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1 Behavioral Interface Specification

Abstract

JML is a behavioral interface specification language tailored to Java. It is
designed to be written and read by working software engineers, and should re-
quire only modest mathematical training. It uses Eiffel-style syntax combined
with model-based semantics, as in VDM and Larch. JML supports quanti-
fiers, specification-only variables, and other enhancements that make it more
expressive for specification than Eiffel and easier to use than VDM and Larch.

JML [Leavens-Baker-Ruby01], which stands for “Java Modeling Language,” is a behav-
ioral interface specification language (BISL) [Wing87] designed to specify Java [Arnold-
Gosling98] [Gosling-Joy-Steele96] modules. Java modules are classes and interfaces.

A behavioral interface specification describes both the details of a module’s interface
with clients, and its behavior from the client’s point of view. Such specifications are not
good for the specification of whole programs, but are good for recording detailed design
decisions or documentation of intended behavior, for a software module.

The goal of this chapter is to explain JML and the concepts behind its approach to
specification. Since JML is used in detailed design of Java modules, we use the detailed
design of an interface and class for priority queues as an example. The rest of this section
explains interfaces and behavioral interface specification. In the next section we describe
how to specify new types as conceptual models for detailed design. Following that we finish
the example by giving the details of a class specification. We conclude after mentioning
some other features of JML.

1.1 Interfaces

A module’s interface consists of its name, and the names and types of its fields and methods.
Java interfaces declare such interface information, but class declarations do as well. As in
the Larch family of BISLs [Guttag-Horning93] [LeavensLarchFAQ] [Wing87] [Wing90a],
interface information in JML is declared using the declaration syntax of the programming
language to which the BISL is tailored; thus, JML uses Java declaration syntax.

An example is given in the file ‘PriorityQueueUser.java-refined’, which is shown be-
low. This example gives the information a Java program needs to use a PriorityQueueUser
object, including the package to which it belongs, the accessibility of the methods (public),
the names of the methods, the types of their arguments and results, and what exceptions
they can throw.

package org.jmlspecs.samples.jmlkluwer;
public interface PriorityQueueUser {
/*@ pure @*/ boolean contains(Object argObj);
/*@ pure @*/ Object next() throws PQException;
void remove(Object argObj);
/*@ pure @*/ boolean isEmpty();
}

Also included in the above file are three JML annotations. These annotations are en-
closed within these annotation comments of the form /*@ . . . @*/; one can also write
annotation comments using the form //@, and such comments extend to the end of the
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corresponding line.1 Java ignores both kinds of JML annotation comments, but they are
significant to JML. The pure annotations on the methods next, contains, and isEmpty
require these methods to be pure, meaning that they cannot have any side effects.

1.2 A First Example of Behavioral Specification

In JML, behavioral specification information is also given in the form of annotations. As in
the Larch approach, such specifications are model-based. That is, they are stated in terms
of a mathematical model [Guttag-Horning93] [Hoare72a] [Wing83] [Wing87] of the states
(or values) of objects. Unlike most Larch-style specification languages, however, in JML
such models are described by declaring model fields, which are only used for purposes of
specification. In JML, a declaration can include the modifier model, which means that the
declaration need not appear in a correct implementation; all non-model declarations must
appear in a correct implementation.

As an example, the file ‘PriorityQueueUser.jml-refined’ below specifies a model
for priority queues. This specification is a refinement of the one given in the file (shown
above) ‘PriorityQueueUser.java-refined’, which is why the refine clause appears in
the specification following the package declaration. The meaning of the refine clause
is that the given specification adds to the one in the file named, by imposing additional
constraints on that specification. Such a refinement might be done, for example, when one
is starting to make detailed design decisions or when starting to specify the behavior of
existing software modules. In a refinement, existing specification information is inherited;
that is, the method declarations in the interface PriorityQueueUser are inherited, and
thus not repeated below.

package org.jmlspecs.samples.jmlkluwer;

