JML Reference Manual

DRAFT, $Revision: 2344 $
$Date: 2013-05-31 10:40:44 -0400 (Fri, 31 May 2013) $

Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon,
Clyde Ruby, David Cok, Peter Miiller, Joseph Kiniry,
Patrice Chalin, Daniel M. Zimmerman, Werner Dietl

Copyright (©) 2002-2013 by the authors

Permission is granted for you to make copies of this manual for educational and scholarly
purposes, and for commercial use in specifying software, but the copies may not be sold or
otherwise used for direct commercial advantage; this permission is granted provided that
this copyright and permission notice is preserved on all copies. All other rights reserved.

Version Information:
@(#) $Revision$ of $Date: 2013-05-31 10:40:44 -0400 (Fri, 31 May 2013) $

Table of Contents

1 Introduction............................... 1
1.1 Behavioral Interface Specifications............................ 1
1.2 A First Example 2
1.3 What is JML Good For?......... 6
1.4 Status and Plans for JML........... 7
1.5 Historical Precedents 8
1.6 Acknowledgments 9

2 Fundamental Concepts.................... 11
2.1 Types can be Classes and Interfaces 11
2.2 Model and Ghost........... ... 11
2.3 Lightweight and Heavyweight Specifications 12
2.4 Privacy Modifiers and Visibility 12
2.5 Instance vs. Static 15
2.6 Locations and Aliasing........... i 15
2.7 Expression Evaluation and Undefinedness 15
2.8 Null is Not the Default 16
2.9 Language Levels 17

2.9.1 Level O Features............cooiiinii.. 18
2.9.2 Level 1 Featuresoo i, 21
2.93 Level 2 Features................ ... 22
294 Level 3Features........... ... 24
2.9.5 Level C Features.couiuiiieinnanna.. 24
2.9.6 Level X Features........... ... 24

3 Syntax Notation.......................... 25

4 Lexical Conventions....................... 26
4.1 WHhite Spaceo 26
4.2 Lexical Pragmas 26
4.3 CommeEntsoov et e 27
4.4 Annotation Markers............. ... 27
4.5 Documentation Commentsooviiieeriiinaa... 28
4.6 TOKENS . .ottt 29

5 Compilation Units........................ 35
5.1 Package Declarations 36

5.2 Import Declarations i 36

6 Type Declarations 37
6.1 Class and Interface Declarations............................. 37
6.1.1 Subtyping for Type Declarations........................ 37
6.1.2 Modifiers for Type Declarations......................... 38
6.1.2.1 Pure Type Declarations............................ 39
6.1.2.2 Model Type Declarations 39

6.2 Modifierst 39
6.2.1 Suggested Modifier Ordering............................ 40
6.2.2 Java Annotations................ i 41
6.2.3 Spec Public......... 41
6.2.4 Spec Protected 41
6.2.5 Pure. ... 41
6.26 Model ... 41
6.2.7 GhoSt. ... 42
6.2.8 Instance 42
6.2.9 Helper...... ..o 42
6.2.10 Momnitored.oiii 43
6.2.11 Uninitialized 43
6.2.12 Math Modifiers........... ... 43
6.2.13 Nullity Modifiers i 44

7 Class and Interface Member Declarations .. 45

7.1 Java Member Declarations 45
7.1.1 Method and Constructor Declarations................... 45
7.1.1.1 Formal Parameters............... 46
7.1.1.2 Model Methods and Constructors 46
7.1.1.3 Pure Methods and Constructors.................... 46
7.1.1.4 Helper Methods and Constructors.................. 48

7.1.2 Field and Variable Declarations......................... 49
7.1.2.1 JML Modifiers for Fields........................... 49
T7.1.2.2 TYPE-SPECS . oo oe et e 50

7.2 Class Initializer Declarations 50
8 Type Specifications 52
8.1 Introductory ADT Specification Examples.................... 52
8.2 Imvariants. 52
8.2.1 Static vs. instance invariants 56
8.2.2 Invariants and Exceptions, 56
8.2.3 Access Modifiers for Invariants.......................... 57
8.2.4 Invariants and Inheritance.............................. 57
8.3 Constraints 57
8.3.1 Static vs. instance constraints 59
8.3.2 Access Modifiers for Constraints 60
8.3.3 Constraints and Inheritance 60
8.4 Represents Clausest ... 60
8.5 Initially Clauses. ... 61

8.6 AXIOIMS . o vttt 61

ii

8.7 Readable If Clauses ...t 61

8.8 Writable If Clauses 62
8.9 Monitors For Clause...............cooiiiiii .. 62
9 Method Specifications..................... 63
9.1 Basic Concepts in Method Specification...................... 63
9.2 Organization of Method Specifications 63
9.3 Access Control in Specification Cases 64
9.4 Lightweight Specification Cases................ 65
9.5 Heavyweight Specification Cases............................. 67
9.6 Behavior Specification Cases ..., 67
9.6.1 Semantics of flat behavior specification cases............. 68
9.6.2 Semantics of non-helper methods 68
9.6.3 Semantics of non-helper constructors.................... 71
9.6.4 Semantics of helper methods and constructors 71
9.6.5 Semantics of nested behavior specification cases.......... 71
9.7 Normal Behavior Specification Cases......................... 72
9.8 Exceptional Behavior Specification Cases..................... 73
9.8.1 Pragmatics of Exceptional Behavior Specifications Cases.. 73
9.9 Method Specification Clauses. 75
9.9.1 Specification Variable Declarations...................... 75
9.9.1.1 Forall Variable Declarations........................ 75
9.9.1.2 OId Variable Declarations.......................... 75

