
ContextFJ:
A Minimal Core Calculus for Context-oriented Programming

Robert Hirschfeld
Hasso-Plattner-Institut Potsdam
hirschfeld@hpi.uni-potsdam.de

Atsushi Igarashi
Kyoto University

igarashi@kuis.kyoto-u.ac.jp

Hidehiko Masuhara
The University of Tokyo
masuhara@acm.org

Abstract
We develop a minimal core calculus called ContextFJ to model lan-
guage mechanisms for context-oriented programming (COP). Un-
like other formal models of COP, ContextFJ has a direct operational
semantics that can serve as a precise description of the core of COP
languages. We also discuss a simple type system that helps to pre-
vent undefined methods from being accessed via proceed.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.3 [Programming
Languages]: Language Constructs and Features

General Terms Language, Theory

Keywords Context-oriented programming, operational semantics

1. Introduction
Context-oriented programming (COP) is an approach to improv-
ing modularity of behavioral variations that depend on the dynamic
context of the execution environment [7]. In traditional program-
ming paradigms, such behavioral variations tend to be scattered
over several modules, and system architectures that support their
dynamic composition are often complicated.

Many COP extensions including those designed on top of
Java [2], Smalltalk [6], Common Lisp [4] and JavaScript [10], are
based on object-oriented programming languages and introduce
layers of partial methods for defining and organizing behavioral
variations, and layer activation mechanisms for layer selection and
composition. A partial method in a layer is a method that can run
before, after, or around the same (partial) method defined in a dif-
ferent layer or a class. A layer groups related partial methods and
can be (de)activated at run-time. It so contributes to the specific be-
havior of a set of objects in response to messages sent and received.

In this paper, we report on our ongoing work on a formal model
of core language features of COP. We present a small calculus
called ContextFJ that is an extension of Featherweight Java (FJ) [8].
As the first step, we severely limit the supported language features
in ContextFJ so as to make the calculus simple yet expressive
enough to add more interesting features in future. In addition to
the usual features of FJ, it supports around-type (i.e., overriding)
partial methods, dynamic activation and deactivation of layers, and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
FOAL’11, March 21, 2011, Pernambuco, Brazil.
Copyright c© 2011 ACM 978-1-4503-0644-7/11/03. . . $10.00

proceed and super calls. Aside from the Java features FJ already
omits, ContextFJ does not (yet) support first-class layers that can be
passed around via arguments or variables, stateful layers that allow
to share state between partial methods or associated objects, and
before and after methods.

We give a small-step reduction semantics to model the behavior
of COP programs directly without using translation to a language
without COP features. As far as we know, this is a first direct
semantics of COP features. Such direct semantics can serve as a
precise specification of the core of COP languages.

We also discuss a type system for ContextFJ. As usual, the
task of a type system is to statically guarantee the absence of
run-time field-not-found and method-not-found errors. However,
since in COP the presence of a method definition in a given class
may depend on whether a particular layer is activated or not, this
task is much harder. As a starting point, we develop a simple
but restrictive type system, which allows partial methods only for
existing methods in classes. We state that this simple type system is
sound; a full version of the paper, available at http://www.sato.
kuis.kyoto-u.ac.jp/~igarashi/papers/, includes proofs.

The rest of the paper is organized as follows. We first start with
reviewing the language mechanisms for COP in Section 2. Sec-
tion 3 defines the syntax and operational semantics of ContextFJ
and Section 4 defines a simple type system. We discuss related and
future work in Section 5.

2. Language Constructs for COP
2.1 Partial Method Definitions and Layers
We briefly review basic constructs along with their usage. In our
example, behavioral variations are expressed as partial method
definitions and related method definitions are grouped in layers.

class Person {
String name, residence, employer;
Person(String _name, String _residence,

String _employer) {
name = _name; residence = _residence;
employer = _employer;

}
String toString() { return "Name: " + name; }
layer Contact {
String toString() {

return
proceed() + "; Residence: " + residence;

}}
layer Employment {
String toString() {

return proceed() + "; Affil.: " + employer;
}}}

Class Person defines three fields name, residence, and
employer (all of type String) that will be initialized during object
creation. It also defines the toString() method to show object-
specific information referred to in its fields.

