Com S 541 — Programming Languages 1 October 4, 2006

Homework 4: Declarative Programming

Due: Tuesday, October 3, 2006.

In this homework you will learn basic techniques of recursive programming over various types of data,
and abstracting from patterns, higher-order functions, currying, and infinite data. Many of the problems
below exhibit polymorphism. The problems as a whole illustrate how functional languages work without
hidden side-effects. Don’t use side effects (assignment and cells) in your solutions.

For all programing tasks, you must run your code using the Mozart/Oz system. For these you must also
provide evidence that your program is correct (for example, test cases). For testing, you may want to use
tests based on my code in the file Assert . oz, shown in Figure[ZJon page[d] Hand in a printout of your code
and the output of your testing, for all questions that require code.

Be sure to clearly label what problem each area of code solves with a comment.

Don’t hesitate to contact the staff if you are stuck at some point.

Read Chapter 3 of the textbook [RH04]. You may also want to read a tutorial on the concepts of functional
programming languages, such as Hudak’s computing survey article mentioned in the “Introduction to the
Literature” handout.

Functional Programming
1. (10 points) Write a function

DeleteAll: <fun {$ T <List T>}: <List T>>
that takes an item of some type T and a list of items of type T, and returns a list just like the argument

list, but with the each occurrence of the item (if any) removed. Use == to compare the item and the list
elements. The following examples are written using the Te st procedure from Figure 2Jon page [

{Test {DeleteAll 3 nil} ’'=’" nil}

{Test {DeleteAll 1 [1 2 3 2 1 2 3 2 11} ’'=" [2 3 2 2 3 2]}
{Test {DeleteAll 4 [1 2 3 2 1 2 3 2 1]} '=" [1 23 212321]}
{Test {DeleteAll 3 [1 2 3]} '=" [1 2]}

2. (10 points) Write a function

DeleteSecond: <fun {$ T <List T>}: <List T>>

that takes an item of some type T and a list of items of type T, and returns a list just like the argument
list, but with the second occurrence of the item (if any) removed.

The following examples are written using the Test procedure from Figure 2] on page 4]

{Test {DeleteSecond 3 nil} ’'=’ nil}

{Test {DeleteSecond 1 [1 2 3 2 1 2 3
{Test {DeleteSecond 4 [1 2 3 2 1 2 3
{Test {DeleteSecond 3 [1 2 31} '=" [

2 1]
2 1]
123
Hint: you may need a helping function.

3. (15 points) In Oz, write a function

Associated: <fun {$ Key <List <Pair Key Value>>}: <List Value>

such that {Associated K Pairs} is the list, in order, of the second elements of pairs in Pairs,
whose first element is equal (by ==) to the argument Key.

Do this (a) by writing out the recursion yourself, (b) by using the £or loop in Oz (see the Oz documen-
tation or section 3.8.3 of the text [RHO04|]), and (c) using Oz’s built in list functions Map and Filter
(see Section 4.3 of “The Oz Base Environment” [DKS06]).



$Id: Testing.oz,v 1.4 2006/09/26 21:36:23 leavens Exp leavens $

Assertion and testing procedures for Oz.

do op oo oo op

AUTHOR: Gary T. Leavens

functor $

import
System(showInfo)

export
assert: Assert
assume: Assume
start: StartTesting
test: Test

define
%% Assert that the argument is true.
proc {Assert B}

if {Not B}
then {Exception.raiseError assertionFailed}
end

end

$% Mark an assumption that the argument is true.
proc {Assume B}

{Assert B}
end

%% Print a newline and a message that testing is beginning.
proc {StartTesting Name}

{System.showInfo ""}

{System.showInfo ’'Testing ’ # Name # ’'...’"}

end
%% Test 1if Actual == Expected.
$% If so, print a message, otherwise throw an exception.

proc {Test Actual Connective Expected}
if Actual == Expected
then {System.showInfo
{Value.toVirtualString Actual 5 10}
# 7 ' # Connective # ' '/
# {Value.toVirtualString Expected 5 10}}
else {Exception.raiseError
testFailed (actual:Actual
connective:Connective
expected:Expected
debug:unit)

end
end
end

Figure 1: Testing code that puts output on standard output (the xOz Emulatorx window). This functor is
available in the course 11ib directory. This can be used in other functors by importing Test ing.



