Introduction to Program Refinement

Advanced course, 5cu

This course was lectured in the autumns of 1997 and 2000, the book by Back and von Wright (Refinement Calculus: A Systematic Introduction, Springer 1998) as course material with (a draft manuscript was used in 1997). Essentially the same course can be taken as a self-study course based on the Parts I--III (Chapters 1--25) as follows.

Chapter 1 gives a general overview of the idea of program refinement in a framework with demonic and angelic nondeterminism

Chapter 2 reviews the lattice-theoretic background. Students are assumed to be familiar with basic algebra so it should not be necessary to go through all details.

Chapters 3 and 4 describe the logical foundations of the theory: higher-order logic and simply-typed lambda calculus.

Chapters 5-9 describe how program state is handled and how one handles about states, sets of states (predicates), and relations. Chapter 6 gives the logical rules that are used in this reasoning. Section 5.6 (blocks and local variables) has been updated after the book was printed.

Chapter 10 describes how data types can be defined and handled within the logic. The details of this chapter are not necessary for understanding the rest of the book and this chapter was skipped in the lectured course.

Chapters 11-13 describe the basic program model: predicate transformers and their properties. The notation used for program statements is also introduced together with basic algebraic laws (transformation rules) for statements.

Chapter 14 describes how statement execution can be modelled as a game and Chapter 15 shows how the predicate transformer and the game interpretation can be unified. These chapters are independent of the rest of the course.

Chapter 16 partitions the general notion of statement into more restricted subclasses, one of which corresponds to the traditional notion of program statement. This chapter was treated very lightly in the lectured course.

Chapter 17 is the heart of the course: methods and rules for proving correctness and refinement of program statements.

Chapter 18 describes well-founded sets and ordinals which are important for the theory of recursion, but it can be omitted (though that means that some proofs in Chapters 19 and 20 must also be skipped).

Chapters 19-21 describe in detail the machinery needed for handling recursion and loops. In Chapter 19 the details can be dealt with lightly, and in Chapter 20 the rule for recursive procedures is the essential result. Chapter 21 important; it provides the theory for ordinary loop constructs.

Chapter 22 on continuity and executability is independent of the rest and was not covered in the lectured course.

Chapters 23-25 (case studies) were not covered in the lectured course (for lack of time), but they provide a useful illustration of refinement as a method and an indication of the power and scalability of the theory. The case studies in Chapters 23 and 24 are direct applications of the refinement theory of Chapter 17 and the methods for handling recursion and loops in Chapters 20-21. Chapter 25 is more of an investigation, exploring how the angel/demon duality can be applied to two-person games.

In summary, the chapters can be divided into three groups:

· the focus of the course: 5, 6, 11, 12, 13, 17, 20, 21

· those covered but not in full detail: 1, 3, 4, 7, 8, 9.1-4, 14, 19

· those covered lightly: 2, 9.5-6, 16, 23

· those omitted (but still useful): 10, 15, 18, 22, 24, 25