The base definition incorporates the name field in the textual
representation. It belongs to the so-called base layer and with that
is effective for all instances of Person (and its subclasses).

The one refinement is implemented as a partial definition of the
same method in class Person and associated with the Contact
layer. (COP layers are usually used to group more than one par-
tial method definition, but as an illustrating example for ContextFJ,
having one layer holding on to one partial method definition will
suffice.) Our partial definition of toString() appends informa-
tion from the residence field that might be useful for further cor-
respondence. It belongs to the Contact layer and is only effective
if Contact is active.

The other refinement is associated with the Employment layer
and differs from the second refinement in the field, now employer,
that it deals with.

In our example, the partial definitions of toString() call the
special method proceed() to invoke other partial definitions of
toString() contributed by layers that were already active before
the activation of the Contact or the Employment layer, or to
invoke the base-level implementation of this method (here provided
by class Person).

proceed(...) is similar to super as it allows for call-
ing other behavior previously defined in the composition path:
Whereas super changes the starting point of the method lookup
to the superclass of the class the (partial) method was defined in,
proceed(...) will try to find the next partial or base-level def-
inition of the same method. If proceed(...) cannot find such a
partial method in the current receiver class or the active layers as-
sociated with it, lookup continues in the superclass of the current
lookup class. Lookup is statically guaranteed to succeed as we will
see in Section 4.

2.2 Layer Activation and Deactivation
Layers are explicitly activated or deactivated using the with and
without constructs respectively. In the following transcript, we
show the application of theses constructs to an instance of class
Person.

Person atsushi =
new Person("Atsushi", "Kyoto", "Kyodai");

Printing our object to the standard output stream via println(...)
with no layers activated leads to directly calling our base-level im-
plementation that returns a description covering only the name of
the object.

System.out.println(atsushi);
=> "Name: Atsushi"

However, if we put a with statement activating the Contact
layer around this code, the same attempt to print out our object
leads to first calling our partial definition of toString() con-
tributed by the Contact layer which is responsible for providing
contact information from the residence field, and then calling our
base-level implementation providing the person’s name.

with (Contact) { System.out.println(atsushi); }
=> "Name: Atsushi; Residence: Kyoto"

The nesting of with (or without) statements leads to nested
layer activations, where “inner” layers gain precedence over “outer”
ones.

with (Employment) {
with (Contact) { System.out.println(atsushi); }

}
=> "Name: Atsushi; Residence: Kyoto; Affil.: Kyodai"

With that, the change of the order of with or without state-
ments corresponds directly to the partial method definitions ob-
tained by the method lookup.

with (Contact) {
with (Employment) { System.out.println(atsushi); }

}
=> "Name: Atsushi; Affil.: Kyodai; Residence: Kyoto"

Previously activated layers using with can be deactivated by
without and vice versa.

with (Contact) {
without (Contact) { System.out.println(atsushi); }

}
=> "Name: Atsushi"

An attempt to deactivate a layer that is not active will not affect
the current layer composition.

without (Contact) { System.out.println(atsushi); }
=> "Name: Atsushi"

As in most COP language extensions and also in ours, layer
compositions are effective for the dynamic extent of the execu-
tion of the code block enclosed by their corresponding with or
without statements1.