//@ refine "PriorityQueueUser.java-refined";
//@ model import org.jmlspecs.models.*;

public interface PriorityQueueUser {

/*@ public model instance JMLValueSet entries;
@ public initially entries.isEmpty();
@*/

/*@ public instance invariant
@ (\forall JMLType e; entries.has(e);
@ e instanceof QueueEntry);
@ public instance invariant
@ (\forall QueueEntry e1; entries.has(e1);
@ (\forall QueueEntry e2;
@ entries.has(e2) && !(e1.equals(e2));
@ e2.obj != e1.obj
@ && e2.timeStamp != e1.timeStamp ) );

1 Note that JML annotations are not the same as Java (5) annotations. The at-sign (@) at the start
of a JML annotation comment is not part of the keyword, such as pure used in JML, but is used to
distinguish Java comments from JML annotations and must be adjacent to the /* or // in such a JML
annotation comment.
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@*/
}

Following the refine clause above is a model import declaration. This has the effect like
a Java import declaration for JML, but the use of model means that the import does not
have to appear in an implementation, as it is only needed for specification purposes. The
package being imported, org.jmlspecs.models, consists of several pure classes including
sets, sequences, relations, maps, and so on, which are useful in behavioral specification.
These fill the role of the built-in types used for specification in VDM and Z, or the traits
used in Larch. Since they are pure (side-effect free) classes, they can be used in assertions
without affecting the state of the computation, which allows assertions to have a well-
defined mathematical meaning (unlike Eiffel’s assertions). However, since they are Java
classes, their methods are invoked using the usual Java syntax.

In the specification above we use the class JMLValueSet as the type of the model field
entries. That is, for purposes of specification, we imagine that every object that imple-
ments the interface PriorityQueueUser has a public field entries of type JMLValueSet.
This model field appears (to clients) to have started out initially as empty, as stated in the
initially clause attached to its declaration [Ogden-etal94] [Morgan94].

The two invariant clauses further describe the intended state of entries. The first
states that all of its elements have type QueueEntry. (By default JML implicitly adds an
invariant that entries is non-null [Chalin-Rioux05].)

The \forall notation is an addition to the Java syntax for expressions; it gives universal
quantification over the declared variables. Within such an expression of the form (\forall
T x; R(x); P(x)), the expression R(x) specifies the range over which the bound variable,
x, can take on values; it is separated from the term predicate, P(x), by a semicolon (;). For
example, the first invariant means that for all JMLType objects e such that entries.has(e),
e has type QueueEntry. The second invariant states that every such QueueEntry object
has a unique obj and timeStamp.

In the file ‘PriorityQueueUser.java’ below we make yet another refinement, to specify
the behavior of the methods of PriorityQueueUser. This specification, because it refines
the specification in ‘PriorityQueueUser.jml-refined’, inherits the model fields specified
there, as well as the initially and invariant clauses. (Inheritance of specifications is
explained further below.)

package org.jmlspecs.samples.jmlkluwer;
//@ refine "PriorityQueueUser.jml-refined";

public interface PriorityQueueUser {

/*@ also
@ public normal_behavior
@ ensures \result <==>
@ (\exists QueueEntry e; entries.has(e);
@ e.obj == argObj);
@*/

/*@ pure @*/ boolean contains(Object argObj);
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/*@ also
@ public normal_behavior
@ requires !entries.isEmpty();
@ ensures
@ (\exists QueueEntry r;
@ entries.has(r) && \result == r.obj;
@ (\forall QueueEntry o;
@ entries.has(o) && !(r.equals(o));
@ r.priorityLevel >= o.priorityLevel
@ && (r.priorityLevel == o.priorityLevel
@ ==> r.timeStamp < o.timeStamp) ) );
@ also
@ public exceptional_behavior
@ requires entries.isEmpty();
@ signals_only PQException;
@*/

/*@ pure @*/ Object next() throws PQException;

