Course Notes: Operational Semantics and
the Parameterized Aspect Calculus

Curtis Clifton and Gary T. Leavens
Dept. of Computer Science
Iowa State University
226 Atanasoff Hall
Ames, IA 50011-1040 USA
{cclifton,leavens}@cs.iastate.edu

December 8, 2003

1 Motivation

1.1 Review [4, 7]

e Quantification

Defn. 1.1 (Quantified Statements) have an effect on many places in the program

as opposed to "in the underlying code”, which is biased toward the base + aspects
model

e Obliviousness

Defn. 1.2 (Obliviousness) the execution of cross-cutting code A without any reference to A from
the client code that A cross-cuts

— semantic interaction
- without syntactic coupling

e Modular Reasoning

Understanding a module M based on:

- the code in M,
- the code surrounding M, and
- the signature and specification of any modules referred to by that code.

e Behavioral Subtyping Analogy

- Behavioral subtyping in OOP:
an overriding method must satisfy the specification of the overridden method

- Behavioral subtyping is a discipline

It places constraints on the subtype programmer
« It provides the benefit of modular reasoning for clients

— What about AOP?
Q: Can a language have quantification and obliviousness and allow modular reasoning?

Itisn’t clear.
Q: Is there a discipline like behavioral subtyping that would allow modular rea-
soning in aspect-oriented programming languages? in AspectJ?

1.2 Spectators and Assistants [3]

e Assistants

- can change the behavior of advised code
- must be explicitly accepted by either

* the module containing the advised join points,
(all clients see the effects)

% or a client of that module
(only that client sees the effects)

e Spectators

Defn. 1.3 A spectator is an aspect that "does not change the behavior of any other mod-
ule.”

Q: What might that mean? What is “spectator-ness”?

- Safety and Liveness [10]
Defn. 1.4 A safety property says that nothing bad happens

Defn. 1.5 A liveness property says that eventually something good happens
* Before-advice that immediately went into an infinite loop would be safe but not
live
* Before-advice that deleted all the files on your hard drive and then proceeded to
the original method would be live but not safe

— Spectators and Safety
Some possible interpretations:

% A spectator cannot modify any state but ifs own

* A spectator cannot violate the specification of advised modules

Q: Is it that simple? Are there any problems with these notions?

What about I/O?
Can we modularly find all the advised modules? What about quantification?

— Spectators and Liveness

Goal: Spectators must always allow the advised method to execute with its original
arguments and must refurn the result unchanged.

Q: Is this decidable?

No! by reduction from the halting problem.

What if we:

* Restrict control flow constructs in spectator advice fo make the problem decid-
able?

Q: What constructs could we allow? loops? method calls? mathematical
expressions?

* Run spectators in a separate thread?
Q: What if advice isn’t finished before advised method is called again?

* Approximate by prohibiting spectators from using around-advice or throwing
checked exceptions?

e Do you buy it? (Direct discussion fowards needing formal proof.)

— Which of these notions of “spectator-ness” could be statically enforced? All buf the
specification safety property (and perhaps that could be if the specfications
were sufficiently restricted).

- Do spectators and assistants provide modular reasoning? How do we know?

- Can we implement reasonable aspect-oriented programs under these restrictions?

1.3 Why formal semantics?

Defn. 1.6 A formal semantics is a mathematically complete description of a programming
language

e Makes proofs about language properties tractable

e Lingua franca of programming language researchers

1.4 Why core calculi?

Defn. 1.7 A core calculus is a programming language stripped of all but its essential elements

Q: What is “essential”? Depends on the problem
A core calculus:

e Eliminates “noise”
e Makes construction of complete formal semantics tractable
e Can be used to define user-level languages

e Examples

- A calculus and Haskell
— Object calculus and Smalltalk
— Parameterized aspect calculus and AspectJ?