9.9.2 Requires Clauses.coirmirnreieeiieanennn.. 76
9.9.3 Ensures Clausesiiiiinniin ., 7
9.9.4 Signals Clauses, 7
9.9.5 Signals-Only Clauses. ..., 79
9.9.6 Parameters in Postconditions 80
9.9.7 Diverges Clauses.coviiinni 81
9.9.8° When Clausesoovinit e 82
9.9.9 Assignable Clauses. i, 83
9.9.10 Accessible Clausesoneiinnii ... 83
9.9.11 Callable Clausescovruiiineeie e, 84
9.9.12 Measured By Clauses, 84
9.9.13 Captures Clauses 84
9.9.14 Working Space Clauses.c.oooviiiiiniiinaa.. 85
9.9.15 Duration Clausescooiriiineiniaea. 85
10 Data Groupscovveiiiinnneennenns 87
10.1 Static Data Group Inclusions. 87
10.2 Dynamic Data Group Mappings............................ 88

11 Specification Inheritance................. 89

12 Predicates and Specification Expressions .. 90

12,1 Predicateso 90
12.2 Specification Expressions 90
12.3 EXPressionsttt e 90
12.4 JML Primary Expressions 92
12,41 \result ... 93
1242 Noldand \pre ...t 93
12.4.3 \not_assigned................o i 94
12.4.4 \not_modified..............ooiiiiiiiii 95
12.4.5 Nonly_accessed...........ouviiiunniiiinneinnennn.. 95
12.4.6 Nonly_assigned................coiiiiiiiiiiiiiiii... 96
12.4.7 Nonly_called........oovuiiinnneeeiiiiiiianna... 96
12.4.8 Nonly_captured............c.ouuiinnnneniennnnnnn.. 97
12.4.9 N\fresho 97
12410 \reach ... 97
12411 \durationooniiin 98
12,412 \SPACE . oo ittt 98
12.4.13 \working Space................couiiiiiiiiinnnenn... 98
12.4.14 \nonnullelementscoveiiuneeennnnennnn. 99
12.4.15 Informal Predicates........... 99
12416 \Bypeof ... 99
12,417 Nelembype ..ottt 99
12418 \BYPE « oo e 100
12.4.19 NLOCKSET «vvv ettt e e 100
12.4.20 0 \ID@X . oottt e 100
12.4.21 \is_initializedcoiviiniininea... 100
12.4.22 N\invariant_foroiiiiiiiiiiiii... 101
12.4.23 \lblneg and \1blpos.................ooiiiuuunn... 101
12.4.24 Quantified Expressions.............. ..., 101
12.4.24.1 Universal and Existential Quantifiers 102
12.4.24.2 Generalized Quantifiers......................... 102
12.4.24.3 Numerical Quantifier........................... 103
12.4.24.4 Executability of Quantified Expressions.......... 103
12.4.24.5 Modifiers for Bound Variables................... 103
12.4.24.6 Quantifying over Reference Types............... 104

12.5 Set Comprehensionsciiiiiiiiin... 104
12.6 JML Operatorst 105
12.6.1 Subtype operator............ 105
12.6.2 Equivalence and Inequivalence Operators.............. 105
12.6.3 Forward and Reverse Implication Operators 105
12.6.4 Lockset Ordering i ... 106

12.7 Store Refs 106

iv

13 Statements and Annotation Statements.. 108

13.1 Local Declaration Statements 108
13.1.1 Modifiers for Local Declarations 109

13.2 Loop Statements............ ... 109
13.2.1 Loop Invariants............. 111
13.2.2 Loop Variant Functions 112

13.3 Assert Statements...............iiiii 113
13.4 JML Annotation Statements 113
13.4.1 Assume Statements............ 114
13.4.2 Set Statementsiiiiiiii... 114
13.4.3 Refining Statements L. 114
13.4.4 Unreachable Statements.............................. 115
13.4.5 Debug Statements 116
13.4.6 Hence By Statements 116

14 Redundancy..............oiiieueeee.... 118
14.1 Redundant Implications and Redundantly Clauses.......... 118
14.2 Redundant Examples........ 120
15 Model Programs........................ 122
15.1 Ideas Behind Model Programs............................. 122
15.2 Extracting Model Program Specifications 124
15.3 Details of Model Programs................................ 124
15.4 Nondeterministic Choice Statement........................ 124
15.5 Nondeterministic If Statement............................. 124
15.6 Specification Statements............. 125
15.6.1 Continues Clauseouieriineeiineen... 126
15.6.2 Breaks Clause..............iiiiinina.. 126
15.6.3 Returns Clausecoiiiiinennena.. 126

16 Specification for Subtypes............... 127
16.1 Method of Specifying for Subclasses 127
16.2 Code Contractsooouniiin . 127
17 Separate Files for Specifications 129
17.1 File Name Suffixes 129
17.2 Using Separate Files................., 129
17.3 Type Checking Separate Files............................. 129

17.4 Default Constructors and Separate Files 131

18 Universe Type System 133

18.1 Basic Concepts of Universes.oovviiernnoo... 134
182 Repand Peer........ ... 134
18.3 Readonly...... ... 135
18.4 Ownership Modifiers for Array Types...................... 136
18.5 Default Ownership Modifiers.............................. 137
18.6 Ownership Type Rules, 138
18.6.1 Ownership Subtyping 138
18.6.2 Ownership Typing for Expressions 138
18.7 Casts and Ownership Types.................... ... 139
19 Safe Math Extensions................... 140
RN ST 140
19.2 \realo 140

