 5.6{7, 6.1{3

This test has 8 questions and pages numbered 1 through 7.

Reminders

For this test, you can use one (1) page (8.5 by 11 inches, one (1) side, no less than 8pt font) of

notes. No photo-reduction is permitted. These notes are to be handed in at the end of the test.

Use of other notes or failure to follow these instructions will be considered cheating.

If you need more space, use the back of a page. Note when you do that on the front.

This test is timed. We will not grade your test if you try to take more than the time allowed.

Therefore, before you begin, please take a moment to look over the entire test so that you can

budget your time.

For programs, indentation is important to us for \clarity" points; if your code is sloppy or hard

to read, you will lose points. We will take o� a small amount if you do not give TYPE comments

for recursive helping procedures. However, you do not have to write such comments for procedures

for which the type is stated in the problem. Correct syntax also matters. Check your code over for

syntax errors. You will lose points if your code has syntax errors.

Subset of Scheme You May Use

Unless otherwise stated in a problem, when solving problems you may only use standard ADTs used

in the interpreter (such as cells, environments, arrays, etc.), standard features of Scheme that we

discussed in class, define-record, variant-case, and helping functions that you de�ne yourself.

The standard is de�ned by the Revised4 Report on the Algorithmic Language Scheme.

Parts of Scheme You May *Not* Use

Unless otherwise stated in a problem, you are prohibited from de�ning your own macros, and

from using internal de�nes, all the input and output facilities, and the following keywords and

procedures. (Don't worry if you don't know what these are.)

call-with-current-continuation do



2

1. (10 points) Using the concrete syntax of the de�ned language, give the desugared form of

the following expression.

let x = +(3, 4)

in *(x, +(x, 5))

(Note: your answer must be in the concrete syntax of the de�ned language; do not write

Scheme code.)

2. (10 points) Assuming static scoping, call-by-value and the indirect array model, in the

de�ned language, write a procedure, arraysubst, with type

(-> (number number (array number)) (array number))

that takes two numbers, new and old, and an array, arr, and returns a new array, which is

just like arr, except that the �rst occurrence (if any) of old in arr is replaced by new. Note

that arr is not to be modi�ed. The following are examples.

--> definearray a[4];

--> begin a[0] := 10; a[1] := 11; a[2] := 12; a[3] := 10 end

--> arraysubst(5, 10, a);

#(*array* 5 11 12 10)

--> a;

#(*array* 10 11 12 10)

--> arraysubst(7, 12, a);

#(*array* 10 11 7 10)

--> arraysubst(7, 14, a);

#(*array* 10 11 12 10)

Your answer should be a completion of the code below. (Hint: you may use letrec,

letrecproc, or a helping procedure. Recall that arraylength gives the length of an array

and equal can be used to compare numbers.)

define arraysubst =



3

3. (10 points) This is a question about abstract syntax. Recall that, in our notation, the

Scheme procedure parse as type (-> (string) parsed-exp). For example, the following

is an equation between Scheme expressions.

(parse "7")

= (make-lit 7)

Complete the following equation, by writing a Scheme expression, using the abstract syntax

records for the de�ned language, that is equivalent to the following.

(parse "proc(a, b) +(7, a)")

=

4. (10 points) Brie
y answer the following question. What are the (a) advantages and (b)

disadvantages of dynamic scope (as compared to static scope)?



4

5. (10 points) This is a question about dynamic scoping. Consider the following expression in

the de�ned langauge (using call-by-value).

let x = 50; lst = list(3)

in let addlast = proc(lst)

if null(cdr(lst))

then +(car(lst), x)

else addlast(cdr(lst))

in let x = 4; lst = list(6)

in addlast(list(7, 9))

Using dynamic scoping, (a) Draw a picture of the run-time stack to show how the

computation proceeds, and (b) give the result (if any) of the above expression. (If the

expression has no result, or encounters an error, write that.)

6. (10 points) This is a question about dynamic assignment. Consider the following expression

in the de�ned langauge (using call-by-value).

let green = 1; yellow = 2; red = 3

in let light = green; output = 0

in let paintlight = proc() output := light

in begin

light := red during paintlight();

list(light, output)

end

Give the result of the above expression.



5

7. (15 points) Assuming static scoping, consider the following session with the

de�ned-langauge interpreter's read-eval-print loop

--> define i = 3;

--> define lst = emptylist;

--> let x = i

in begin

i := 77;

lst := list(i, x)

end;

Fill in the following table with the �nal values of i and lst after running the above session,

in each of the given parameter mechanisms. (Hint: recall that let is a syntactic sugar.) (If

need be, you may use \?" to represent an unde�ned (i.e., unspeci�ed) value.)

ending value of

calling mechanism i lst

call-by-value

call-by-reference

call-by-value-result



6

8. (80 points) This is a problem about parameter passing mechanisms and array models.

Throughout this problem use static scoping. Consider the following expression.

letarray a[2]; b[2]

in begin

a[0] := 5; a[1] := 10; b[0] := 15; b[1] := 20;

let i = 0; j = 1

in let f = proc(k,m,u,y,u0,y0,t)

begin

t := k; k := m; m := t;

u0 := +(b[1], j); y := a; a[0] := b[k];

%%% draw a picture for this point

+(y0,y[0])

end

in let r = f(i, j, a, b, a[i], b[0], 3)

in list(a[0], a[1], b[0], b[1], i, j, r)

end

For each of the following combinations of parameter passing mechanism and array model:

(i) draw a picture of the execution (as discussed in class) for the point noted by the

comment, and (ii) give the result of the expression. The combinations you are to do are as

follows (there are more on the next page).

(a) Call-by-value with the indirect model.

(b) Call-by-value with the direct model.



7

Here is another copy of the expression, for your convenience.

letarray a[2]; b[2]

in begin

a[0] := 5; a[1] := 10; b[0] := 15; b[1] := 20;

let i = 0; j = 1

in let f = proc(k,m,u,y,u0,y0,t)

begin

t := k; k := m; m := t;

u0 := +(b[1], j); y := a; a[0] := b[k];

%%% draw a picture for this point

+(y0,y[0])

end

in let r = f(i, j, a, b, a[i], b[0], 3)

in list(a[0], a[1], b[0], b[1], i, j, r)

end

(c) Call-by-reference with the direct model

(d) Call-by-value-result with the indirect model (copy the results back in left-to-right

order)