2 Introduction to Formal Semantics

2.1 Kinds of Formal Semantics

Example: the semantics of a while loop
e Denotational [9]

- Strength: proving properties about the language
- Map values in language to mathematical entities, like {T, F} or the natural numbers
— Model operations in language as mathematical operations, like A, =, or +

- Example:
[while E do C], = w(s), where w(s) = if ([E],, w([C],), s)

s is the state, typically a mapping from variables to values
Read double brackets as "the meaning of foo in the state s”.
w IS recursive

[, is overloaded:
* [E],: boolean
* [C],: state
* Q: what is the type of the if function?
A: if: Boolean x State x State — State

e Axiomatic [2]

- Strength: proving properties about actual programs
— Map values in language to mathematical enftities

— Describe operations using logical assertions, for example pre- and post-condifions
and loop invariants

— Uses Hoare triples: {P}C{Q}
x P is a pre-condition
x (Q is a post-condition
* For two states s and s’ we write:

(s,8') FAPYCLQ} iff [P, A ([CT, = &) A @y

We say “the Hoare triple { P}C{Q} is valid for the pair of states (s, s').”

- Example:

{I NE}C{I}
{I'}while E do C;{I A —~E}

I is the loop invariant
Typically the rule used is actually:

P=1 {IANEYC{I} (IA-E)=Q
{P}while E do C;{Q}

e Operational

- Strength: clarity, guides implementation, proving behavioral properties of the
language
- Values in language represent themselves (typically)

— Operations are described by rewrite rules that reduce a term to a new term, given
that a set of premises is satisfied.

General form:

premise; premise,,
Envika~b

Env is an environment
a and b might be terms, or might be sequences describing the state of some
virtual machine (e.g., ferm + state)

- Two sorts of operational semantics

* Small Step: a sub-term of a is replaced with a new sub-term to form b rules chain
horizontally
Example:
The semantics of the if statement is:

Fiftruethen Cyelse Cy-s — Cy - s - if false then Cy else Cy - s — C1 - s

FE-s—FE .¢
Fif E then Cy else C; - s — if E' then Cy else C; - s

and the semantics of statement sequencing is:

FCo-s— Ch-§
I—Skip;C’l-s—>C’1-s FCO;01-8—>06;01'8/

Using these, the semantics of the while statement is [8]:

F while E do C; - s — if E then C'; while £ do C; else skip - s

Reduction terminates with (skip, s).

« Big Step (a.k.a. “natural”): a is reduced to a value in one (big) step rules stack
vertically
Sometimes when people (e.g., Abadi and Cardelli) say “operational seman-
fics”, they mean big step
Example:

FE-s~ false-s
Fwhile Edo C; - s~ s

F E-s~true- s, FC s~ s F while Edo C; - s' ~ s”
Fwhile Edo C; - s ~ s”

The result of reducing a statement is just the state.
Reducing an expression just yields a value, assuming expressions cannot
have side effects.

e Other kinds of formal semantics

- Labelled transition systems (enhancement of small step op sem)

— Chemical semantics

2.2 Operational semantics for the \ calculus

e Small step semantics (review, but in Abadi and Cardelli format)

— Rules

* Top-level, one-step reduction omitting alpha and eta rules
B

F((Az.e) €) — efx — €'}

A&C substitution style, and sometimes the x is omitted
* One-step reduction
Defn. 2.1 A context C[—] is a term with a single hole.

Clle] represents the result of filling the hole with the term e (possibly capturing
free variables of e).

Fe—e C[-]isany context
FCle] — C[€]

* Many-step reduction
—» is the reflexive transitive closure of —

* Example
F((\z.z) 2) — 2 Cl-] = ((Ay.3) =) F((A\y.3)2) —3 Cl-1=-
F((Ay.3) ((Az.2) 2)) — ((\y.3) 2) F((A\y.3)2) — 3

Rules chain horizontally

— Non-deterministic:

((Ay-3) (Ax.(x X)) (Ax.(x x))))

Can be made deterministic by restricting the shape of contexts.
* Normal order: C[—] == — | (C[—] e)
* Applicative order?

Need a nofion of values

Cl-]==—1 (C[-]) | (C[-Te)

Need to restrict the 3 rule to reduce only terms of the form ((Az.e) v).