You can test by passing each of your functions as an argument to the procedure in Figure 3] on the next
page, which is written using the Test procedure from Figure 2] on the following page.

. This problem is due to Simon Thompson. It works with the database of a library. Consider the follow-
ing types.

<Database> ::= <List <Pair <Person> <Book>>>
<Person> ::= <Literal>
<Book> ::= <Literal>

A value of type <Database> records each borrowing by a person of a book.

(a) (10 points) Write a function Borrowers that takes a <Database> and a <Book> and returns
a list of all persons who have borrowed that book.

(b) (10 points) Write a function Borrowed that takes a <Database> and a <Book> and returns
true just when someone has borrowed it.

(c) (10 points) Write a function NumBorrowed that takes a <Database> and a <Person> and
returns the number of book that person has borrowed.

Figure ] on the next page gives examples of these written using the procedures from Figure 2] on the
following page.

. (15 points) Write a function

Compose: <fun {$ <List <fun {$ T}: T>>}: <fun {$ T}: T>>

that takes a list of functions, and returns a function which is their composition. Figure [5]on page
gives some examples.

Hint: note that { Compose nil} is the identity function.

. Consider the following type as a representation of binary relations.

<BinaryRel A B> ::= <List <Pair A B>>

(a) (10 points, extra credit) Write a function

IsFunction: <fun {$ <BinaryRel A B>}: Bool>

that returns true just when its argument satisfies the standard definition of a function; that is,
{IsFunction R} istrue just when for each pair x#y in the list R there is no pair z#z in R
such that y # z.

The following are examples.

{Test {IsFunction nil} ’==>' true}

{Test {IsFunction [a#l b#2 c#3 a#l]} ’'==>' true}

{Test {IsFunction [b#2 c#3 a#l]} ’'==>’ true}

{Test {IsFunction [b#2 c#3 b#41l a#l]} ’'==>' false}

{Test {IsFunction [b#2 c#3 d#2 e#2 f#2 g#3 a#l]} ’'==>' true}
{Test {IsFunction [bush#shrub]} ’'==>' true}

(b) (10 points, extra credit) Write a function

BRelCompose: <fun {$ <BinaryRel A B> <BinaryRel B C>}:
<BinaryRel A C>>

that returns the relational composition of its arguments. That is, a pair z#z is in the result if and
only if there is a pair z#y in the first relation argument of the pair of arguments, and a pair y#z
is in the second argument. For example,



$ $Id: Test.oz,v 1.6 2006/09/26 08:37:27 leavens Exp $
% AUTHOR: Gary T. Leavens

declare
local [Testing] = {Module.link [’Testing.ozf’]}
in
StartTesting = Testing.start
Test = Testing.test
end

Figure 2: Testing code that works in the Mozart system’s Oz Programming Interface. The module linked is
shown in Figure [TJon page 2} This file is available in the course 1ib directory To use it, copy the files from
the course directory to your own directory and then put \insert ’Test.oz’ inyour file.

declare

proc {AssociatedTest Associated}
{Test {Associated 3 nil} ’"==>'" nil}
{Test {Associated 3 [(3#4) (5#7) (3#6) (9#3)]1} ’'==>" [4 6]}
{Test {Associated 2 [(1l#a) (3#c) (2#b) (4#d)]} "==>" [b]}

{Test {Associated 0 [(1l#a) (3#c) (2#b) (4#d)]} "==>'" nil}
end
Figure 3: Test procedure for Exercise 3]
declare
ExampleBase = [ ('Alice’ # ’'Tintin’) (’Anna’ # ’'Little Women’)

("Alice’ # ’"Asterix’) ('Rory’ # ’'Tintin’) ]

{StartTesting ’'Borrowers, part (a)’}

{Test {Borrowers ExampleBase ’'Tintin’} ’'==>' [’Alice’ ’'Rory’]}
{Test {Borrowers ExampleBase ’'Little Women’} ’'==>’ [’Anna’l}
{Test {Borrowers ExampleBase ’'Asterix’} ’'==>' ['Alice’]}