Appendix A Deprecated and Replaced Syntax

....................................... 141

A.1 Deprecated Syntax.............oeiieiiiiiinnnneea. 141
A.1.1 Deprecated Annotation Markers....................... 141
A.1.2 Deprecated Represents Clause Syntax.................. 141
A.1.3 Deprecated Monitors For Clause Syntax 141
A.1.4 Deprecated File Name Suffixes 141
A.1.5 Deprecated Refine Prefix 142
A2 Replaced Syntax. ... 142
Appendix B Incompatible Changes......... 143
Appendix C Grammar Summary........... 144
C.1 Lexical Conventions. 144
C.2 Compilation Units........... ... 149
C.3 Type Declarations i, 149
C.4 Class and Interface Member Declarations 150
C.5 Type Specifications ... 151
C.6 Method Specifications.o ... 152
C.7 Data Groupsottt ettt 154
C.8 Specification Inheritance 154
C.9 Predicates and Specification Expressions.................... 154
C.10 Statements and Annotation Statements.................... 158
C.11 Redundancy.............ooioimiiniiiiine, 159
C.12 Model Programs..............oiiiinne .. 160
C.13 Specification for Subtypes.............. 161
C.14 Separate Files for Specifications........................... 161
C.15 Universe Type System, 161
C.16 Safe Math Extensions.............. 161

Appendix D Modifier Summary............ 163

Appendix E Type Checking Summary...... 166

Appendix F Verification Logic Summary ... 167

Appendix G Differences 168
G.1 Differences Between JML and Other Tools.................. 168
G.1.1 Differences Between JML and ESC/Java2.............. 168

G.2 Differences Between JML and Java......................... 169
G.2.1 Non-null by Default 169
Appendix H What’s Missing............... 170
Bibliography............... 171

vii

Chapter 1: Introduction 1

1 Introduction

JML is a notation for formally specifying the behavior and interfaces of Java [Arnold-
Gosling-Holmes00] [Gosling-etal00] classes and methods.

The goal of this reference manual is to precisely record the design of JML. We include
both informal semantics (intentions) and where possible [[[we will eventually include]]] for-
mal semantics (describing when an implementation satisfies a specification). We also discuss
the implications for various tools (such as the run-time assertion checker, static checkers
such as ESC/Java2, and documentation generators such as jmldoc [Burdy-etal03]).

In this manual we also try to give examples and explanations, and we hope that these will
be helpful to readers trying to learn about formal specification using JML. However, this
manual is not designed to give all the background needed to write JML specifications, nor to
give the prospective user an overview of a useful subset of the language. For this background,
we recommend starting with the papers “Design by Contract with JML” [Leavens-Cheon06|
and “JML: A notation for detailed design” [Leavens-Baker-Ruby99], and continuing with
the paper “Preliminary Design of JML” [Leavens-Baker-Ruby06]. These are all available
from the JML web site ‘http://www.jmlspecs.org/’, where further readings and examples
may also be found.

Readers with the necessary background, and users wanting more details may, we hope,
profit from reading this manual. We suggest reading this manual starting with chapters
1-3, skimming chapter 4 quickly, skimming chapter 5 to get the idea of what declarations
mean in JML, and then reading the chapters on class specifications (chapter 6) and method
specifications (chapter 9), paying particular attention to the examples. After that, one can
use the rest of this manual as a reference.

The rest of this chapter describes some of the fundamental ideas and background behind
JML.

1.1 Behavioral Interface Specifications

JML is a behavioral interface specification language (BISL) that builds on the Larch
approach [Guttag-Horning93] [Guttag-Horning-Wing85b] and that found in APP
[Rosenblum95] and Eiffel [Meyer92b] [Meyer97]. In this style of specification, which
might be called model-oriented [Wing90a], one specifies both the interface of a method
or abstract data type and its behavior [Lamport89]. In particular JML builds on
the work done by Leavens and others in Larch/C++ [Leavens-Baker99] [Leavens96b]
[Leavens97c|. (Indeed, large parts of this manual are adapted wholesale from the
Larch/C++ reference manual [Leavens97c|.) Much of JML’s design was heavily influenced
by the work of Leino and his collaborators [Leino95] [Leino95b] [Leino98] [Leino-etal00]
[Leino-Nelson-Saxe00]. ~JML continues to be influenced by ongoing work in formal
specification and verification. A collection of papers relating directly to JML and its
design is found at ‘http://www.jmlspecs.org/papers.shtml’.

The interface of the method or type is the information needed to use it from other parts
of a program. In the case of JML, this is the Java syntax and type information needed to
call a method or use a field or type. For a method the interface includes such things as the
name of the method, its modifiers (including its visibility and whether it is final) its number
of arguments, its return type, what exceptions it may throw, and so on. For a field the

Chapter 1: Introduction 2

interface includes its name and type, and its modifiers. For a type, the interface includes
its name, its modifiers, its package, whether it is a class or interface, its supertypes, and the
interfaces of the fields and methods it declares and inherits. JML specifies all such interface
information using Java’s syntax.

A behavior of a method or type describes a set of state transformations that it can
perform. A behavior of a method is specified by describing: a set of states in which calling
the method is defined, a set of locations that the method is allowed to assign to (and hence
change), and the relations between the calling state and the state in which it either returns
normally, throws an exception, or for which it might not return to the caller. The states
for which the method is defined are formally described by a logical assertion, called the
method’s precondition. The allowed relationships between these states and the states that
may result from normal return are formally described by another logical assertion called
the method’s normal postcondition. Similarly the relationships between these pre-states
and the states that may result from throwing an exception are described by the method’s
exceptional postcondition. The states for which the method need not return to the caller are
described by the method’s divergence condition; however, explicit specification of divergence
is rarely used in JML. The set of locations the method is allowed to assign to is described
by the method’s frame axiom [Borgida-etal95]. In JML one can also specify other aspects
of behavior, such as the time a method can use to execute and the space it may need.