¢ Big step semantics

- Judgment: e ~» v
The term e reduces to the value v
— Values
x A terms, (Az.e)
x free variables

- Rules
& RATOR VAL
Fefz — €}~ Fe~ Fwe)~wv e is not a value
F((A\z.e)€) ~ v F(ee)~ v Fo~o

Q: Do these rules describe applicative order? normal order? some other order? normal
order

Homework: Give the big step semantics for applicative order reduction. E.C.:
implement interpreter based on big step semantics

- Examples

VALUE
F3~~3

F((AY.3) ((Az.2) 2)) ~ 3

g

Let them work out this one:

VALUE VALUE
F (Ay.3) ~ (Ay.3) F3~3 8
F ((AX.X) (Ay.3)) ~» (Ay.3) F((AY.3) ((\z.2) 2)) ~ 3 RATOR
F(((Ax.x) (Ay.3)) ((A\z.2) 2)) ~ 3
— Q: Is this semantics deterministic?
Yes, because only one rule is applicable to any term.
e Abadi and Cardelli Proof Style [1, pp. 79-80]
f Judgo (RULE 2)
Judgs (RULE 3)
(Judgzl REASON
Judgs (RULE 5)
Judgg
Example:

I— (AY.3) ~ (Ay.3)

VALUE

)\x X) (Ay.3)) ~ (Ay.3) B

I— 3~ 3 VALUE
>\y 3) (A\z.2) 2)) ~ 3 Ié;

F(>\x X) >\y 3)) (\z.2) 2)) ~ 3 RATOR

2.3 Untyped Object Calculus, ¢

e Syntax

variables x € Vars
labels I € Labels
terms a,b,c = x
| [l = ()b €T
| al
| al<=g(x)b

e Big step semantics (omitting small step semantics due to limited fime)
Homework: Implement a stack object using the object calculus

— Object: a set of pairs of labels and methods

RED OBJECT

[l = s(20)b; (€11 ~ [l; = < (@:)b; €]

Example: [pos=¢(x)x.n, n=¢(x)2], where 2 is shorthand for an object that represents
the natural number 2.

— Method Selection: reduces the body of the named method, substituting object
for the self parameter

RED SELECT ' .
Fa -~ [Zz = ((l‘l)bl ZE[] [bj{ﬂ?j — [lZ = g(l‘l)bl IGI]} ~ U] el
Fa.lj ~ v

Example: [pos=¢(x)x.n, n=¢(x)2].pos

[+ [pos = ¢(x)x.n,n = ¢(X)2] ~ [pos = ¢(X)x.n, N = ¢(x)2] RED OBJECT
pos € {pos, n}
F [pos = ¢(X)x.n,n = ¢(x)2] ~ [pos = ¢(X)x.n,n = ¢(x)2] RED OBJECT
n € {pos,n}
F2~s2 RED OBJECT
| F[pos = ¢(X)x.n,n = ¢(x)2].n ~~ 2 RED SELECT
F [pos = ¢(X)x.n,n = ¢(x)2].pos ~ 2 RED SELECT

- Method update: generates a new object, with the given method replacing the
named method

RED UPDATE ‘
Fa~ [l = o(zi)b; 1] Jel

Falj <c(x)b~ [l = g(x)b’miel\j]

Q: What's the result of reducing this term: [pos=¢(x)x.n, n=¢(x)2].n <¢(x)3
A: [pos=¢(x)x.n, n=¢(x)3]

Q: What about this one: [pos=¢(x)x.n, h=¢(X)2].pos <=¢(x)X.n.succ

A: [pos=¢(x)x.n.succ, n=¢(x)2]

Q: What happens if we select pos on the result?

A: 3, assuming 2.succ ~ 3

e Syntactic sugar

- Fields: methods in which the self parameter does not appear free
[pos=¢(x).n, n=2] desugars to [pos=¢(x).n, n=¢(y)2] where y is not free in 2
[pos=¢(x).n, n=2].n := 3 desugars to [pos=¢(x).n, n=3]

- Lambda expressions
Can translate untyped A calculus into the ¢ calculus.