{Test {Borrowers ExampleBase ’'The Wizard of 0Oz’} ’'==>' nil}

{StartTesting ’Borrowed, part (b)’}

{Test {Borrowed ExampleBase ’'Tintin’} ’'==>’ true}

{Test {Borrowed ExampleBase ’'Little Women’} ’'==>' true}
{Test {Borrowed ExampleBase ’'Asterix’} ’==>’ true}

{Test {Borrowed ExampleBase ’'The Wizard of 0z’} ’'==>' false}

{StartTesting ’'NumBorrowed, part (c)’}

{Test {NumBorrowed ExampleBase 'Alice’} ’'==>" 2}
{Test {NumBorrowed ExampleBase 'Anna’} ’'==>' 1}
{Test {NumBorrowed ExampleBase 'Rory’} ’'==>" 1}
{Test {NumBorrowed ExampleBase ’'Ben’} ’'==>’ 0}

Figure 4: Examples for exercise [}



10.

11.

{Test {BRelCompose nil [2#b 3#c]l} "=’ nil}
{Test {BRelCompose nil nil} ’=’ nil}

{Test {BRelCompose [1#2 2#3] [2#b 3#c]}
"=' [1#b 2#c]}
{Test {BRelCompose [1#2 1#3] [2#b 3#c]}

"=’ [1l#b 1l#c]}
{Test {BRelCompose [1#3 2#3] [3#b 3#c]}
"=’ [1#b 1l#c 2#b 2#c]}

(5 points) Define a function

CommaSeparate: <fun {$ <List String>}: String>

that takes a list of strings and returns a single string that contains the given strings in the order given,
separated by ", ". For example,

{Test {CommaSeparate nil} ’'=" ""}

{Test {CommaSeparate ["a" "b"]} "=’ "a, b"}

{Test {CommaSeparate ["Monday" "Tuesday" "Wednesday" "Thursday"]}
/=’ "Monday, Tuesday, Wednesday, Thursday"}

. (5 points) Define a function

OnSeparatelLines: <fun {$ <List String>}: String>

that takes a list of strings and returns a single string that, when printed, shows the strings on separate
lines.

For example,
{Test {OnSeparatelines nil} ’'=" ""}
{Test {OnSeparatelLines ["a" "b"]} "=’ "a\nb"}

{Test {OnSeparatelines ["Monday" "Tuesday" "Wednesday" "Thursday"]}
=’ "Monday\nTuesday\nWednesday\nThursday"}

(10 points) Define a curried function

SeparatedBy: <fun {$ <String>}: <fun {$ <List String>}: String>>

That is a generalization of onSeparateLines and commaSeparated. Test it by using it to define
these other functions.

(5 points) Define the function MyAppend to be just like the standard Append function. You definition
is to be done by using FoldR , completing the following by adding arguments to the call of FoldR.
(For a description of FoldR, see Section 4.3 of “The Oz Base Environment” [DKS06].)

fun {MyAppend Xs Ys}
{FoldR }
end

(5 points) Using FoldR in a way similar to the previous problem, define

DoubleAll: <fun {$ <List Number>}: <List Number>>

that takes a list of Numbers, and returns a list with each of its elements doubled. The following are
examples.

{Test {DoubleAll nil} ’'=’ nil}
{Test {DoubleAll [1 2 31} ’'=" [2 4 6]}
{Test {DoubleAll [3 6 2 5 4 1]} '=" [6 12 4 10 8 2]}



12.

13.

(15 points) Define the function MyMap to be just like the standard Map function. You definition is to
be done by using FoldR , As part of your testing, use MyMap to (a) declare DoubleAll, and (b) to
add 1 to all the elements of a list of Ints.

Consider the following type

<Tree T> ::= node(item:T subtrees:<List <Tree T>>)

for nary-trees, which represents a Tree of elements of some type T as a node record, which contains a
field item of type T and a list of subtrees.

(a) (10 points) Define a function

SumTree: <fun {$ <Tree Int>}: Int>

that adds together all the Ints in a Tree of Ints. For example, the procedure shown in Figure[6]on
the following page tests an implementation of SumTree passed to it as an argument.