3. Syntax and Semantics of ContextFJ
3.1 Syntax
Let metavariables C, D, and E range over class names; L over layer
names; f and g over field names; m over method names; and x and y
over variables, which contain a special variable this. The abstract
syntax of ContextFJ is given as follows:

CL ::= class C / C { C f; K M } (classes)
K ::= (constructors)

C(C f){ super(f); this.f = f; }
M ::= C m(C x){ return e; } (methods)
e, d ::= x | e.f | e.m(e) | new C(e) (expressions)

| with L e | without L e
| proceed(e) | super.m(e)
| new C(v)<C,L,L>.m(e)

v, w ::= new C(v) (values)

Following FJ, we use overlines to denote sequences: so, f stands
for a possibly empty sequence f1, · · · , fn and similarly for C, x, e,
and so on. The empty sequence is denoted by •. We also abbreviate
pairs of sequences, writing “C f” for “C1 f1, · · · , Cn fn”, where
n is the length of C and f, and similarly “C f;” as shorthand for the
sequence of declarations “C1 f1;. . .Cn fn;” and “this.f=f;”
for “this.f1=f1;. . .;this.fn=fn;”. We use commas and semi-
colons for concatenations. Sequences of field declarations, param-
eter names, layer names, and method declarations are assumed to
contain no duplicate names.

A class definition CL consists of its name, its superclass name,
field declarations C f, a constructor K, and method definitions M.
A constructor K is a trivial one that takes initial values of all fields
and sets them to the corresponding fields. Unlike the examples in

1 Variants of COP languages allow to manage layer compositions on a per-
instance basis [9, 10], which is left as future work in the paper.

the last section, we do not provide syntax for layers; partial meth-
ods are registered in a partial method table, explained below. A
method M takes x as arguments and returns the value of expres-
sion e. As ContextFJ is a functional calculus like FJ, the method
body consists of a single return statement and all constructs includ-
ing with and without return values. An expression e can be a
variable, field access, method invocation, object instantiation, layer
activation/deactivation, proceed/super call, or a special expres-
sion new C(v)<C,L,L>.m(e), which will be explained shortly. A
value is an object of the form new C(v).

The expression new C(v)<D,L′,L>.m(e), where L′ is as-
sumed to be a prefix of L, is a special run-time expression and
not supposed to appear in classes. It basically means that m is go-
ing to be invoked on new C(v). The annotation <D,L′,L>, which is
used to model super and proceed, indicates where method lookup
should start. More concretely, the triple <D,(L1; · · · ; Li),(L1; · · · ; Ln)>
(i ≤ n) means that the search for the method definition will start
from class D of layer Li. So, for example, the usual method invoca-
tion new C(v).m(e) (without annotation) is semantically equiva-
lent to new C(v)<C,L,L>.m(e), where L is the active layers when
this invocation is to be executed. This triple also plays the role of a
“cursor” in the method lookup procedure and proceeds as follows

<D,(L1; · · · ; Li),(L1; · · · ; Ln)>
⇒ <D,(L1; · · · ; Li−1),(L1; · · · ; Ln)> ⇒ · · ·
⇒ <D, • ,(L1; · · · ;Ln)>
⇒ <E,(L1; · · · ; Ln),(L1; · · · ; Ln)> (E is a direct superclass of D)
⇒ <E,(L1; · · · ; Ln−1),(L1; · · · ;Ln)> ⇒ · · ·

until the method definition is found. Notice that the third element
is needed when the method is not found in D in any layer including
the base: the search continues to layer Ln of D’s direct superclass.

With the help of this form, we can give a semantics of super
and proceed by simple substitution-based reduction. For example,
consider method invocation new C().m(v). As in FJ, this expres-
sion reduces to the method body where parameters and this are
replaced with arguments v and the receiver new C(), respectively.
Now, what happens to super in the method body? It cannot be re-
placed with the receiver new C() since it would confuse this and
super. Method lookup for super is different from usual (virtual)
method lookup in that it has to start from the direct superclass of
the class in which super appears. So, if the method body contain-
ing super.n() is found in class D, then the search for n has to start
from the direct superclass of D. To express this fact, we replace
super with new C()<E,...> where E is the direct superclass
of D. We can deal with proceed similarly. Suppose the method
body is found in layer Li in D. Then, proceed(e) is replaced
with new C()<D,(L1; · · · ; Li−1),L>.m(e), where L1; · · · ; Li−1

are layers activated before Li.
A ContextFJ program (CT,PT, e) consists of a class table CT ,

which maps a class name to a class definition, a partial method
table PT , which maps a triple C, L, and m of class, layer, and
method names to a method definition, and an expression, which
corresponds to the body of the main method. In what follows, we
assume CT and PT to be fixed and satisfy the following sanity
conditions:

1. CT(C) = class C ... for any C ∈ dom(CT).

2. Object 6∈ dom(CT).

3. For every class name C (except Object) appearing anywhere in
CT , we have C ∈ dom(CT);

4. There are no cycles in the transitive closure of the extends
clauses.

5. PT(m, C, L) = ... m(...){...} for any (m, C, L) ∈ dom(PT).

fields(C) = C f

fields(Object) = •

class C / D { C f; ... } fields(D) = D g

fields(C) = D g, C f

mbody(m, C, L′, L) = x.e in D, L′′

class C / D { ... C0 m(C x){ return e; } ...}

mbody(m, C, •, L) = x.e in C, •

PT(m, C, L0) = C m(C x){ return e; }

mbody(m, C, (L′; L0), L) = x.e in C, (L′; L0)

class C / D { ... M } m 6∈ M
mbody(m, D, L, L) = x.e in E, L′

mbody(m, C, •, L) = x.e in E, L′

PT(m, C, L0) undefined mbody(m, C, L′, L) = x.e in D, L′′

mbody(m, C, (L′; L0), L) = x.e in D, L′′

Figure 1. ContextFJ: Lookup functions.

Lookup functions. As in FJ, we define a few auxiliary functions
to look up field and method definitions. They are defined by the
rules in Figure 1. The function fields(C) returns a sequence C f of
pairs of a field name and its type by collecting all field declarations
from C and its superclasses. The function mbody(m, C, L1, L2) re-
turns the parameters and body x.e of method m in class C when the
search starts from L1; the other layer names L2 keep track of the
layers that are activated when the search initially started. It also re-
turns the information on where the method has been found—the in-
formation will be used in reduction rules to deal with proceed and
super. As we mentioned already, the method definition is searched
for in class C in all activated layers and the base definition and, if
there is none, then the search continues to C’s superclass. By read-
ing the rules in a bottom-up manner, we can read off the recursive
search procedure. The first rule means that m is found in the base
class definition C (notice the third argument is •) and the second
that m is found in layer L0. The third rule, which deals with the sit-
uation where m is not found in a base class (expressed by the con-
dition m 6∈ M), motivates the fourth argument of mbody. The search
goes on to C’s superclass D and has to take all activated layers into
account; so, L is copied to the third argument in the premise. The
fourth rule means that, if C of L0 does not have m, then the search
goes on to the next layer (in L′) leaving the class name unchanged.

3.2 Operational Semantics
The operational semantics of ContextFJ is given by a reduction
relation of the form L ` e −→ e′, read “expression e reduces
to e′ under the activated layers L”. Here, L do not contain duplicate
names, as we noted earlier. The main rules are shown in Figure 2.

The first four rules are the main computation rules for field
access and method invocation. The first rule for field access is
straightforward: fields tells which argument to new C(..) corre-
sponds to fi. The next three rules are for method invocation. The
second rule is for method invocation where the cursor of the method
lookup procedure has not been “initialized”; the cursor is set to be
at the receiver’s class and the currently activated layers. In the third
rule, the receiver is new C(v) and <C′,L′,L> is the location of
the cursor. When the method body is found in the base-layer class