Let () map A calculus to < calculus as follows:

(z) = =
((erea)) = ((er).arg:=(ea)).val
((Az.e)) = [arg=0,val =<(s){e)f{r « s.arg}]

Homework: Translate some lambda calculus expressions and reduce them in
the object calculus

3 Parameterized Aspect Calculus, g, [5, 6]

3.1 Changes vs. the object calculus

Object calculus plus aspects plus constants
e Join point abstraction

— Each reduction step triggers a search for advice
— Search uses a four-part abstraction of the reduction step
« Reduction kind, p, one of {VAL, IVK, UPD}
x Evaluation context, IC, represents the call stack
« Target signature, represents the “shape” of the target of the operation
- either the set of labels in the target object, or
- the name of a constant

* Invocation or update message

10

- either a label, or
- a functional constant

— The search semantics is specified by a point cut description language, or PCDL

* PCDL is a parameter to the calculus, various PCDL may be used
Q: How might this be useful?

A: can easily experiment with different PCDL
A: can restrict the set of join points that might be matched

Q: What problems might this cause?

A: might make the semantics more complex
A: possible that complexity is hidden in the PCDL, making the core calculus
“less core”

* PCDL consists of two parts:
- Point cut description syntax, C
- Advice matching function, match

e Syntax of ¢up

— All object calculus terms

— Constants

d € Consts f € FConsts terms a,b,c

Constants are things like natural numbers

Functional constants are operations like successor

The primary reason for infroducing constants is fo simplify examples, going for-
ward they may be eliminated-discuss this if time allows

— Advice

ped € C programs P = a® A
advice A = pcd><(Y)b

11

A program consists of a base term (think "main”) and a sequence of advice
Advice maps a point cut description to a “naked method”, define naked
method

— Proceeding

terms a,b,c
proceedVAL()
proceed; (a)
proceedy,p(a,<(z)b)
s

Iya{ B, v}()
My { B, S, kf}(a)
Mypp{ B, kf} (a,s(x)b)

proceed closures T

Advice can contain proceed terms
proceed terms are converted to proceed closures during advice lookup
User programs cannot contain proceed closures

e Semantics

- Changes

* Object calculus reduction rules are changed to add advice lookup
* Rules are added for:
- Constants
- Object calculus terms to which advice applies
- Proceeding
— Helper functions

* Advice lookup

advFor pr(jp,e) = e

—

advFor pr(jp, (ped>s(Y)b) + A) =
match(pedrt><(y)b, jp) + advFor pr(ip, Z)

Returns a list of naked methods
Invokes PCDL's match function for each piece of advice

12

x Proceed closure

closeyaL(proceedy,, (), 1B, v}) = Hyar{B, v} ()

closeryi (proceedyy (a),{B, S, k}) =
v { B, S, k} (closervk (a, {B, S, k[}))

closeypp (proceedy,y, (a,s(x)b), { B, k}) =
Mupep{B, k} (closeypp(a, { B, k}),s(z)closeupp (b, { B, k}))

Takes proceed terms in advice and converts them to proceed closures,
squirreling away any information needed for proceeding.
These are the most interesting definitions, the others just recurse to sub-terms.

— Objects and Basic Constants

values v == d | [l; = ¢(x;)b; €]

RED VAL 0 _
Khzo advFor pr({(VAL, K, sig(v),€), A) = o

ICI—MN—‘\»vwv

RED VAL 1 .
Khrzo advFor pr((VAL, K, sig(v),€), A) =s()b+ B
closeyar (b, {B,v]}) =t/ va- K, 5 b~

!
Ki;wjvwv

Q: What, in plain English, is the meaning of these two rules?