(b) (15 points) Define a function

MapTree: <fun {$ <Tree S> <fun {$ S}: T>}: <Tree T>>

that takes a Tree ¢ and a function f and returns a tree that has the same shape of ¢, but where each
item x is replaced by the result of applying f to x.

For example, the procedure shown in Figure [7]on page [§] tests an implementation of MapTree
passed to it as an argument.

(c) (30 points) By generalizing your answers to the above problems, define a Oz function FoldTree
that is analogous to FoldR for lists. This should take a tree, a function to replace the node
constructor, a function to replace the | constructor for lists, and a value to replace the empty list.
You should, for example, be able to define SumTree, and MapTree on Trees as follows.

fun {Add X Y} X + Y end

fun {SumTree Tree} {FoldTree Tree Add Add 0} end

fun {MapTree Tree F}

{FoldTree Tree

fun {$ I Strs} node(item:{F I} subtrees:Strs) end
fun {$ E Es} E|Es end
nil}

end

14. (30 points) A set can be described by a “characteristic function” (whose range is the booleans) that

determines if an element occurs in the set. For example, the function ¢ such that
¢(coke) = ¢(pepsi) = true

and for all other arguments z, ¢(x) = false, is the characteristic function for a set containing the
strings coke, pepsi and nothing else. Allowing the user to construct a set from a characteristic
function gives one the power to construct sets that may “contain” an infinite number of elements (such
as the set of all prime numbers).

Your problem is to implement the following operations. (Hint: think about using a function type.)
(a) The function Set SuchThat takes a characteristic function, f and returns a set such that each
value x (of appropriate type) is in the set just when { f x} is true.

(b) The function Union takes two sets, with characteristic functions f and g, and returns a set such
that each value z (of appropriate type) is in the set just when either { f «} or {g =} is true.

(c) The function Intersect takes two sets, with characteristic functions f and g, and returns a
set such that each value z (of appropriate type) is in the set just when both {f x} and {g =} are
true.



{Test {{Compose nil} [1 2 3]} ’'==>" [1 2 3]}
{Test {{Compose [fun {$ X} X + 1 end fun {$ X} X + 2 end]} 4}
r==>" 17}
local fun {Tail Ls} _|Rest = Ls in Rest end in
{Test {{Compose [Tail Tail Tail]} [1 2 3 4 5]}
"==>" [4 5]}
end
{Test {{Compose [fun {$ X} 3|X end fun {$ Y} 4|Y end]} nil}
'==>' 3| (4|nil)}

Figure 5: Examples for exercise 5]

declare
proc {SumTreeTest SumTree}
{Test {SumTree node (item:4 subtrees:nil)} "=’ 4}
{Test {SumTree
node (item:3
subtrees: [node (item:4 subtrees:nil)
node (item:7 subtrees:nil)])} =" 14}
{Test {SumTree
node (item:10
subtrees: [node (item:3
subtrees: [node (item:4 subtrees:nil)
node (item:7 subtrees:nil)])
node (item:10
subtrees: [node (item:20 subtrees: nil)
node (item:30 subtrees: nil)
node (item:40 subtrees: nil)]
) 1)}
r=r 124}
end

Figure 6: Procedure to test exercise[13a]



declare
proc {MapTreeTest MapTree}
fun {Addl X} X+1 end
fun {Add3 X} X+3 end
in
{Test {MapTree node(item:4 subtrees:nil) Addl}
"'=" node(item:5 subtrees:nil)}
{Test {MapTree node (item:3
subtrees: [node (item:4 subtrees:nil)
node (item:7 subtrees:nil)])
Add3}
"=’ node (item:6
subtrees: [node (item:7 subtrees:nil)
node (item:10 subtrees:nil)])}
{Test {MapTree
node (item:10
subtrees: [node (item:3
subtrees: [node (item:4 subtrees:nil)
node (item:7 subtrees:nil)])
node (item:10
subtrees: [node (item:20 subtrees: nil)
node (item:30 subtrees: nil)
node (item:40 subtrees: nil)]
) 1)
Add3}
"'=" node(item:13
subtrees: [node (item: 6
subtrees: [node (item:7 subtrees:nil)
node (item:10 subtrees:nil)])
node (item:13
subtrees: [node (item:23 subtrees: nil)
node (item:33 subtrees: nil)
node (item:43 subtrees: nil) ]

end
Figure 7: A procedure to test solutions to exercise [[3b]
declare
fun {IsCoke X} X == coke end
fun {IsPepsi X} X == pepsi end