fields(C) = C f

L ` new C(v).fi −→ vi

L ` new C(v)<C,L,L>.m(w) −→ e

L ` new C(v).m(w) −→ e

mbody(m, C′, L′, L) = x.e in C′′, • class C′′/ D{...}

L′′′ ` new C(v)<C′,L′,L>.m(w) −→ new C(v) /this,
w /x,
new C(v)<D,L,L>/super

 e

mbody(m, C′, L′, L) = x.e in C′′, (L′′; L0)
class C′′/ D{...}

L′′′ ` new C(v)<C′,L′,L>.m(w) −→ new C(v) /this,
w /x,
new C(v)<C′′,L′′,L>.m/proceed,
new C(v)<D,L,L> /super

 e

remove(L, L) = L′ L′; L ` e −→ e′

L ` with L e −→ with L e′

remove(L, L) = L′ L′ ` e −→ e′

L ` without L e −→ without L e′

L ` with L v −→ v L ` without L v −→ v

Figure 2. ContextFJ: Reduction rules.

C′′ (denoted by “in C′′, •”), the whole expression reduces to the
method body where the formal parameters x and this are replaced
by the actual arguments w and the receiver, respectively. Further-
more, super is replaced by the receiver with the cursor pointing to
the superclass of C′′. The fourth rule, which is similar to the third,
deals with the case where the method body is found in layer L0
in class C′′. In this case, proceed in the method body is replaced
with the invocation of the same method, where the receiver’s cur-
sor points to the next layer L′′ (dropping L0). Since the meaning of
the annotated invocation is not affected by the layers in the context
(note that L′′′ are not significant in these rules), the substitution
for super and proceed also means that their meaning is the same
throughout a given method body, even when they appear inside
with and without. Note that, unlike FJ, reduction in ContextFJ
is call-by-value, requiring receivers and arguments to be values.
This evaluation strategy reflects the fact that arguments should be
evaluated under the caller-side context.

The following rules are related to context manipulation. The
fifth rule means that e in with L e should be executing by ac-
tivating L. The auxiliary function remove(L, L), which removes L
from L (or returns L if L is not in L), is used to avoid duplication of
L. The next rule is similar: e is evaluated under the context where
L is absent. The last two rules mean that, once the evaluation of the
body of with/without is finished, it returns the value of the body.

There are other trivial congruence rules to allow subexpressions
to reduce, but we omit them for brevity.

4. Type System
As usual, the role of a type system is to guarantee type soundness,
namely, to prevent statically field-not-found and method-not-found
errors from happening at run-time. In ContextFJ, it also means that
a type system should ensure that every proceed() or super() call
succeeds. However, it is not trivial to ensure this property, due to
the dynamic nature of layer activation—the existence of a method

definition in a given class may depend on whether a particular layer
is activated.

Here, we give a simple type system, which is mostly a straight-
forward extension of FJ’s type system but prohibits layers from in-
troducing new methods that do not exist in the base-layer class—in
other words, every partial method has to override a method of the
same name in the base-layer class. As a result, the function mtype to
retrieve a method type is the same as FJ’s: it takes a method name
and a class name as arguments and returns a pair, written C→C0,
of a sequence of the argument types C and the return type C0. Its
definition is given by the following rules.

class C / D {... C0 m(C x){ return e; } ...}

mtype(m, C) = C→C0

class C / D {... M } m 6∈ M mtype(m, D) = C→C0

mtype(m, C) = C→C0

Subtyping. The subtyping relation C <: D is defined as the reflex-
ive and transitive closure of the extends clauses.

C <: C

C <: D D <: E

C <: E

class C / D {...}

C <: D

Typing. The type judgment for expressions is of the form L; Γ `
e : D, read “e, which appears in L, is given type D under Γ”. Here,
Γ denotes a type environment, which assigns types to variables—
more formally, it is a finite mapping from variables to class names.
L, which stands for the location where e appears, is either •,
which means the top-level (i.e., under execution), C.m, which
means method m in base class C, or L.C.m, which means m in
class C in layer L. It is used in the typing rules for proceed() and
super() calls. The type judgment for methods is of the form either
M ok in C, read “method M is well-formed in base-layer class C”,
or M ok in L.C, read “partial method M is well-formed in layer
L of class C.” Finally, the type judgment for classes is of the form
CL ok, read “class CL is well-formed.” The typing rules are given
in Figure 3.