Things to note:

* subscripts on the turnstile

wellformedness premise

RED VAL 0 correspondence to RED OBJECT
advice lookup

* %

*

- join point abstraction

13

- Required shape of result in RED VAL 1
* proceed closure, and information stored
* evaluation context in last premise of RED VAL 1

— Method Selection

RED SEL 0 (where 0 £ [I; = ¢(z;)b; ')
Kh,za~o0 I, €l; ¢!
el - R
advFor pp((IVK, K, 1;°7 1), A ib(l; =", 15) - Ky 2 bi{zj < o} ~ v

)=
ICIR/IJa.lj ~

RED SEL 1 (Where 0 £ [miel])
Khpza~o el adoFora(IVK KT), &) = ()b + B
CloseIVK(bv {I(B + g(fl:j)bj),l:‘zej, l]l}) = b/ ia- K '7\/[‘7{ b/{y - O} D

K '7\4,1 al; ~v

Q: What, in plain English, is the meaning of these two rules?
Q: Where does the final value come from?

Things to note:

*

correspondence of RED SEL 0 and RED SELECT
* join point abstraction

* shape of returned advice

* information stored in proceed closure
evaluation context differences

*

— Functional Constant Application

5(f,v") means “apply the functional constant f to the value v'. § is intentionally
underspecified, since we don’t say what the basic and functional constants
are. Suppose FConsts = {succ} and Consts is the natural numbers: é(succ, 3) = 4.

14

RED FCONST 0

advFor pr((IVK, K, sig(v'), f), A
K

RED FCONST 1 -
Khyza~ advForpr((IVK, K, sig(v), f), A) = s(y)b+ B
closeryk (b, { B, sig(v'), f}) =V ia- Kh, 20y =o'}~

Khiza.f~wv

Q: What is the meaning of these two rules?

Things to note:
* Q: Aren’t these rules non-deterministic given the selection rules? Not if FConsts U

Labels = &
x Q: How do these rules differ from the selection rules?

No label presence test
Join point abstraction uses sig function
The O rule uses ¢ function

- Method Update

RED UPD 0 (where 0 £ [miel])
Khiza~o I €€t advFor pr((UPD, K, T; 7 1), 7() W

Khtzali <= s(@)b~ [l = ¢(z;)b; T} 1 = ¢ (a)b]

RED UPD 1 (where 0 £ [I; = ¢(z;)b; ')
Khyza~o advFor pr((UPD, K, 1; <" 1), Z}) = ¢(targ, rval)t/ + B
closeypp (V' { B, [;}) = b" va- K, zb"{rval — bz — targ}},,,, {targ — o} ~ v
Khyzalj < s(@)b~o

Things to note:

15

*

Correspondence of RED UPD 0 and RED UPDATE
Evaluation context in RED UPD 1
Data used for proceed closure

*

Shape of returned advice: two parameters
- targ, corresponds to the target object, o, of the update operation.
- rval, corresponds to the body, b, of the update’s r-value.

« two kinds of substitution

- b{x « ¢} is normal capture-avoiding substitution
Key rules: the rest just recurse over the grammar

@)z —c} =)by — v}z —c})
where y' ¢ FV (s(y)b) U FV(c) U {z}

zfz—c} =
yfz—c} = vy ifo#y

- b"{x — c}, says: in b” replace all free occurances of = with ¢, capturing any
free occurances of z in ¢
Key rules: varref is same as above, the rest just recurse over the grammar

W)z —c}, = s)({z—c}) no renaming
)iz —ch, 2 @) b{y —y'Hz < c},) renaming
ify # z, wherey' ¢ FV (s(y)b) U FV(c) U {z}

Q: Which of these rules does the capturing?
A: the first

* Why two kinds of substitution? solicit ideas

- bz — targ}}: renames the self parameter in the body, b, of the original
r-value

- targ-capturing substitution for rval in the advice body, b”, lets advice author:
capture occurrences of the self-parameter, by placing rval under a ¢(targ)
binder
or
not capture occurrences of the self-parameter, by not placing rval under a
binder or by placing it under a non-targ binder

* Examples:

[n=¢(y)0, pos=¢(p)p.n].pos < ¢(x)x.n.succ

- In the absence of advice, this would reduce to:

[n=¢(y)0, pos=¢(x)x.n.succ]

Q: What happens if we update n to 2 in this object and then select pos?
A: We get back 3.