{Test {Member {SetSuchThat IsCoke} coke} ’'=’ true}

{Test {Member {SetSuchThat IsCoke} pepsi} ’'=’ false}

{Test {Member {Complement {SetSuchThat IsCoke}} coke} ’'=’ false}

{Test {Member {Union {SetSuchThat IsCoke} {SetSuchThat IsPepsi}}
pepsi} =" true}

{Test {Member {Union {SetSuchThat IsCoke} {SetSuchThat IsPepsi}}
coke} "=’ true}

{Test {Member {Union {SetSuchThat IsCoke} {SetSuchThat IsPepsi}}
sprite} ’=’ false}

{Test {Member {Intersect {SetSuchThat IsCoke} {SetSuchThat IsPepsi}}
coke} "=’ false}

Figure 8: Example tests for exercise [T4]



(d) The function Member tells whether the second argument is a member of its first argument.

(e) The function Complement returns a set that contains everything that is not in the original set.

As examples, consider the tests in Figure[§Jon the preceding page.

Note (hint, hint) that the equations in Figure E] on the next page must hold, for all F, G, and X of
appropriate types.

15. (25 points) Consider the following data grammars.
<Exp> ::= boolLit ( <Bool> )
| intLit ( <Int> )
| charLit ( <Char> )
| subExp( <Exp> <Exp> )
| equalExp( <Exp> <Exp> )
| ifExp( <Exp> <Exp> <Exp> )
<OType> ::= obool | oint | ochar | owrong
Write a function
TypeOf: <fun {$ <Exp>}: OType>
that takes an <Exp> and returns its OType. Figure|10|on the following page gives some examples.
Your program should incorporate a reasonable notion of what the exact type rules are. (Exactly what
“reasonable” is left up to you; explain any decisions you feel the need to make.)
Other Problems
16. (50 points total; extra credit) Do the paper review problem at the end of homework 2.
References

[DKS06] Denys Duchier, Leif Kornstaedt, and Christian Schulte. The Oz Base Environment. mozart-0z.0rg,

June 2006. Version 1.3.2.

[RHO4] Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of Computer Programming.

The MIT Press, Cambridge, Mass., 2004.



{Member {Union
= {F X} orelse {G X}

{Member {Intersect (SetSuchThat F}
= {F X} andthen {G X}

{Member {SetSuchThat F} X} = {F X}

{Member {Complement {SetSuchThat F}}} X =

(SetSuchThat F} {SetSuchThat G}} X}

{SetSuchThat G}} X}

{Not {F X}}

Figure 9: Equations that give hints for exercise[[4]

{Test {TypeOf equalExp (intLit (3) 1ntL1t(4))} "'=" obool}
{Test {TypeOf subExp (intLit (3) intLit (4))} =" oint}
{Test {TypeOf subExp (intLit (3) intLit( y)} =’ oint}
{Test {TypeOf subExp (charLit (&a) intLit (4))} "=’ owrong}
{Test {TypeOf equalExp (subExp (charLit (&a) intLit (3))
intLit (4))} ’=’ owrong}
{Test {TypeOf ifExp(boollLit (true) intLit (4) intLit(5))} ’'=’ oint}
{Test {TypeOf ifExp (boolLit (true) intLit (4) boolLit (true))} ’'=’ owrong}
{Test {TypeOf ifExp (intLit (3) intLit (4) intLit(5))} "=’ owrong}
{Test {TypeOf equalExp (subExp (charLit (&a) intLit (3))

1ifExp (intLit (0)
=" owrong}

intLit (4)

boolLit (true))) }

Figure 10: Examples for exercise I3}

10