The typing rules for expressions are straightforward. The first
four rules for variables, field access, method invocation, and object
instantiation are the same as those in FJ (except L). The fifth and
sixth rules for with and without, respectively, mean that a layer
(de)activation is well typed if its body is well typed. The next rule
means that super.m′(e) has to appear in a method definition in
some class C (not at the top level) and the type of m′ is retrieved
from C’s superclass E. Otherwise, it is similar to the rule for method
invocations. The rule for proceed(e) is similar. The expression
has to appear in a partial method definition, hence the location
should be L.C.m. The final rule combines the rules for object
instantiation and method invocation. Although the run-time type
of the receiver is C0, the current cursor is at class D, which is a
superclass of C0. So, the type of m is retrieved from D.

The typing rules for method definitions are straightforward also.
Both rules check that the method body is well typed under the
assumption that formal parameters x are given declared types C
and this is given the name of the class name where the method
appears. The type of the method body has to be a subtype of the
declared return type. One notable difference in these rules is in
the last premise. The first rule for base-layer methods means that
the method may or may not be overriding; if it is overriding, the
usual overriding condition is checked. Note that we allow covariant
overriding of the return type. On the other hand, the second rule for
a partial method means that it has to override the base-layer method
with exactly the same type. We cannot allow covariant overriding
because the order of layer composition vary at run-time.

A program (CT,PT, e) is well-formed if CT(C) ok for any
C ∈ dom(CT) and PT(m, C, L) ok in L.C for any (m, C, L) ∈

Expression typing: L; Γ ` e : C

(Γ = x:C)
L; Γ ` xi : Ci

L; Γ ` e0 : C0 fields(C0) = C f

L; Γ ` e0.fi : Ci

L; Γ ` e0 : C0 mtype(m, C0) = D → D0
L; Γ ` e : E E <: D

L; Γ ` e0.m(e) : D0

fields(C0) = D f L; Γ ` e : C C <: D

L; Γ ` new C0(e) : C0

L; Γ ` e0 : C0
L; Γ ` with L e0 : C0

L; Γ ` e0 : C0
L; Γ ` without L e0 : C0

L = C.m or L.C.m class C / E {...}
mtype(m′, E) = D → D0 L; Γ ` e : E E <: D

L; Γ ` super.m′(e) : D0

L = L.C.m
mtype(m, C) = D → D0 L; Γ ` e : E E <: D

L; Γ ` proceed(e) : D0

fields(C0) = D f L; Γ ` v : C C <: D
C0 <: D mtype(m, D) = F→F0 L; Γ ` e : F E <: F

L; Γ ` new C0<D,L
′,L′′>(v).m(e) : F0

Method/class typing: M ok in C M ok in L.C CL ok

C.m; x : C, this : C ` e0 : D0
D0 <: C0 class C / D {...}

if mtype(m, D) = E → E0, then E = C and C0 <: E0

C0 m(C x) { return e0; } ok in C

L.C.m; x : C, this : C ` e0 : D0
D0 <: C0 mtype(m, C) = C → C0

C0 m(C x) { return e0; } ok in L.C

K = C(D g, C f){ super(g); this.f=f; }
fields(D) = D g M ok in C

class C / D { C f; K M } ok

Figure 3. ContextFJ: Typing rules.

dom(PT) and •; ∅ ` e : C for some C, where ∅ is the empty type
environment.

This type system is sound with respect to the operational se-
mantics given in the last section:

THEOREM 1 (Subject Reduction). Suppose given class and par-
tial method tables are well-formed. If •; Γ ` e : C and L ` e −→
e′, then •; Γ ` e′ : D for some D such that D <: C.