16

- Advice designed to avoid capture: targ does not appear bound in 4"
¢(targ,rval)proceed,,,(targ, <(z)rval)

fixes the value of the pos method to the result of evaluating the new
method body, x.n.succ, substituting the original target object for x:

Assuming no other advice:
b = Iypp{e, pos|(targ, s(z)rval)

Underbars indicate target of next substitution

ypo{e, posf(targ, c(z)rval){rval — x.n.succ{x — targ} },q

{targ < [n=¢(y)0, pos=c(p)p.n]}
= Hyep{e. posf(targ, c(z)rval){rval < targ.n.succ,,

{targ < [n=c(y)0, pos=¢(p)p.n]}
= ypp{e. pos}(targ, ¢(z)targ.n.succ){targ < [n=¢(y)0, pos=¢(p)p.n]}
= Hypp{e, pos}([n=c(y)0, pos=¢(p)p.n], s(2)[n=c(y)0, pos=¢(p)p.n].n.succ)

The last term will reduce to:

[n=¢(y)0, pos=¢(z)[n=¢(y)0, pos=¢(p)p.n].n.succ]

Q: What happens if we update n to 2 in this object and then select pos?
A: We get back 1!

- Advice designed to capture: because rval appears under a targ binder
¢(targ,rval)proceed,,,(targ,s(targ)rval.succ)

uses the body of the update’s r-value without causing it to be reduced

Assuming no other advice was found in the advice lookup, then after closing
the proceedyy,, sub-term, the substitutions for this advice are:

Iyep {e, posft(targ,s(targ)rval.succ) {rval < x.n.succ{x « targ} },,

{targ < [n=c(y)0, pos=c(p)p.n]}
= Ilypp{e. posf(targ.c(targ)rval.succ){rval < targ.n.succ}y,
{targ « [n=c(y)0, pos=c(p)p.n]}
= IIpp{e. posl(targ,c(targ)targ.n.succ.succ) capture!
{targ < [n=c(y)0, pos=c(p)p.n]}
= ITypp{e, pos}([n=<(y)0, pos=¢(p)p.n], s(targ) targ.n.succ.succ)

17

The last targ is not free and so isn’t replaced.
(Those last two targ’s should really be renamed, but this is alpha equiva-
lent.)

This term will reduce to:
[n=¢(y)0, pos=¢(targ)targ.n.succ.succ]

Q: What happens if we update n to 2 in this object and then select pos?
A: We get back 4!

- Proceeding

* General ideas:

- Two rules for each kind of advice one for proceeding to lower precedence
advice, one for proceeding to original operation

- Rules are very similar to the regular operations, except . ..

- No additional advice lookup subsequent advice and original operation
are taken from the proceed closure

- Proceed closure formed lazily

* Proceeding from Value Advice

RED VPRCD 0
IC }7\4’1 <&

K '_M,z Hyar{e, v} () ~ v

RED VPRCD 1
Khao closeva (b {B.oh) = va Kk, 1V~

Kb 2va{(Ob + B), vf () ~ o'

* Proceeding from Selection Advice

RED SPRCD 0 ~
Khiza~o ib(l,l)-lCl—Mjb{yHoﬂwv

K }7\/17;{ Mvic{s(y)b, 1 l}(a) ~ v

RED SPRCD 1 B
Khiza~o B#e closeryk (b, {B,1,1}) =t/ ia-Kh, 20 {y — o} ~v

Kz v ()b + B), L1 a) ~ v

Q: Where does the target object in the 0 rule come from?