The behavior of an abstract data type (ADT), which is implemented by a class in Java, is
specified by describing a set of abstract fields for its objects and by specifying the behavior
of its methods (as described above). The abstract fields for an object can be specified
either by using JML’s model and ghost fields [Cheon-etal05], which are specification-only
fields, or by specifying some of the fields used in the implementation as spec_public or
spec_protected. These declarations allow the specifier using JML to model an instance
as a collection of abstract instance variables, in much the same way as other specification
languages, such as Z [Hayes93] [Spivey92] or Fresco [Wills92b].

1.2 A First Example

For example, consider the following JML specification of a simple Java abstract class
IntHeap. (An explanation of the notation follows the specification. This specification,
like the others in this manual, should ship with the JML tools, or you can find it online
from: ‘http://jmlspecs.org/examples.shtml’.

Chapter 1: Introduction 3

package org.jmlspecs.samples. jmlrefman; // line 1
// line 2

public abstract class IntHeap { // line 3
// line 4

//@ public model non_null int [] elements; // line 5

// line 6

/*@ public normal_behavior // line 7

@ requires elements.length >= 1; // line 8

@ assignable \nothing; // line 9
@ ensures \result // line 10

Q == (\max int j; // line 11

Q 0 <= j && j < elements.length; // line 12

@ elements[j]); // line 13
Qx/ // line 14
public abstract /*@ pure @*/ int largest(); // line 15

// line 16

//@ ensures \result == elements.length; // line 17
public abstract /*@ pure @*/ int size(); // line 18

}; // line 19

The interface of this class consists of lines 1, 3, 15, and 18. Line 3 specifies the class
name, and the fact that the class is both public and abstract. Lines 15 and 18, apart from
their comments, give the interface information for the methods of this class.

The behavior of this class is specified in the JML annotations found in the special
comments that have an at-sign (@) as their first character following the usual comment
beginning. Such lines look like comments to Java, but are interpreted by JML and its
tools. For example, line 5 starts with an annotation comment marker of the form //@, and
this annotation continues until the // towards the end of the line, which starts a comment
within the annotation which even JML ignores. The other form of such annotations can be
seen on lines 7 through 14, line 17, and on lines 15 and 18. These annotations start with
the characters /*@ and end with either @/ or */; within such annotations, at-signs (@) at
the beginnings of lines are ignored by JML. Note that there can be no space between the
start of comment marker, either // or /* and the first at-sign; thus // @ starts a comment,
not an annotation. (See Chapter 4 [Lexical Conventions|, page 26, for more details about
annotations.)

The first annotation, on line 5 of the figure above, gives the specification of a field, named
elements, which is part of this class’s behavioral specification. Ignoring, for the moment
the extra JML modifiers, one should think of this field, in essence, as being declared like:

public int[] elements;

That is, it is a public field with an integer array type; within specifications it is treated as
such. However, because it is declared in an annotation, this field cannot be manipulated
by Java code. Therefore, for example, the fact that the field is declared public is not a
problem, because it cannot be directly changed by Java code.

Chapter 1: Introduction 4

Such declarations of fields in annotations should be marked as specification-only fields,
using the JML modifier model.! A model field should be thought of as an abstraction
of a set of concrete fields used in the implementation of this type and its subtypes. (See
Section 8.4 [Represents Clauses], page 60, for a discussion of how to specify the connection
between the concrete fields and such model fields. See also the paper by Cheon et al.
[Cheon-etal05].) That is, we imagine that objects that are instances of the type IntHeap
have such a field, whose value is determined by the concrete fields that are known to Java
in the actual object. Of course at runtime, objects of type IntHeap have no such field, the
model fields are purely imaginary. Model fields are thus a convenient fiction that is useful
for describing the behavior of an ADT. One does not have to worry about their cost (in
space or time), and should only be concerned with how they clarify the behavior of an ADT.

The other annotation used on line 5 is non_null. This just says that in any publicly-
visible state, the value of elements must not be null. It is thus a simple kind of invariant
(see Section 8.2 [Invariants], page 52).

In the above specification of IntHeap, the specification of each method precedes its in-
terface declaration. This follows the usual convention of Java tools, such as JavaDoc, which
put such descriptive information in front of the method. In JML, it is also possible to put
the specification just before the semicolon (;) following the method’s interface information
(see Chapter 9 [Method Specifications], page 63), but we will usually not to do that in this
document.

The specification of the method largest is given on lines 7 through 15. Line 7 says that
this is a public, normal behavior specification. JML permits several different specifications
for a given method, which can be of different privacy levels [Ruby-Leavens00] [Leavens-
Mueller07]. The modifier public says that the specification is intended for use by clients.
(If the privacy modifier had been protected, for example, then the specification would have
been intended for subclasses.)

The keyword normal_behavior tells JML several things. First, it says that the specifi-
cation is a heavyweight method specification, as opposed to a lightweight method specifi-
cation like that given on line 17. A heavyweight specification uses one of JML’s behavior
keywords, like normal_behavior, which tells JML that the method specification is intended
to be complete. By contrast, a lightweight specification does not use one of JML’s behavior
keywords, and tells JML that the specification is incomplete in the sense that it contains
only some of what the specifier had in mind.? Second, the keyword normal_behavior
tells JML that when the precondition of this method is met, then the method must re-
turn normally, without throwing an exception. In other words, it says that the exceptional
postcondition is false, which prohibits the method from throwing an exception when the
precondition holds. (Third, it says that the divergence condition defaults to false. See
Chapter 9 [Method Specifications], page 63, for more details.)

The heart of the method specification of largest is found on lines 7 through 13. This
part of the specification gives the method’s precondition, frame axiom, and normal postcon-
dition. The precondition is contained in the requires clause on line 8. The frame axiom

! This is the usual way to declare a specification-only field; it is also possible to use the ghost modifier

(see Section 2.2 [Model and Ghost], page 11).
2 Lightweight specifications come from ESC/Java.