/*@ also
@ public normal_behavior
@ requires contains(argObj);
@ assignable entries;
@ ensures (\exists QueueEntry e;
@ \old(entries.has(e)) && e.obj == argObj;
@ entries.equals(\old(entries.remove(e))));
@ also
@ public normal_behavior
@ requires !contains(argObj);
@ assignable \nothing;
@ ensures \not_modified(entries);
@*/

void remove(Object argObj);

/*@ also
@ public normal_behavior
@ ensures \result <==> entries.isEmpty();
@*/

/*@ pure @*/ boolean isEmpty();
}

The specification of contains above shows the simplest form of a behavioral specifica-
tion for a method: a single public normal_behavior clause followed by a method header.
This specification says that the method returns true just when its argument is the same as
some object in the queue. The public normal_behavior clause in this specification con-
sists of a single ensures clause. This ensures clause gives the method’s total-correctness
postcondition; that is, calls to contains must terminate (as opposed to looping forever
or aborting) in a state that satisfies the postcondition. The public keyword says that
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the specification is intended for clients; while the “normal” in normal_behavior prohibits
throwing exceptions. The meaning of && and == are as in Java; that is, && is short-circuit
logical conjunction, and e.obj == argObj means that e.obj and argObj are the same ob-
ject. The keyword \result denotes the return value of the method, which in this case is
a boolean. The operator <==> means “if and only if”; it is equivalent to == for booleans,
but has a lower precedence. The notation \exists is used for existential quantification.
Like universal quantifiers, existential quantifiers can also have a range expression that is
separated from the term expression by a semicolon (;).

The specification of the method next shows one way to specify methods with excep-
tions in JML. This uses a public normal_behavior clause for the case where no excep-
tions are thrown, and an public exceptional_behavior clause for when exceptions are
thrown. The semantics is that a correct implementation must satisfy both of these be-
haviors [Leavens-Baker99] [Wills94] [Wing83]. In the specification of next, the public
exceptional_behavior clause states that only an instance of the PQException class (not
shown here) may be thrown when entries is empty. The requires clause gives a precondi-
tion for that case, and when it is true, the method must terminate (in this case by throwing
an exception). Since no other exceptions are allowed, this effectively says that the method
must thorw an instance of PQException when the exceptional behavior’s precondition is
satisfied by a call. as that case’s postcondition must be satisfied.

The public normal behavior of next must be obeyed when its precondition is true; that
is, when entries is not empty. The normal behavior’s postcondition says that next returns
an object with the lowest timestamp in the highest priority level.

It would, of course, be possible to only specify the public normal behavior for next.
If this were done, then implementations could just assume the precondition of the normal
behavior—that entries is not empty. That would be an appropriate design for clients that
can be trusted, and might permit more efficient implementation. The given specification is
appropriate for untrusted clients [Meyer92a] [Meyer97].

The specification remove uses case analysis [Leavens-Baker99] [Wills94] [Wing83] in the
specification of normal behavior. The two cases are separated by the keyword also, and
each must be obeyed when its precondition is true. The first case contains a assignable
clause.2 This is a frame condition [Borgida-Mylopoulos-Reiter95]; it states that only the
fields mentioned (and any on which they depend [Leino95] [Leino95a]) can be assigned to;
no other fields, including fields in other objects, can be assigned. Omitting the assignable
clause means that all fields can be assigned. (Technically, the assignable clause is also con-
cerned with array elements. Local variables, including the formal parameters of a method,
and also fields of newly-created objects may also be freely assigned by a method [Leavens-
Baker-Ruby01].) Note that the precondition of remove uses the method contains, which
is permitted because it is pure.

The most interesting thing about the specification of remove is that it uses the JML
reserved word \old. As in Eiffel, the meaning of \old(E) is as if E were evaluated in the
pre-state and that value is used in place of \old(E) in the assertion.