A: the proceed closure’s argument

Q: Where does the method body evaluated in the 0 rule come from?
A: the proceed closure’s thunk not the target object

18

* Proceeding from Application Advice

RED FPRCD 0
ICIM’ZCLWU' ib(S,f)-ICl&’zé(f,v’) ~ v

Khwj{ HIVK{I'a S7 fl}(a) ~ U

RED FPRCD 1
Khyza~v dosen(bB.S, f) =t ia Kb, 5t'{y — v}~

Kby 2 v (s(y)b + B), S, fl(a) ~ v

* Proceeding from Update Advice

RED UPRCD 0 . o
ICI;VI,]a ~ [l, = §($l)bz ZEI] lj € l; iel

K5z uen{e, i} (a,s(2)b) ~ [l; = ¢ ()b €1V lj = ¢(z)b]

RED UPRCD 1
Khrza~o closeupp (b, { B, 1;}) = b"
ua - Ky, 0" {rval — bz — targ} } ., L targ — o} ~ v

Ktz Hyuep{(s(targ, rval)b’ + B),1;}(a,s(z)b) ~ v

19

4 Sample Point Cut Description Languages
4.1 Natural Selection, M,

Let M = (C,, matchs), where C; ::= [[].l and:

matchs ({115 s (F)b, (p, K, 5, k)) = {“@w (o =IVK) A (S =D A (k= 1)
° otherwise
Example:

o Without advice:
[pos = ¢(p)p.n, n = ¢(y)2].pos ~~ 2

e With before advice [pos, n].post> ¢(x)proceedy, ((X.n <= <(y)0)):

[pos = ¢(p)p.n,n = ¢(y)2].pos ~~ 0

e With after advice [pos, n].post> ¢(X)proceed; (X).succ:

[pos = ¢(p)p.n,n = ¢(y)2].pos ~ 3

4.2 General Matching, M
o Allows queries over all portions of the join point abstraction.
- Reduction Kind: IVK
Cqsu=VAL | Ivk | UPD | ...
- Message: IVK Ak = pos
Cou=... | k=k | ...
— Target signature: IVK A k= pos A S = {pos,n}

Cou=...|S=k| ...

— Evaluation Context: K € .*.ib({pos,n},pos)

Cau=... | Ker| ...
contextexpr. r u= € | ib(M,m) | va | ia | ua |
|+ | e | or*
signatures M = d |1 | .
messages m = f |1 |.

20

- Boolean Combinations: IVK A k= pos A S = {pos,n} A —(K € .*.ib({pos,n},pos))
Cou=... | —ped | ped Aped | ped V ped |

Q: To what Aspectd point cut description does this example correspond?
A: call(Point.pos()) && !cflowbelow(call(Point.pos()))

e M is sufficient to model Aspect]

- Join points

Aspect] Point Cut Modeled In ¢, (M)
call(void Point.pos()) IVK A'S = {n,pos} A k = pos
call(Point.new()) VALA S = {n,pos}

execution(void Point.pos()) VAL AK € ib({n,pos}, pos).*

get(int Point.n) IVK A'S ={n,pos} Ak=n
set(int Point.n) UPDA S ={n,pos} Ak=n
adviceexecution() K € *(va+ia+ ua).*
within(Point) K € ib({n,pos},.).*
withincode(Point.pos) K € ib({n,pos}, pos).*
cflow(Point.pos) K € .*ib({n,pos}, pos).*
cflowbelow(Point.pos) K € .*.ib({n,pos}, pos).*
this(Point) K € ib({n,pos},.).*
target(Point) S = {n,pos}

Q: Does cflowbelow consider advice execution to be “below” a cflow?
Q: Does our model?

A: Yes
Q: What if it should not be?
A: K € .*ib(.,.)ib({n,pos}, pos).*

21

Q: What about the variable binding form of this?
A: Would need to change core calculus to track this in evaluation context.
Q: What else is missing?

A: Non-sensicle: Constructor advice, initialization advice, handler advice, args
point cut
A: Omitted: if (but could be handled in PCDL without changing core calculus)

Homework: Are there infteresting things that can be said in M that would give
insight intfo join points “missing” from AspectJ?