Chapter 1: Introduction 5)

is contained in the assignable clause on line 9. The normal postcondition is contained in
the ensures clause on lines 10-13.3

The precondition in the requires clause on line 8 says that the length of elements must
be at least 1 before this method can be called. If that is not true, then the method is under
no obligation to fulfill the rest of the specified behavior.

The frame axiom in the assignable clause on line 9 says that the method may not assign to
any locations (i.e. fields of objects) that are visible outside the method and which existed
before the method started execution. (The method may still modify its local variables.)
This form of the frame axiom is quite common.?* Note that in assignable clauses and in
assertions, JML uses keywords that start with a backslash (\), to avoid interfering with
identifiers in the user’s program. Examples of this are \nothing on line 9 and \result on
line 10.

The postcondition in the ensures clause, on lines 10 through 13, says that the result of
the method (\result) must be equal to the maximum integer found in the array elements.
This postcondition uses JML’s \max quantifier (lines 11 through 13). Such a quantifier is
always parenthesized, and can consist of three parts. The first part of a quantifier is a
declaration of some quantified variables, in this case the integer j on line 11. The second
part is a range predicate, on line 12, which constrains the quantified variables. The third
part is the body of the quantifier, on line 13, which in this case describes the elements of
the array from which the maximum value is taken.

The methods largest and size are both specified using the JML modifier pure. This
modifier says that the method has no side effects, and allows the method to be used in
assertions, if desired.

The method size is specified using a lightweight specification, which is given on line 17.
The ensures clause on line 17 says nothing about the precondition, frame axiom, exceptional
postcondition, or divergence condition of size, although the use of pure on line 18 gives an
implicit frame axiom. Such a form of specification is useful when one only cares to state (the
important) part of a method’s specification. It is also useful when first learning JML, and
when one is using tools, such as ESC/Java2, that do not need heavyweight specifications.

The specifications of the method largest above is very precise: it gives a complete
specification of what the method does. Even the specification of size has a fairly complete
normal postcondition. Omne can also give JML specifications that are far less detailed.
For example, we could just specify that the result of size is non-negative, with a normal
postcondition such as

//@ ensures \result >= 0;
instead of the postcondition given earlier. Such incomplete specifications give consider-
ably more freedom to implementations, and can often be useful for hiding implementation
details. However, one should try to write specifications that capture the important prop-
erties expected of callers (preconditions) and implementations (postconditions) [Meyer92al
[Liskov-Guttag86].

3

JML also has various synonyms for these keywords; one can use pre for requires, modifies or
modifiable for assignable, and post for ensures, if desired. See Chapter 9 [Method Specifications],

page 63, for more details.

4 However, unlike Larch BISLs and earlier versions of JML, this is not the default for an omitted

assignable clause (see Section 9.9.9 [Assignable Clauses], page 83). Thus line 9 cannot be omitted
without changing the meaning of the specification.

Chapter 1: Introduction 6

1.3 What is JML Good For?

JML is a formal specification language tailored to Java. Its basic use is thus the formal
specification of the behavior of Java program modules. As it is a behavioral interface
specification language, JML specifies how to use such Java program modules from within a
Java program; hence JML is not designed for specifying the behavior of an entire program.
So the question “what is JML good for?” really boils down to the following question: what
good is formal specification for Java program modules?

The two main benefits in using JML are:

e the precise, unambiguous description of the behavior of Java program modules (i.e.,
classes and interfaces), and documentation of Java code,

e the possibility of tool support [Burdy-etal03].

Although we would like tools that would help with reasoning about concurrent aspects
of Java programs, the current version of JML focuses on the sequential behavior of Java
code. While there is work in progress on extending JML to support concurrency [Rodriguez-
etal05], the current version of JML does not have features that help specify how Java threads
interact with each other. JML does not, for example, allow the specification of elaborate
temporal properties, such as coordinated access to shared variables or the absence of dead-
lock. Indeed, we assume, in the rest of this manual, that there is only one thread of execution
in a Java program annotated with JML, and we focus on how the program manipulates ob-
ject states. To summarize, JML is currently limited to sequential specification; we say that
JML specifies the sequential behavior of Java program modules.

In terms of detailed design documentation, a JML specification can be a completely
formal contract about an interface and its sequential behavior. Because it is an interface
specification, one can record all the Java details about the interface, such as the parameter
mechanisms, whether the method is final, protected, etc.; if one used a specification
language such as VDM-SL or Z, which is not tailored to Java, then one could not record
such details of the interface, which could cause problems in code integration. For example, in
JML one can specify the precise conditions under which certain exceptions may be thrown,
something which is difficult in a specification language that is not tailored to Java and that
doesn’t have the notion of an exception.

When should JML documentation be written? That is up to you, the user. A goal of
JML is to make the notation indifferent to the precise programming method used. One can
use JML either before coding or as documentation of finished code. While we recommend
doing some design before coding, JML can also be used for documentation after the code
is written.

Reasons for formal documentation of interfaces and their behavior, using JML, include
the following.

e One can ship the object code for a class library to customers, sending the JML spec-
ifications but not the source code. Customers would then have documentation that
is precise, unambiguous, but not overly specific. Customers would not have the code,
protecting proprietary rights. In addition, customers would not rely on details of the
implementation of the library that they might otherwise glean from the code, easing
the process of improving the code in future releases.

