Course Notes: Operational Semantics and
the Parameterized Aspect Calculus

Curtis Clifton and Gary T. Leavens
Dept. of Computer Science
Iowa State University
226 Atanasoff Hall
Ames, IA 50011-1040 USA
{cclifton,leavens}@cs.iastate.edu

December 8, 2003

1 Motivation

1.1 Review [4, 7]

e Quantification

Defn. 1.1 (Quantified Statements) have an effect on many places in the program

e Obliviousness

Defn. 1.2 (Obliviousness) the execution of cross-cutting code A without any reference to A from
the client code that A cross-cuts

- interaction

- without coupling

e Modular Reasoning

Understanding a module M based on:

e Behavioral Subtyping Analogy

- Behavioral subtyping in OOP:
an overriding method must

- Behavioral subtyping is a discipline

* It places constraints on
* It provides the benefit of modular reasoning

— What about AOP?
Q: Can a language have quantification and obliviousness and allow modular reasoning?

1.2 Spectators and Assistants [3]

e Assistants

- can change the behavior of
- must be explicitly accepted by either

* the module containing the advised join points,

* or a client of that module

e Spectators

Defn. 1.3 A spectator is an aspect that

Q: What might that mean? What is “spectator-ness”?

- Safety and Liveness [10]
Defn. 1.4 A safety property says that

Defn. 1.5 A liveness property says that

* Before-advice that immediately went into an infinite loop would

* Before-advice that deleted all the files on your hard drive and then proceeded to
the original method would

— Spectators and Safety
Some possible interpretations:

* A spectator cannot

* A spectator cannot

Q: Is it that simple? Are there any problems with these notions?

— Spectators and Liveness
Goal: Spectators must always allow the advised method

Q: Is this decidable?

What if we:

* Restrict control flow constructs in spectator advice

* Run spectators

* Approximate by

¢ Do you buy it?
— Which of these notions of “spectator-ness” could be statically enforced?
- Do spectators and assistants provide modular reasoning? How do we know?
- Can we implement reasonable aspect-oriented programs under these restrictions?
1.3 Why formal semantics?

Defn. 1.6 A formal semantics is a

e Makes proofs about language properties tractable

e Lingua franca of programming language researchers

1.4 Why core calculi?

Defn. 1.7 A core calculus is a programming language

Q: What is “essential”?
A core calculus:

e Eliminates
e Makes construction of
e Can be used to define

e Examples

— A calculus and
- Object calculus and

— Parameterized aspect calculus and

2 Introduction to Formal Semantics

2.1 Kinds of Formal Semantics

Example: the semantics of a while loop
e Denotational [9]

— Strength:
— Map values in language to
— Model operations in language as

- Example:

[while E do C], = w(s), where w(s) = if ([E],, w([C],), s)

[, is overloaded:

* [E],: boolean
* [C],: state
* Q: what is the type of the if function?

e Axiomatic [2]

- Strength:
— Map values in language to

— Describe operations using

— Uses Hoare triples: {P}C{Q}

* Pisa
* (Qisa
* For two states s and s’ we write:

(s,8) F{P}C{Q} iff

- Example:

Cc{I}
{I'}while E do C,

I is the

e Operational

- Strength:

- Values in language

— Operations are described by

General form:

premiseq premise,,

Envbka~b

- Two sorts of operational semantics

* Small Step: a sub-term of a is replaced with a new sub-term to form b

Example:
The semantics of the if statement is:

Fiftruethen Cyelse Cy-s — Cy - s + if false then Cj else Cy - s —

FE-s—FE .¢
Fif £ then Cyelse Cy - s —

and the semantics of statement sequencing is:

I—Skip;C’l-s—>C’1-s FCO;01-8—>

Using these, the semantics of the while statement is [8]:

F while £ do C; - s — if E then else skip - s

* Big Step (a.k.a. “natural”): a is reduced to a value in one (big) step

Example:

FE-s~ false-s
Fwhile Edo C; - s~ s

F E-s~true- s, FC s~ s
Fwhile Edo C; - s ~ s”

e Other kinds of formal semantics

- Labelled transition systems

— Chemical semantics

2.2 Operational semantics for the \ calculus

e Small step semantics

— Rules

* Top-level, one-step reduction

B

F((Az.e) €) — efx — €'}

* One-step reduction

Defn. 2.1 A context C[—] is a term with
Clle] represents the result of

Fe—e C[-]isany context
FCle] — C[€]

* Many-step reduction
—» is the
* Example

— Non-deterministic:

Can be made deterministic by restricting the shape of contexts.

* Normal order:
* Applicative order?