— Open Classes (a.k.a. intertype declarations)
int Point.color = 0;
A model of this in M uses two pieces of advice:
(VALA'S = {n,pos}) > <()
[orig=¢(s)proceedy, (),
n=¢(s)s.orig.n,
pos=¢(s)s.orig.pos, color=¢(s)0]

(Upb A S = {orig,n,pos,color} A (k=nV k = pos))>
s(t,r) [orig=¢(s)proceed,(t.orig, s(t)r),
n=¢(s)s.orig.n,
pos=¢(s)s.orig.pos, color=¢(s)t.color]

Q: Why is the second piece of advice needed?

A: Consider an invocation after an update if we just have the first piece of ad-
vice.

4.3 Other Models
e Modeling Hyper]

— Can use Mg
- Like Open Classes, but two key differences:

* Special basic constants represent module names

* A model for abstact methods allows composed modules to call each other while
remaining oblivious to the other modules implementation

e Modeling Adaptive Methods

— Basic Idea
Adaptive methods allow a declarafive specification of a fraversal strategy over an
object graph.
Specify:
x links o be fraversed in object graph

22

x actions to performed at each node in the graph
Example: for each Employee e of each CostCenter c: total += e.salary()

— Is M sufficient?
Need mechanism to find fields of an object that are not known when the advice
is written. Reflection

- Keys to model in ¢,

* Use distinguished names to indicate fields of objects

x Extend Mg with reflection
V[€ fieldsOf(S)
Matching advice returns n. copies of the advice body, for a target object
with n fields.

* Use the two parameters of update advice in a unique way
- Target object is used for dispatching to the appropriate code for the node
- R-value is used to pass a visitor (accumulator) object

4.4 Insights

e Spectators and Assistants
Q: Can we study them using ¢,),?
Q: How might we add imperative features?

Q: Can we eliminate any features from ¢,,? Should we?

¢ Interaction of PCDL and base language
Q: How does the design of the PCDL effect reasoning in the base language?

e Comparisons
Q: What do we learn about similarities between the modeled langauges?

Q: Differences?

4.5 Decisions in the design of ¢,
e Big step or little step?
e Functional or imperative?
e Include constants?

e Advice declarations or terms? Advice scoping

23

References

[1]

(2]

(3]

(4]

5]

8]

9]

[10]

M. Abadi and L. Cardelli. A Theory of Objects. Monographs in Computer Science. Springer-
Verlag, New York, NY, 1996.

G. Baumgartner. Axiomatic semantics, Jul 2000. http://www.cis.ohio-state.edu/"gb/cis755/
slides/week4-wednesday.pdf.

C. Clifton and G. T. Leavens. Spectators and assistants: Enabling modular aspect-oriented
reasoning. Technical Report 02-10, Iowa State University, Department of Computer Science,
Oct. 2002.

C. Clifton and G. T. Leavens. Obliviousness, modular reasoning, and the behavioral sub-
typing analogy. Technical Report 03-01a, Iowa State University, Department of Computer
Science, Mar. 2003.

C. Clifton, G. T. Leavens, and M. Wand. Formal definition of the parameterized aspect calcu-
lus. Technical Report 03-12b, Iowa State University, Department of Computer Science, Nov.
2003.

C. Clifton, G. T. Leavens, and M. Wand. Parameterized aspect calculus: A core calculus for
the direct study of aspect-oriented languages. Technical Report 03-13, Iowa State University,
Department of Computer Science, Oct. 2003. Submitted for publication.

R. E. Filman and D. P. Friedman. Aspect-oriented programming is quantification and obliv-
iousness. In M. Aksit, S. Clarke, T. Elrad, and R. E. Filman, editors, Aspect-Oriented Software
Development. Addison-Wesley, Reading, MA, to appear.

R. Rugina. Small-step operational semantics, Sep 2002. http://www.cs.cornell.edu/courses/
€s611/2002fa/lectures/lec05.ps.

D. A. Schmidt. The Structure of Typed Programming Languages. Foundations of Computing
Series. MIT Press, Cambridge, Mass., 1994.

F. W. Vaandrager. Safety and liveness, Nov 2003. http://www.cs.kun.nl/"fvaan/PV/SLIDES/
liveness.pdf.

24