While we have broken up the specification of PriorityQueueUser into three pieces, that
was done partly to demonstrate refinement and partly so that each piece would fit on a
page. In common use, this specification would be written in one file.

2 For historical reasons, JML also allows one to use modifiable and modifies as synonyms for assignable.
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2 Specifying New Pure Types For Modeling

JML comes with a suite of pure types, implemented as Java classes, that can be used as
conceptual models in detailed design. As mentioned above, these are found in the package
org.jmlspecs.models.

Users can also create their own pure types, by giving a class or interface the pure mod-
ifier. Since these types are to be treated as purely immutable values in specifications, they
must pass certain conservative checks that make sure there is no possibility of observable
side-effects from using such objects.

Classes used for modeling should also have pure methods, since, in JML, the use of
non-pure methods in an assertion is a type error.

An example of a pure class used for modeling is the class QueueEntry, specified in the
file ‘QueueEntry.jml-refined’ below. Since it is pure, none of the methods declared in
the class can permit side-effects (each is implicitly pure). It is written in a ‘.jml-refined’
file. Since this kind of file is understood by JML but is not a Java source code file, JML
allows it to contain method specifications without bodies. The class QueueEntry has three
public model fields obj, priorityLevel, and timeStamp. The invariant clause states that
the priorityLevel and timeStamp fields cannot be negative in a client-visible state.

package org.jmlspecs.samples.jmlkluwer;

import org.jmlspecs.models.JMLType;

public /*@ pure @*/ class QueueEntry implements JMLType {

//@ public model Object obj;
//@ public model int priorityLevel;
//@ public model long timeStamp;

/*@ public invariant
@ priorityLevel >= 0 && timeStamp >= 0;
@*/

/*@ public normal_behavior
@ requires argLevel >= 0 && argTimeStamp >= 0;
@ assignable obj, priorityLevel, timeStamp;
@ ensures obj == argObj && priorityLevel == argLevel
@ && timeStamp == argTimeStamp;
@*/

public QueueEntry(Object argObj, int argLevel,
long argTimeStamp);

/*@ also
@ public normal_behavior
@ ensures \result instanceof QueueEntry;
@ ensures_redundantly this.equals(\result);
@*/
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public Object clone();

/*@ also
@ public normal_behavior
@ old QueueEntry oldo = (QueueEntry)o;
@ requires o instanceof QueueEntry;
@ ensures \result <==>
@ oldo.obj == obj
@ && oldo.priorityLevel == priorityLevel
@ && oldo.timeStamp == timeStamp;
@ also
@ public normal_behavior
@ requires !(o instanceof QueueEntry);
@ ensures \result == false;
@*/

public boolean equals(/*@ nullable @*/ Object o);

//@ ensures \result == priorityLevel;
public int getLevel();

//@ ensures \result == obj;
public Object getObj();

}

In the above specification, the constructor’s specification follows the invariant. The
constructor takes three arguments and initializes the fields from them. The precondition of
this constructor states that it can only be called if the argObj argument is not null; if this
were not true, then the invariant would be violated.

The clone and equals methods in QueueEntry are related to the interface JMLType,
which QueueEntry extends. In JML when a class implements an interface, it inherits the
specifications of that interface. The interface JMLType specifies just these two methods. The
specifications of these methods are thus inherited by QueueEntry, and thus the specifications
given here add to the given specifications. The specification of the method clone in JMLType
(quoted from [Leavens-Baker-Ruby01]) is as follows.

/*@ also
@ public normal_behavior
@ ensures \result instanceof JMLType
@ && ((JMLType)\result).equals(this);
@*/

public /*@ pure @*/ Object clone();

The above specification says that, for JMLType objects, clone cannot throw exceptions, and
its result must be a JMLType object, with the same value as this. (In Java, this names
the receiver of a method call).

Inheritance of method specifications means that an implementation of clone must
satisfy both the inherited specification from JMLType and the given specification in
QueueEntry. The meaning of the method inheritance in this example is shown in below
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[Dhara-Leavens96]. (The modifier pure from the superclass can be added in here, although
it is redundant for a method of a pure class.)