¢ Big step semantics

- Judgment: e ~» v

The term e
— Values
k
*
— Rules
B RATOR VAL
F((A\z.e)€) ~ v F(ee)~ v o~

Q: Do these rules describe applicative order? normal order? some other order?

- Examples
VALUE

F3~3
F((Ay.3) (Az.2) 2)) ~ 3

g

— Q: Is this semantics deterministic?

e Abadi and Cardelli Proof Style [1, pp. 79-80]

(Judgg (RULE 2)
Judgs (RULE 3)
(Judgzl REASON
Judgs (RULE 5)
Judgg
Example:

I— (AY.3) ~ (Ay.3)

VALUE
)\x X) (AY.3)) ~ (A\y.3) Ié;
I— 3~ 3 VALUE
>\y 3) (A\z.2) 2)) ~ 3 I6;
F()\x X) >\y 3)) (\z.2) 2)) ~ 3 RATOR
2.3 Untyped Object Calculus, ¢
e Syntax
variables x € Vars
labels I € Labels
terms a,b,c = =x
| [= ()b "]
| al
| al<=g(x)b
¢ Big step semantics
- Object
RED OBJECT
[= o (@a)bi “<] ~ [l = o (wa)bi <]
Example: [pos=¢(x)x.n, n=¢(x)2]
— Method Selection
RED SELECT ' .
Fa -~ [Zz = §(l‘l)bl ZE[] [bj{l’j — [lZ = g(l‘,)bz IGI]} ~ U j el
Fa.lj ~ v
Example: [pos=¢(x)x.n, n=¢(x)2].pos
[+ [pos = ¢(x)x.n,n = ¢(X)2] ~ [pos = ¢(X)x.n, N = ¢(x)2] RED OBJECT
pos € {pos, n}
F [pos = ¢(X)X.n,n = ¢(x)2] ~» [pos = ¢(x)x.n,n = ¢(X)2] RED OBJECT
n € {pos,n}
22 RED OBJECT
| F [pos = ¢(X)x.n,n = ¢(x)2].n ~» 2 RED SELECT
F [pos = ¢(X)x.n,n = ¢(x)2].pos ~ 2 RED SELECT

- Method update

RED UPDATE ‘
Fa~ [l = o(zi)b; 1] Jel

Falj <s(x)b~[l; = g(l‘)b’miel\j]

Q: What's the result of reducing this term: [pos=¢(x)x.n, n=¢(x)2].n <¢(x)3
Q: What about this one: [pos=¢(x)x.n, h=¢(X)2].pos <=¢(x)X.n.succ

Q: What happens if we select pos on the result?

e Syntactic sugar

— Fields: methods in which
[pos=¢(x).n, n=2] desugars to
[pos=¢(x).n, n=2].n := 3 desugars to
- Lambda expressions
Can translate untyped A calculus into the ¢ calculus.
Let () map A calculus to < calculus as follows:

(z) = =
((e1ea)) = ({er).arg:i=(e2)).val
((Az.e)) =

3 Parameterized Aspect Calculus, g, [5, 6]

3.1 Changes vs. the object calculus

Object calculus plus aspects
e Join point abstraction

— Each reduction step triggers
— Search uses a four-part abstraction of the reduction step
x Reduction kind, p

x Evaluation context, K
* Target signature

- either the set of labels in the target object, or
- the name of a constant

* Invocation or update message

10

- either a label, or

- a functional constant

— The search semantics is specified by a

* PCDL is a parameter to the calculus, various PCDL may be used
Q: How might this be useful?

Q: What problems might this cause?

* PCDL consists of two parts:

e Syntax of ¢4

— All object calculus terms

— Constants

d € Consts f € FConsts terms a,b,c

— Advice

ped € C programs P = a® A
advice A = pcd><(Y)b

11

— Proceeding

terms a,b,c .
proceedVAL()
proceed; (a)
proceedy,p(a,<(z)b)
s

Iya{ B, v}()

vk {B, S, k}(a)
Mupp{B, k}(a,s(x)b)

proceed closures T

e Semantics

- Changes

* Object calculus reduction rules are changed to
* Rules are added for:
- Constants
- Object calculus terms to which advice applies
- Proceeding
— Helper functions

* Advice lookup

advFor pr(jp,e) = e

—

advForpg(jp, (pedr><(y)b) + A) =
match(pedrt><(y)b, jp) + advFor pr(ip, z)

12

x Proceed closure

closeyaL(proceedy,, (), 1B, v}) = Hyar{B, v} ()

closeryi (proceedyy (a),{B, S, k}) =
v { B, S, k} (closervk (a, {B, S, k[}))

closeypp(proceedypy(a,s(2)b), {B, k) =
Mupep{B, k} (closeypp(a, { B, k}),s(z)closeupp (b, { B, k}))

— Objects and Basic Constants

values v == d | [l; = ¢(x;)b; €]

RED VAL 0 _
Khzo advFor pr({(VAL, K, sig(v),€), A) = o

ICI—MN—‘\»vwv

RED VAL 1 .
Khrzo advFor pp((VAL, K, sig(v),€), A) =<()b+ B
closeyar (b, {B,v]}) =t/ va- K, 5 b~

!
IC};VI;\»UWU

Q: What, in plain English, is the meaning of these two rules?