Chapter 1: Introduction 7

e One can use a formal specification to analyze certain properties of a design carefully
or formally (see [Hall90] and Chapter 7 of [Guttag-Horning93]). In general, the act of
formally specifying a program module has salutary effects on the quality of the design.

e One can use the JML specification as an aid to careful reasoning about the correctness
of code, or even for formal verification [Huisman01] [Jacobs-Poll01] [Ruby06].

e JML specifications can be used by several tools that can help debug and improve the
code [Burdy-etal03].

There is one additional benefit from using JML. It is that JML allows one to record
not just public interfaces and behavior, but also some detailed design decisions. That is,
in JML, one can specify not just the public interface of a Java class, but also behavior of
a class’s protected and private interfaces. Formally documenting a base class’s protected
interface and “subclassing contract” allows programmers to implement derived classes of
such a base class without looking at its code [Ruby-Leavens00] [Ruby06].

Recording the private interface of a class may be helpful in program development or
maintenance. Usually one would expect that the public interface of a class would be speci-
fied, and then separate, more refined specifications would be given for use by derived classes
and for detailed implementation

The reader may also wish to consult the “Preliminary Design of JML” [Leavens-Baker-
Ruby06] for a discussion of the goals that are behind JML’s design. Apart from the improved
precision in the specifications and documentation of code, the main advantage of using a
formal specification language, as opposed to informal natural language, is the ease and
accuracy of tool support. One specific goal that has emerged over time is that JML should
be able to unify several different tool-building efforts in the area of formal methods.

The most basic tool support for JML — simply parsing and typechecking — is already
useful. Whereas informal comments in code are typically not kept up to date as the code is
changed, the simple act of running the typechecker will catch any JML assertions referring
to parameter or field names that no longer exist, and all other typos of course. Enforcing
the visibility rules can also provide useful feedback; for example, a precondition of a public
method which refers to a private field of an object is suspect.

Of course, there are more exciting forms of tool support than just parsing and type-
checking. In particular JML is designed to support static analysis (as in ESC/Java [Leino-
etal00]), formal verification (as in the LOOP tool [Huisman01] [Jacobs-etal98]), recording
of dynamically obtained invariants (as in Daikon [Ernst-etal01]), runtime assertion checking
(as in JML’s runtime assertion checker, jmlc [Cheon-Leavens02b] [Cheon03]), unit testing
[Cheon-Leavens02], and documentation (as in JML’s jmldoc tool). The paper by Burdy et
al. [Burdy-etal03] is a survey of tools for JML. The utility of these tools is the ultimate
answer to the question of what JML is good for.

1.4 Status and Plans for JML

JML is still in development. As you can see, this reference manual is still a draft, and there
are some holes in it. [[[And some notes for the authors by the authors that look like this.]]]

Influences on JML that may lead to changes in its design include an eventual integration
with Bandera [Corbett-etal00] or other tools for specification of concurrency, aspect-oriented
programming, and the evolution of Java itself. Another influence is the ongoing effort to

Chapter 1: Introduction 8

use JML on examples, in designing the JML tools, and efforts to give a formal semantics
to JML.

1.5 Historical Precedents

JML combines ideas from Eiffel [Meyer92a] [Meyer92b] [Meyer97] with ideas from
model-based specification languages such as VDM [Jones90] and the Larch family [Guttag-
Horning93] [LeavensLarchFAQ] [Wing87] [Wing90a]. It also adds some ideas from the
refinement calculus [Back88] [Back-vonWright89a] [Back-vonWright98] [Morgan-Vickers94|
[Morgan94]. In this section we describe the advantages and disadvantages of these
approaches. Readers unfamiliar with these historical precedents may want to skip this
section.

Formal, model-based languages such as those typified by the Larch family build on
ideas found originally in Hoare’s work. Hoare used pre- and postconditions to describe
the semantics of computer programs in his famous article [Hoare69]. Later Hoare adapted
these axiomatic techniques to the specification and correctness proofs of abstract data types
[Hoare72a]. To specify an ADT, Hoare described a mathematical set of abstract values for
the type, and then specified pre- and postconditions for each of the operations of the type
in terms of how the abstract values of objects were affected. For example, one might specify
a class IntHeap using abstract values of the form empty and add(i,h), where i is an int
and h is an IntHeap. These notations form a mathematical vocabulary used in the rest of
the specification.

There are two advantages to writing specifications with a mathematically-defined ab-
stract values instead of directly using Java variables and data structures. The first is that
by using abstract values, the specification does not have to be changed when the particular
data structure used in the program is changed. This permits different implementations of
the same specification to use different data structures. Therefore the specification forms a
contract between the rest of the program in the implementation, which ensures that the rest
of the program is also independent of the particular data structures used [Liskov-Guttag86|
[Meyer97] [Meyer92a] [Parnas72]. Second, it allows the specification to be written even
when there are no implementation data structures, as is the case for IntHeap.

This idea of model-oriented specification has been followed in VDM [Jones90], VDM-
SL [Fitzgerald-Larsen98] [ISO96], Z [Hayes93] [Spivey92], and the Larch family [Guttag-
Horning93]. In the Larch approach, the essential elaboration of Hoare’s original idea is
that the abstract values also come with a set of operations. The operations on abstract
values are used to precisely describe the set of abstract values and to make it possible to
abbreviate interface specifications (i.e., pre- and postconditions for methods). In Z one
builds abstract values using tuples, sets, relations, functions, sequences, and bags; these all
come with pre-defined operations that can be used in assertions. In VDM one has a similar
collection of mathematical tools to describe abstract values, and another set of pre-defined
operations. In the Larch approach, there are some pre-defined kinds of abstract values
(found in Guttag and Horning’s LSL Handbook, Appendix A of [Guttag-Horning93]), but
these are expected to be extended as needed. (The advantage of being able to extend the
mathematical vocabulary is similar to one advantage of object-oriented programming: one
can use a vocabulary that is close to the way one thinks about a problem.)