/*@ also
@ public normal_behavior
@ ensures \result instanceof JMLType
@ && ((JMLType)result).equals(this);
@ also
@ public normal_behavior
@ ensures \result instanceof QueueEntry;
@ ensures_redundantly
@ ((QueueEntry)\result).equals(this);
@*/

public /*@ pure @*/ Object clone();

Satisfying both of the cases is possible because QueueEntry is a subtype of JMLType, and
because JML interprets the meaning of E1.equals(E2) using the run-time class of E1.

The ensures_redundantly clause allows the specifier to state consequences of the spec-
ification that follow from its meaning [Leavens-Baker99] [Tan94] [Tan95]. In this case the
predicate given follows from the inherited specification and the one given. This example
shows a good use of such redundancy: to highlight important inherited properties for the
reader of the (original, unexpanded) specification.

Case analysis is used again in the specification of QueueEntry’s equals method. As
before, the behavior must satisfy each case of the specification. That is, when the argument o
is an instance of type QueueEntry, the first case’s postcondition must be satisfied, otherwise
the result must be false. The nullable annotation is needed on the argument type for the
equals method, because the argument o is allowed to be null by the Java documentation.
Without this nullable annotation, JML would implicitly add a precondition that the formal
o must be non-null [Chalin-Rioux05].
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3 Class Specifications

The file ‘PriorityQueue.java-refined’ shown below specifies PriorityQueue, a class that
implements the interface PriorityQueueUser. Because this class implements an interface,
it inherits specifications, and hence implementation obligations, from that interface. The
specification given thus adds more obligations to those given in previous specifications.

package org.jmlspecs.samples.jmlkluwer;
//@ model import org.jmlspecs.models.*;

public class PriorityQueue implements PriorityQueueUser {

/*@ public normal_behavior
@ assignable entries;
@ ensures entries != null && entries.isEmpty();
@ ensures_redundantly
@ entries.equals(new JMLValueSet());
@*/

public PriorityQueue();

//@ private pure model JMLValueSet abstractValue();

/*@ public normal_behavior
@ requires entries.isEmpty();
@ assignable \nothing;
@ ensures \result == -1;
@ also
@ public normal_behavior
@ requires !(entries.isEmpty());
@ assignable \nothing;
@ ensures (\forall QueueEntry e; entries.has(e);
@ \result >= e.timeStamp);
@ ensures (\exists QueueEntry e; entries.has(e);
@ \result == e.timeStamp);
@
public pure model long largestTimeStamp() {

// FIXME: once model fields become usable within model methods
// then delete the following local declaration
JMLValueSet entries = abstractValue();

if(entries.isEmpty())
return -1;

long max = Long.MIN_VALUE;
JMLValueSetEnumerator i = null;
for(i = entries.elements(); i.hasMoreElements(); ) {

QueueEntry e = (QueueEntry)i.nextElement();
if (max < e.timeStamp)

max = e.timeStamp;
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}
return max;

}
@*/

/*@ public normal_behavior
@ old long lts = largestTimeStamp();
@ requires !contains(argObj);
@ requires argPriorityLevel >= 0;
@ requires largestTimeStamp() < Long.MAX_VALUE;
@ assignable entries;
@ ensures entries.equals(\old(entries).insert(
@ new QueueEntry(argObj, argPriorityLevel, lts+1)));
@ also
@ public exceptional_behavior
@ requires contains(argObj) || argPriorityLevel < 0;
@ assignable \nothing;
@ signals_only PQException;
@*/
public void addEntry(Object argObj, int argPriorityLevel)

throws PQException;

public /*@ pure @*/ boolean contains(Object argObj);
public /*@ pure @*/ Object next() throws PQException;
public void remove(Object argObj);
public /*@ pure @*/ boolean isEmpty();

}

The pure model method largestTimeStamp is specified purely to help make the state-
ment of addEntry more comprehensible. Since it is a model method, it does not need to be
implemented. Without this specification, one would need to use the quantifier found in the
second case of largestTimeStamp within the specification of addEntry.