Things to note:

* subscripts on the turnstile

wellformedness premise

RED VAL 0 correspondence to RED OBJECT
advice lookup

* %

*

- join point abstraction

13

- Required shape of result in RED VAL 1
* proceed closure, and information stored

* evaluation context in last premise of RED VAL 1
— Method Selection
RED SEL 0 (where 0 £ [I; = ¢(z;)b; ')
Kh,za~o0 ljefiiel
— . — .
advFor pp((IVK, K, 1; <1 1), A) = o ib(l; <1, 1;) - Khzbi{zj < o} ~ v

K '7\/1,2 al; ~v

RED SEL 1 (where 0 £ [I; = ¢(z;)b; 1))
Khsza~o el advFor pr((IVK, K, 1; <1 1), ./—4)) =s(y)b+ B
closervk (b, {(B + s(x;)b;), L <1 1)) = ¥/ ia-Kh, 20y — o} ~ v

K '7\4] al; ~v

Q: What, in plain English, is the meaning of these two rules?
Q: Where does the final value come from?

Things to note:
* correspondence of RED SEL 0 and RED SELECT
* join point abstraction
* shape of returned advice
* information stored in proceed closure
* evaluation context

— Functional Constant Application

14

RED FCONST 0

advFor pr((IVK, K, sig(v'), f), A
K

RED FCONST 1 -
Khyza~ advForpr((IVK, K, sig(v), f), A) = s(y)b+ B
closeryk (b, { B, sig(v'), f}) =V ia- Kh, 20y =o'}~
Khiza.f~wv

Q: What is the meaning of these two rules?

Things to note:

* Q: Aren’t these rules non-deterministic given the selection rules?

x Q: How do these rules differ from the selection rules?

- Method Update

RED UPD 0 (where 0 £ [miel])
i N _
Khiza~o €l i€l advFor pr((UPD, K, T; €1 1), A) =
,val,,_c(CL.lj <= §($)b ~ [lz‘T(xi)biiEI\{j},lj _ C(.%')b]

RED UPD 1 (where 0 £ [I; = ¢(z;)b; ')
Khyza~o advFor pr((UPD, K, 1; <" 1), Z}) = ¢(targ, rval)t/ + B
closeypp (V' { B, [;}) = b" va- K, zb"{rval — bz — targ}},,,, {targ — o} ~ v
Khyzalj < s(@)b~o

Things to note:

15

*

Correspondence of RED UPD 0 and RED UPDATE
Evaluation context in RED UPD 1
Data used for proceed closure

*

Shape of returned advice: two parameters
- targ, corresponds to
- rval, corresponds to

* two kinds of substitution

- b{z <+ c} is normal capture-avoiding substitution
Key rules:

@)z —c} =)by — v}z —c})
where y' ¢ FV (s(y)b) U FV(c) U {z}

rf{r—c} £ ¢
ylo—c} 2y ifz#y
- b"{z — c}, says: in b” replace all occurances of = with ¢, capturing any
occurances of z in ¢

Key rules:

() {z =}, = <(2){z—c}.)
(cb)fz—c}, £ @)y —y Mz —c}.)
ify # z, wherey' ¢ FV (s(y)b) U FV(c) U {z}

Q: Which of these rules does the capturing?

* Why two kinds of substitution?
- bfx — targ}:

- targ-capturing substitution for rval in the advice body, b”, lets advice author:
capture occurrences of the self-parameter

or
not capture occurrences of the self-parameter

* Examples:

[n=¢(y)0, pos=¢(p)p.n].pos < ¢(x)x.n.succ

- In the absence of advice, this would reduce to:
Q: What happens if we update n to 2 in this object and then select pos?