Chapter 1: Introduction 9

However, there is a problem with using mathematical notations for describing abstract
values and their operations. The problem is that such mathematical notations are an extra
burden on a programmer who is learning to use a specification language. The solution to
this problem is the essential insight that JML takes from the Eiffel language [Meyer92a]
[Meyer92b] [Meyer97]. Eiffel is a programming language with built-in specification con-
structs. It features pre- and postconditions, although it has no direct support for frame
axioms. Programmers like Eiffel because they can easily read the assertions, which are
written in Eiffel’s own expression syntax. However, Eiffel does not provide support for
specification-only variables, and it does not provide much explicit support for describing
abstract values. Because of this, it is difficult to write specifications that are as mathemat-
ically complete in Eiffel as one can write in a language like VDM or Larch/C++.

JML attempts to combine the good features of these approaches. From FEiffel we have
taken the idea that assertions can be written in a language that is based on Java expressions.
We also adopt the “0ld” notation from Fiffel, which appears in JML as \old, instead
of the Larch-style annotation of names with state functions. To make it easy to write
more complete specifications, however, we use various semantic ideas from model-based
specification languages. In particular we use a variant of abstract value specifications,
where one describes the abstract value of an object implicitly using several model fields.
These specification-only fields allow one to implicitly partition the abstract value of an
object into smaller chunks, which helps in stating frame axioms. More importantly, we hide
the mathematical notation behind a facade of Java classes. This makes it so the operations
on abstract values appear in familiar (although perhaps verbose) Java notation, and also
insulates JML from the details of the particular mathematical logic used to do reasoning.

1.6 Acknowledgments

The work of Leavens and Ruby was supported in part by a grant from Rockwell International
Corporation and by NSF grant CCR-9503168. Work on JML by Leavens, and Ruby was also
supported in part by NSF grant CCR-9803843. Work on JML by Cheon, Clifton, Leavens,
Ruby, and others has been supported in part by NSF grants CCR-0097907, CCR-0113181,
CCF-0428078, and CCF-0429567. Support from the NSF continues under a Computing
Research Infrastructure (CRI) grant jointly to several institutions: CNS 08-08913 (Leavens
at U. of Central Florida, and a subcontact to Rajan and Basu at Iowa State Unviversity),
CNS 07-07874 (Cheon at UTEP), CNS 07-07701 (Clifton at Rose Hulman), CNS 07-07885
(Flanagan at U. Cal. Santa Cruz), CNS 07-08330 (Naumann at Stevens), and CNS 07-09169
(Robby at Kansas State). The work of Poll is partly supported by the Information Society
Technologies (IST) Programme of the European Union, as part of the VerifiCard project,
IST-2000-26328.

Thanks to Bart Jacobs, Rustan Leino, Arnd Poetzsch-Heffter, and Joachim van den Berg,
for many discussions about the semantics of JML specifications. Thanks for Raymie Stata
for spearheading an effort at Compaq SRC to unify JML and ESC/Java, and to Rustan and
Raymie for many interesting ideas and discussions that have profoundly influenced JML.
Thanks to Leo Freitas, Robin Greene, Jesus Ravelo, and Faraz Hussain for comments and
questions on earlier versions of this document. Thanks to the many who have worked on
the JML checker used to check the specifications in this document. Leavens thanks lowa
State University and its computer science department for helping foster and support the
initial work on JML.

Chapter 1: Introduction 10

See the “Preliminary Design of JML” [Leavens-Baker-Ruby06] for more acknowledg-
ments relating to the earlier history, design, and implementation of JML.

Chapter 2: Fundamental Concepts 11

2 Fundamental Concepts

This chapter discusses fundamental concepts that are used in explaining the semantics of
JML.

2.1 Types can be Classes and Interfaces

In this manual we use type to mean either a class, interface, or primitive value type in Java.
(Primitive value types include boolean, int, etc.)

A reference type is a type that is not a primitive value type, that is either a class or
interface. When it is not necessary to emphasize that primitive value types are not included,
we often shorten “reference type” to just “type”.

2.2 Model and Ghost

In JML one can declare various names with the modifier model; for example one can declare
as “model” fields, methods, and even types. One can also declare some fields as ghost fields.
JML also has a model import directive (see Chapter 5 [Compilation Units|, page 35).

The model modifier has two meanings. The first meaning of a feature declared with
model is that it is only present for specification purposes. For example a model field is
an imaginary field that is only used for specifications and is not available for use in Java
code outside of annotations. Similarly, a model method is a method that can be used in
annotations, but cannot be used in ordinary Java code. A model import directive imports
names that can be used only within JML annotations. The second meaning of model
depends on the type of feature being declared.

The most common and useful model declarations are model fields. A model field should
be thought of as the abstraction of one or more non-model (i.e., Java or concrete) fields
[Cheon-etal05]. (By contrast, some authors refer to what JML calls model fields as “ab-
stract fields” [Leino98].) The value of a model field is determined by the concrete fields it
abstracts from; in JML this relationship is specified by a represents clause (see Section 8.4
[Represents Clauses|, page 60). (Thus the values of the model fields in an object determines
its “abstract value” [Hoare72al.) A model field also defines a data group [Leino98], which
collects model and concrete fields and is used to tell JML what concrete fields may be
assigned by various methods (see Chapter 10 [Data Groups|, page 87).

Unlike model fields, model methods and model types are not abstractions of non-model
methods or types. They are simply methods or types that we imagine that the program
has, to help in a specification.

A ghost field is similar to a model field, in that it is also only present for purposes
of specification and thus cannot be used outside of JML annotations. However, unlike a
model field, a ghost field does not have a value determined by a represents clause; instead
its value is directly determined by its initialization or by a set-statement (see Chapter 13
[Statements and Annotation Statements], page 108).