The interesting method in PriorityQueue is addEntry. One important issue is how the
timestamps are handled; this is hopefully clarified by the use of largestTimeStamp() in
the postcondition of the first specification case.

A more subtle issue concerns finiteness. Since the precondition of addEntry’s first case
does not limit the number of entries that can be added, the specification seems to imply
that the implementation must provide a literally unbounded priority queue, which is surely
impossible. We avoid this problem, by following Poetzsch-Heffter [Poetzsch-Heffter97] in
releasing implementations from their obligations to fulfill specification case’s postcondition
when Java runs out of storage. That is, a method implementation correctly implements a
specification case if, whenever the method is called in a state that satisfies the precondition
of that specification case, either
• the method terminates in a state that satisfies the postcondition of that specification

case, having assigned only the locations permitted by its assignable clause, or
• Java signals an error, by throwing an exception that inherits from java.lang.Error.
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4 Other Features of JML

Following Leino [Leino98], JML uses data groups, with in and maps \into clauses to relate
model fields to the concrete fields of objects. For example, in the following

private ArrayList theElems; //@ in size;

the in clause says that theElems is in the data group of the model field size. This allows
theElems to be assigned to whenever size is assignable, and also says that the value of
size can be partly determined by theElems.

One can also use a represents clause to say how the model field size and the con-
crete field theElems are related. For example, the following says that the value of size is
determined by calling the size() method of theElems.

private represents size <- theElems.size();

The represents clause gives additional facts that can be used in reasoning about the
specification. This clause serves the same purpose as an abstraction function in various
proof methods for abstract data types (such as [Hoare72a]). The represents clause above
tells how to extract the value of size from the value of theElems. A represents clause
has to be declared to be private if, as in this example, some variables mentioned in it are
private (as is usually the case).

JML also has history constraints [Liskov-Wing94]. A history constraint is used to say
how values can change between earlier and later states, such as a method’s pre-state and
its post-state. This prohibits subtypes from making certain state changes, even if they
implement more methods than are specified in a given class. For example, the following
history constraint

public constraint MAX_SIZE == \old(MAX_SIZE);

says that the value of MAX_SIZE cannot change.
JML has the ability to specify what methods a method may call, using a callable

clause. This allows one to know which methods need to be looked at when overriding a
method [Kiczales-Lamping92], and to apply the ideas of “reuse contracts” [Steyaert-etal96].
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5 Related Work

Our general design strategy for making JML practical and effective has been to blend the
Eiffel [Meyer92a] [Meyer92b] [Meyer97] and Larch [Guttag-Horning93] [LeavensLarchFAQ]
[Wing87] [Wing90a] approaches to specification. From Eiffel we have used the idea that
assertions are written using Java’s expression syntax as much as possible, thereby avoiding
large amounts of special-purpose logical notations. JML also adapts the \old notation from
Eiffel, instead of the Larch style annotation of names with state functions. Currently JML
does not come with tools to execute preconditions to help debug programs, as in Eiffel. We
plan to eventually extend JML’s tools to support the testing of postconditions at run-time
as well.

However, Eiffel specifications, as written by Meyer, are typically not as complete as
model-based specifications written, for example, in Larch BISLs or VDM [Jones90]. For
example, Meyer partially specifies a remove (i.e., pop) method for stacks as requiring that
the stack not be empty, and ensuring that the stack value in the post-state has one fewer
items than in the pre-state (see p. 339 of [Meyer97]). However, the only characterization
of which item is removed is given informally as a comment. Nothing is said formally
that ensures that the other elements of the stack are unchanged. To allow more complete
specifications, we need ideas from model-based specification languages.