16

- Advice designed to avoid capture:

¢(targ,rval)proceed,,,(targ, <(z)rval)

Assuming no other advice:

b = Iypp{e, pos|(targ, s(z)rval)

ypo{e, posf(targ, c(z)rval){rval — x.n.succ{x — targ} },q
ftarg < [n=c(y)0, pos=c(p)p.n]}

= [ypp{e. posf(targ, ¢(z)rval){rval < Harg
{targ < [n=c(y)0, pos=¢(p)p.n]}
= Hypn e, posf(){targ < [n=¢(y)0, pos=c(p)p.n]}

= Hypp{e, pos}([n=c(y)0, pos=¢(p)p.n], s(2)[n=c(y)0, pos=¢(p)p.n].n.succ)
The last term will reduce to:
[n=¢(y)0, pos=¢(z)[n=¢(y)0, pos=¢(p)p.n].n.succ]

Q: What happens if we update n to 2 in this object and then select pos?

- Advice designed to capture:

¢(targ,rval)proceed,,,(targ,s(targ)rval.succ)

Assuming no other advice was found in the advice lookup, then after closing
the proceedyy,, sub-term, the substitutions for this advice are:

Iyep {e, posft(targ,s(targ)rval.succ) {rval < x.n.succ{x « targ} },,

{targ — [n=c(y)0, pos=c(p)p.n}
= Ilypp{e. posf(targ.c(targ)rval.succ){rval < targ.n.succ}y,

{targ < [n=¢(y)0, pos=¢(p)p.n]}

= IIypp{e. pos](targ,s(targ) .succ)
{targ < [n=c(y)0, pos=c(p)p.n]}
= ITypp{e, pos}([n=<(y)0, pos=¢(p)p.n], s(targ) .n.succ.succ)

17

This term will reduce to:
[n=¢(y)0, pos=¢(targ)targ.n.succ.succ]

Q: What happens if we update n to 2 in this object and then select pos?

- Proceeding

* General ideas:

- Two rules for each kind of advice

- Rules are very similar to the regular operations, except . ..
- No additional advice lookup

- Proceed closure formed

* Proceeding from Value Advice

RED VPRCD 0
IC }7\4’1 <&

’C'_M,z Hyar{e, v} () ~ v

RED VPRCD 1
Khao closeva (b {B.oh) = va Kk, 1V~

Kb 2va{(Ob + B), vf () ~ o'

* Proceeding from Selection Advice

RED SPRCD 0 ~
Khiza~o ib(l,l)-lCl;vab{yHo}}wv

K }7\/1,2 Mvic{s(y)b, 1 l}(a) ~ v

RED SPRCD 1 B
Khiza~o B#e closeryk (b, {B,1,1}) =t/ ia-Kh, 20 {y — o} ~v

Kz v ()b + B), L1 a) ~ v

Q: Where does the target object in the 0 rule come from?

Q: Where does the method body evaluated in the 0 rule come from?

18

* Proceeding from Application Advice

RED FPRCD 0
ICIM’ZCLWU' ib(S,f)-ICl&’zé(f,v’) ~ v

Khwj{ HIVK{I'a S7 fl}(a) ~ U

RED FPRCD 1
Khyza~v dosen(bB.S, f) =t ia Kb, 5t'{y — v}~

Kby 2 v (s(y)b + B), S, fl(a) ~ v

* Proceeding from Update Advice

RED UPRCD 0 . o
ICI;VI,]a ~ [l, = §($l)bz ZEI] lj € l; iel

K5z uen{e, i} (a,s(2)b) ~ [l; = ¢ ()b €1V lj = ¢(z)b]

RED UPRCD 1
Khrza~o closeupp (b, { B, 1;}) = b"
ua - Ky, 0" {rval — bz — targ} } ., L targ — o} ~ v

Ktz Hyuep{(s(targ, rval)b’ + B),1;}(a,s(z)b) ~ v

19

4 Sample Point Cut Description Languages

4.1 Natural Selection, M,
Let M = (C,, matchs), where C; ::= [[].l and:

matchs ({115 s (F)b, (p, K, 5, k)) = {“@w (o =IVK) A (S =D A (k= 1)
° otherwise
Example:

o Without advice:
[pos = ¢(p)p.n, n = ¢(y)2].pos ~~ 2

e With before advice [pos, n].post> ¢(x)proceedy, ((X.n <= <(y)0)):

[pos = ¢(p)p.n, n = ¢(y)2].pos ~~

e With after advice [pos, n].post> ¢(X)proceed; (X).succ:

[pos = <(p)p.n, n = ¢(y)2].pos ~~

4.2 General Matching, M

o Allows queries over all portions of the join point abstraction.

- Reduction Kind
Cqsu=VAL | Ivk | UPD | ...
— Message
Cou=... | k=k | ...
- Target signature
Cou=...| S=k | ...
- Evaluation Context
Cau=... | Ker| ...
contextexpr. r u= € | ib(M,m) | va | ia | ua |
|+ | e | or*
signatures M = d |1 | .
messages m = f |1 |.

