
1

Fall, 1997 Name:

My Section Day and Time :

Com S 342 | Principles of Programming Languages

Test on EOPL Chapter 5

This test has 9 questions and pages numbered 1 through 7.

Reminders

For this test, you can use one (1) page (8.5 by 11 inches, one (1) side, no less than 9pt font) of

notes. No photo-reduction is permitted. These notes are to be handed in at the end of the test.

Use of other notes or failure to follow these instructions will be considered cheating.

During the test, if you need more space for an answer, use the back of a page. Note when you

do that on the front.

This test is timed. We will not grade your test if you try to take more than the time allowed.

Therefore, before you begin, please take a moment to look over the entire test so that you can

budget your time.

For programs, indentation is important to us for \clarity" points; if your code is sloppy or hard

to read, you will lose points. We will take o� a small amount if you do not give TYPE comments

for recursive helping procedures. However, you do not have to write such comments for procedures

for which the type is stated in the problem. Correct syntax also matters. Check your code over for

syntax errors. You will lose points if your code has syntax errors.

Subset of Scheme You May Use

Unless otherwise stated in a problem, when solving problems you may only use standard ADTs

used in the interpreter (such as cells, environments, etc.), standard features of Scheme that we

discussed in class, define-record, variant-case, and helping functions that you de�ne yourself.

The standard is de�ned by the Revised4 Report on the Algorithmic Language Scheme.

Parts of Scheme You May *Not* Use

Unless otherwise stated in a problem, you are prohibited from de�ning your own macros, and

from using internal de�nes, all the input and output facilities, and the following keywords and

procedures. (Don't worry if you don't know what these are.)

call-with-current-continuation do



2

1. (10 points) In this problem you will add a primitive procedure lessOrEqual to the de�ned

language. This procedure should return a value representing true if its �rst argument

number is less than or equal to its second number argument, and a value representing false

otherwise. (You're supposed to know how true and false are represented in the interpreter.)

Your task is to add the primitive procedure lessOrEqual by �lling in the code for the

necessary changes below. If you need any auxiliary procedures for your de�nition, you must

also write out those in your solution.

(define apply-prim-op

; TYPE: (-> (symbol (list Expressed-Value)) Expressed-Value)

(lambda (prim-op args)

(case prim-op

((+) (+ (car args) (cadr args)))

((-) (- (car args) (cadr args)))

((*) (* (car args) (cadr args)))

((add1) (+ (car args) 1))

((sub1) (- (car args) 1))

(else (error "Invalid prim-op name:" prim-op)))))

(define prim-op-names ; TYPE: (list symbol)

'(+ - * add1 sub1

))

2. (10 points) Consider an interpreter that supports assignment (:=). Show the code you

would write in such an interpreter that would de�ne the initial environment such that the

variable e would be prede�ned to contain the value 2.71828.



3

3. (10 points) Briey (in 1 or 2 sentences) answer the following question. What changes were

needed to the interpreter to make it use dynamic scoping?

4. (5 points) What is the scope rule used with dynamic assignment?

5. (10 points) This is a question about dynamic assignment. Consider the following expression

in the de�ned language. (Use call-by-value.)

let roman = 1; italic = 2

in let font = roman; output = emptylist

in let addchar = proc(c) output := cons(cons(c,font), output)

in begin

addchar(43);

font := italic during addchar(52);

list(font, output)

end

Give the result of the above expression.

6. (5 points) Consider the following expression in the de�ned language.

letrecproc

even(x) = if zero(x) then 1 else odd(sub1(x));

odd(x) = if zero(x) then 0 else even(sub1(x))

in odd(342)

Write, in the de�ned language's concrete syntax, an equivalent desugared form of the above

expression, which does not use letrec. (You may use let in the desugared form.)



4

7. (10 points) This is a question about dynamic scoping. Consider the following expression in

the de�ned langauge (using call-by-value).

let x = 100; lst = list(3000)

in let addxlist = proc(lst)

if null(lst)

then x %%% draw the picture for this point

else +(car(lst), addxlist(cdr(lst)))

in let x = 5; lst = list(6)

in addxlist(list(7, 9))

Using dynamic scoping, (a) draw a picture of the run-time stack when execution reaches the

point indicated (with the stack growing up the page), and (b) give the result (if any) of the

above expression. (If the expression has no result, or encounters an error, write that.)



5

8. (20 points) In this problem you will implement the following syntax in the de�ned language.

hexpi ::= and hexpi hexpi

Use the following as the abstract syntax for the and-expression.

(define-record and-exp (left-exp right-exp))

The meaning of this syntax is supposed to be that of a short-circuit \and". For example, in

the de�ned language we would have

and 1 0 ==> 0

and 0 1 ==> 0

and 1 1 ==> 1

and 0 0 ==> 0

letrecproc ohno() = ohno() in and 0 ohno() ==> 0

That is, and e1 e2 is equivalent to let x = e1 in if x then e2 else x. However, you are

not to implement this as a syntactic sugar. Instead you will implement this in eval-exp

directly, by �lling in the code for the and-exp case of eval-exp below.

To save time, only give the code for the and-exp case, and any auxiliary procedures that

you call in that case.

Hint: think about the types!

(define eval-exp

; TYPE: (-> (parsed-exp Environment) Expressed-Value)

(lambda (exp env)

(variant-case exp

(lit (datum) datum)

(varref (var) (cell-ref (apply-env env var)))

; ...

; put your code below



6

9. (30 points) In this problem you will implement the following syntax in the de�ned language.

hexpi ::= case hexpi of hone-casesi end

hone-casesi ::= hone-casei j hone-casei f; hone-caseig�

hone-casei ::= hlabeli : hbodyi
hlabeli ::= hinteger-literali
hbodyi ::= hexpi

We will use the following for the abstract syntax. Note that the cases �eld of a case-exp

record has the type (list one-case). Also the label �eld of a one-case record has type

integer.

(define-record case-exp (exp cases))

(define-record one-case (label body))

The meaning of this syntax is that, if hexpi evaluates to an integer that occurs as a label in

some hone-casei in the list of hone-caseis, then the �rst such hone-casei has its hbodyi
evaluated, and that value is returned as the value of the case expression; otherwise 0 is

returned as the value of the case expression.

Note that the hexpi between case and of should only be evaluated once. To save time (on

this test) you may assume that this hexpi evaluates to an integer; that is you don't have to

check for the user's type errors.

The following are examples of evaluations in the de�ned language.

case 3 of 3: 7 end

==> 7

case 9 of 3: 7; 9: 22 end

==> 22

case 9 of 9: 30; 3: 7; 9: 22 end

==> 30

case +(2,5) of 1: 1; 2: begin x := 7; +(x,1) end; 7: 10; 8: 31 end

==> 10

case *(4,+(1,2)) of 1: 8; 2: 14 end

==> 0

case *(4,+(1,2)) of 1: 8; 2: 14; 1: 9; 5: 4 end

==> 0

Your task is to implement the above syntax, by �lling in the code for the case-exp case of

eval-exp on the next page.



7

To save time, only give the code for the case-exp case, and any auxiliary procedures that

you call in that case.

(define eval-exp

; TYPE: (-> (parsed-exp Environment) Expressed-Value)

(lambda (exp env)

(variant-case exp

(lit (datum) datum)

(varref (var) (cell-ref (apply-env env var)))

; ...

; put your code below