JML’s semantic differences from Eiffel (and its cousins Sather and Sather-K) allow one to
more easily write more complete specifications, following the ideas of model-based specifica-
tion languages. The most important of these is JML’s use of specification-only declarations.
These model declarations allow more abstract and exact specifications of behavior than is
typically done in Eiffel. For example, because one has a model of the abstract values of
stack objects, one can precisely state both which element is removed by pop and that the
other elements on the stack are unchanged. The use of model fields in JML thus allows one
to write specifications that are similar to the spirit of VDM or Larch BISLs.

A more minor difference from Eiffel is that in JML one can specify frame conditions,
using the assignable clause. Our interpretation of the assignable clause is very strict,
as even benevolent side effects are disallowed if the assignable clause is omitted [Leino95]
[Leino95a].

Another difference from Eiffel is that we have extended the syntax of Java expressions
with quantifiers and other constructs that are needed for logical expressiveness, but which
are not always executable. Finally, we ban side-effects and other problematic features of
code in assertions.

On the other hand, our experience with Larch/C++ [Leavens96b] [Leavens99] has taught
us to adapt the model-based approach in two ways, with the aim of making it more practical
and easy to learn. The first adaptation is again the use of specification-only model (or ghost)
variables. An object will thus have (in general) several such model fields, which are used
only for the purpose of describing, abstractly, the values of objects. This simplifies the use
of JML, as compared with most Larch BISLs, since specifiers (and their readers) hardly
ever need to know about algebraic style specification. It also makes designing a model for
a Java class or interface similar, in some respects, to designing an implementation data
structure in Java. We hope that this similarity will make the specification language easier
to understand.
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The second adaptation is hiding of the details of mathematical modeling behind a facade
of Java classes. In the Larch approach to behavioral interface specification [Wing87], the
mathematical notation used in assertions is presented directly to the specifier. This allows
the same mathematical notation to be used in many different specification languages. How-
ever, it also means that the user of such a specification language has to learn a notation for
assertions that is different than their programming language’s notation for expressions. (A
preliminary study by Finney [Finney96] indicates that a large number of special-purpose,
graphic mathematical notations, such as those found in Z [Hayes93] [Spivey92] may make
such specifications hard to read, even for programmers trained in the notation.) In JML
we use a compromise approach, hiding these details behind Java classes. These classes
are pure, in the sense that they reflect the underlying mathematics, and hence do not use
side-effects (at least not in any observable way). Besides insulating the user of JML from
the details of the mathematical notation, this compromise approach also insulates the de-
sign of JML from the details of the mathematical logic used for JML’s semantics and for
theorem proving. We believe that the use of slightly extended Java notation for assertions
is appropriate, given that JML is used in detailed design, and thus will mostly be read and
written by persons familiar with Java.
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6 Future Work and Conclusions

One area of future work for JML is concurrency. Our current plan is to use when clauses
that say when a method may proceed to execute, after it is called [Lerner91] [Sivaprasad95].
This permits the specification of when the caller is delayed to obtain a lock, for example.
While syntax for this exists in the JML parser, our exploration of this topic is still in an
early stage. We may also be able to expand history constraints to use temporal logic.

Another area for future work on JML is to synthesize the previous work of Wahls, Leav-
ens and Baker on the use of constraint logic programming to directly execute a significant
and practical subset of JML’s assertions [Wahls-Leavens-Baker98]. This prior work supports
the “construction” of post-state values to satisfy ensures clauses, including such clauses con-
taining quantified assertions. Successful integration of these assertion execution techniques
with JML would support automatic generation of Java class prototypes directly from their
JML specifications.

In conclusion, JML combines the best features of Eiffel and the Larch approaches to
specification. This combination, we believe, makes it more expressive than Eiffel, and more
practical than Larch style BISLs as a tool for recording detailed designs.

More information about JML can be found on the web at the following URL.
‘http://www.jmlspecs.org/’
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