20

— Boolean Combinations

Cou=... | —ped | ped Aped | ped V ped |

e M is sufficient to model Aspect]

- Join points

Aspect] Point Cut Modeled In ¢, (M)

call(void Point.pos())
call(Point.new())
execution(void Point.pos())
get(int Point.n)

set(int Point.n)
adviceexecution()
within(Point)
withincode(Point.pos)
cflow(Point.pos)
cflowbelow(Point.pos)
this(Point)

target(Point)

Q: Does cflowbelow consider advice execution to be “below” a cflow?
Q: Does our model?

21

Q: What about the variable binding form of this?

Q: What else is missing?

— Open Classes (a.k.a. intertype declarations)
int Point.color = 0;
A model of this in M uses two pieces of advice:

(VAL A S = {n,pos}) > ()
[orig=c(s)proceedy, (),
n=¢(s)s.orig.n,
pos=¢(s)s.orig.pos, color=¢(s)0]

(Upb A S = {orig,n,pos,color} A (k=nV k = pos))>
s(t,r) [orig=¢(s)proceed,(t.orig, s(t)r),
n=¢(s)s.orig.n,
pos=¢(s)s.orig.pos, color=¢(s)t.color]

Q: Why is the second piece of advice needed?

4.3 Other Models
e Modeling Hyper]
— Can use Mg

- Like Open Classes, but two key differences:

* Special basic constants represent module names

* A model for abstact methods allows composed modules to call each other while
remaining oblivious to the other modules implementation

e Modeling Adaptive Methods

- Basic Idea
Adaptive methods allow a specification of a over an

Specify:

*

22

*

Example:

- Is M sufficient?

- Keys to model in ¢,

* Use distinguished names to indicate fields of objects
x Extend Mg with

* Use the two parameters of update advice in a unique way
- Target object is used for dispatching to the appropriate code for the node
- R-value is used to pass a visitor (accumulator) object

4.4 Insights

e Spectators and Assistants
Q: Can we study them using ¢,),?
Q: How might we add imperative features?

Q: Can we eliminate any features from ¢,,? Should we?

¢ Interaction of PCDL and base language
Q: How does the design of the PCDL effect reasoning in the base language?

e Comparisons
Q: What do we learn about similarities between the modeled langauges?

Q: Differences?

4.5 Decisions in the design of ¢,
e Big step or little step?
e Functional or imperative?
e Include constants?

e Advice declarations or terms?

23

References

[1]

(2]

(3]

(4]

5]

8]

9]

[10]

M. Abadi and L. Cardelli. A Theory of Objects. Monographs in Computer Science. Springer-
Verlag, New York, NY, 1996.

G. Baumgartner. Axiomatic semantics, Jul 2000. http://www.cis.ohio-state.edu/"gb/cis755/
slides/week4-wednesday.pdf.

C. Clifton and G. T. Leavens. Spectators and assistants: Enabling modular aspect-oriented
reasoning. Technical Report 02-10, Iowa State University, Department of Computer Science,
Oct. 2002.

C. Clifton and G. T. Leavens. Obliviousness, modular reasoning, and the behavioral sub-
typing analogy. Technical Report 03-01a, Iowa State University, Department of Computer
Science, Mar. 2003.

C. Clifton, G. T. Leavens, and M. Wand. Formal definition of the parameterized aspect calcu-
lus. Technical Report 03-12b, Iowa State University, Department of Computer Science, Nov.
2003.

C. Clifton, G. T. Leavens, and M. Wand. Parameterized aspect calculus: A core calculus for
the direct study of aspect-oriented languages. Technical Report 03-13, Iowa State University,
Department of Computer Science, Oct. 2003. Submitted for publication.

R. E. Filman and D. P. Friedman. Aspect-oriented programming is quantification and obliv-
iousness. In M. Aksit, S. Clarke, T. Elrad, and R. E. Filman, editors, Aspect-Oriented Software
Development. Addison-Wesley, Reading, MA, to appear.

R. Rugina. Small-step operational semantics, Sep 2002. http://www.cs.cornell.edu/courses/
€s611/2002fa/lectures/lec05.ps.

D. A. Schmidt. The Structure of Typed Programming Languages. Foundations of Computing
Series. MIT Press, Cambridge, Mass., 1994.

F. W. Vaandrager. Safety and liveness, Nov 2003. http://www.cs.kun.nl/"fvaan/PV/SLIDES/
liveness.pdf.

24