THEOREM 2 (Progress). Suppose given class and partial method
tables are well-formed. If •; ∅ ` e : C, then either e is a value or
L ` e −→ e′ for some e′.

5. Discussion
Related Work The operational semantics of cj, a context-oriented
extension to the j language family, is expressed using a delegation-
based calculus [14]. Another approach to providing an operational
semantics of COP layer constructs and their application is based

on graph transformations [11]. Both approaches to representing
context-dependent behavior encode COP programs into more gen-
eral calculi. Our semantics, on the other hand, directly expresses
context-dependent behavior.

Feature-oriented programming (FOP) [3] and delta-oriented
programming (DOP) [12] also advocate the use of layers or delta
modules respectively to describe behavioral variations. In both ap-
proaches, various similar software artifacts are obtained by stati-
cally composing layers with base-level classes. Thus, formal mod-
els of FOP [1, 5] and DOP [13] typically give translational se-
mantics. Since they usually allow layers to add new methods, type
systems that guarantee the translated program to be well typed with
respect to the base language’s type system are more sophisticated
than ours.

Future Work The present type system may be too restrictive
since it does not allow layers to introduce new methods. We are
currently working on a more sophisticated type system that does
not prevent method introduction by exploring some ideas from type
systems for FOP.

References
[1] Sven Apel, Christian Kästner, and Christian Lengauer. Feature Feath-

erweight Java: a calculus for feature-oriented programming and step-
wise refinement. In GPCE, 2008. doi:10.1145/1449913.1449931.

[2] Malte Appeltauer, Robert Hirschfeld, Michael Haupt, and Hidehiko
Masuhara. ContextJ: Context-oriented programming with Java. Com-
puter Software, 28(1):272–292, January 2011.

[3] Don Batory, Jacob Neal Sarvela, and Axel Rauschmayer. Scaling step-
wise refinement. TSE, 2004. doi:10.1109/TSE.2004.23.

[4] Pascal Costanza and Robert Hirschfeld. Language constructs for
context-oriented programming - an overview of ContextL. In DLS,
2005. doi:10.1145/1146841.1146842.

[5] Benjamin Delaware, William Cook, and Don Batory. A
machine-checked model of safe composition. In FOAL, 2009.
doi:10.1145/1509837.1509846.

[6] Robert Hirschfeld, Pascal Costanza, and Michael Haupt. An intro-
duction to context-oriented programming with ContextS. In GTTSE,
2008.

[7] Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. Context-
oriented programming. JOT, 2008.

[8] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Feather-
weight Java: A minimal core calculus for Java and GJ. TOPLAS, 2001.
doi:10.1145/503502.503505.

[9] Tetsuo Kamina, Tomoyuki Aotani, and Hidehiko Masuhara. EventCJ:
A context-oriented programming language with declarative event-
based context transition. In Proc. of AOSD, 2011. (to appear).

[10] Jens Lincke, Malte Appeltauer, Bastian Steinert, and Robert
Hirschfeld. An open implementation for context-oriented layer com-
position in ContextJS. SCP, 2010. doi:10.1016/j.scico.2010.11.013.

[11] Tim Molderez, Hans Schippers, Dirk Janssens, Michael Haupt, and
Robert Hirschfeld. A platform for experimenting with language con-
structs for modularizing crosscutting concerns. In WASDeTT, 2010.

[12] Ina Schaefer, Lorenzo Bettini, Viviana Bono, Ferruccio Damiani, and
Nico Tanzarella. Delta-oriented programming of software product
lines. In SPLC, 2010.

[13] Ina Schaefer, Lorenzo Bettini, and Ferruccio Damiani. Compositional
type-checking for delta-oriented programming. In AOSD, 2011. (to
appear).

[14] Hans Schippers, Dirk Janssens, Michael Haupt, and Robert
Hirschfeld. Delegation-based semantics for modularizing crosscutting
concerns. In OOPSLA, 2008. doi:10.1145/1449764.1449806.