Although these model and ghost names are used only for specifications, JML uses the
same namespace for such names as for normal Java names. Thus, one cannot declare a field
to be both a model (or ghost) field and a normal Java field in the same class (see Chapter 17
[Separate Files for Specifications]|, page 129). Similarly, a method is either a model method

Chapter 2: Fundamental Concepts 12

or not. In part, this is done because JML has no syntactic distinction between Java and
JML field access or method calls. This decision makes it an error for someone to use the
same name as a model or ghost feature in an implementation. In such a case if the Java
code is considered to be the eventual goal, then one can either change the name of the JML
feature or have one declaration in which the Java feature is modified with the JML modifier
spec_public. See Section 2.4 [Privacy Modifiers and Visibility], page 12, for more about
spec_public.

2.3 Lightweight and Heavyweight Specifications

In JML one is not required to specify behavior completely. Indeed, JML has a style of
method specification case, called lightweight, in which the user only says what interests
them. On the other hand, in a heavyweight specification case, JML expects that the user is
fully aware of the defaults involved. In a heavyweight specification case, JML expects that
a user only omits parts of the specification case when the user believes that the default is
appropriate.

Users distinguish these between such cases of method specifications by using different
syntaxes. See Section 9.2 [Organization of Method Specifications], page 63, for details, but
in essence in a method specification case that uses one of the behavior keywords (such as
normal_behavior, exceptional_behavior, or behavior) is heavyweight, while one that
does not use such a keyword is lightweight.

2.4 Privacy Modifiers and Visibility

Java code that is not within a JML annotation uses the usual access control rules for
determining visibility (or accessibility) of Java [Arnold-Gosling-Holmes00] [Gosling-etal00].
That is, a name declared in package P and type P.T may be referenced from outside P only
if it is declared as public, or if it is declared as protected and the reference occurs within
a subclass of P.T. This name may be referenced from within P but outside of P.T only if it
is declared as public, default access, or protected. Such a name may always be referenced
from within P.7T, even if it is declared as private. See the Java language specification
[Gosling-etal00] for details on visibility rules applied to nested and inner classes.

Within annotations, JML imposes some extra rules in addition to the usual Java visibility
rules [Leavens-Baker-Ruby06] [Leavens-Mueller07]. These rules depend not just on the
declaration of the name but also on the visibility level of the context that is referring to
the name in question. For purposes of this section, the annotation context of a reference
to a name is the smallest grammatical unit with an attached (or implicit) visibility. For
example, this annotation context could be a method specification case, an invariant, a
history constraint, or a field declaration. The visibility level of such an annotation context
can be public, protected, private, or default (package) visibility.

JML has two rules governing visibility that differ from Java. The first is that an annota-
tion context cannot refer to names that are more hidden than the context’s own visibility.
That is, for a reference to a name z to be legal, the visibility of the annotation context
that contains the reference to x must be at least as permissive as the declaration of z itself.
The reason for this restriction is that the people who are allowed to see the annotation
should be able to see each of the names used in that annotation [Meyer97], otherwise they
might not understand it. For example, public clients should be able to see all the declara-

Chapter 2: Fundamental Concepts 13

tions of names in publicly visible annotations, hence public annotations should not contain
protected, default access, or private names.

In more detail, suppose = is a name declared in package P and type P.T.

e An expression in a public annotation context (e.g., in a public method specification
case) can refer to z only if z is declared as public (or spec_public).

e An expression in a protected annotation context (e.g., in a protected method specifi-
cation) can refer to x only if = is declared as public or protected, and z must also
be visible according to Java’s rules (so if z is protected, or spec_protected, then the
reference must either be from within P or, if it is from outside P, then the reference
must occur in a subclass of P.T).

e An expression in a default (package) visibility annotation context (e.g., in a default
visibility method specification) can refer to x only if z is declared as public, protected,
or with default visibility, and x must also be visible according to Java’s rules (so if z
has default visibility, then the reference must be from within P).

e An expression in a private visibility annotation context (e.g., in a private method
specification) can refer to z only if z is visible according to Java’s rules (so if z has
private visibility, then the reference must be from within P.T").

In the following example, the comments on the right show which uses of the various
privacy level names are legal and illegal. Similar examples could be given for method
specifications, history constraints, and so on.

public class PrivacyDemolLegalAndIllegal {
public int pub;
protected int prot;
int def;
private int priv;

//@ public invariant pub > O; // legal

//@ public invariant prot > 0; // illegal!
//@ public invariant def > O; // illegall
//@ public invariant priv < 0; // illegall!

//@ protected invariant prot > 1; // legal
//@ protected invariant def > 1; // illegall!
//@ protected invariant priv < 1; // illegal!

//@ invariant def > 1; // legal
//@ invariant priv < 1; // illegal!
//@ private invariant priv < 1; // legal

¥

Note that in a lightweight method specification, the privacy level is assumed to be
the same privacy level as the method itself. That is, for example, a protected method
with a lightweight method specification is considered to be a protected annotation context
for purposes of checking proper visibility usage [Leavens-Baker-Ruby06] [Mueller02]. See

Chapter 2: Fundamental Concepts 14

Section 2.3 [Lightweight and Heavyweight Specifications], page 12, for more about the
differences between lightweight and heavyweight specification cases.

(The ESC/Java2 system has the same visibility rules as described above. However, this
was not true of the old version of ESC/Java [Leino-Nelson-Saxe00].)

The JML keywords spec_public and spec_protected provide a way to make a declara-
tion that has different visibilities for Java and JML. For example, the following declaration
declares an integer field that Java regards as private but JML regards as public.

private /#Q@ spec_public @/ int length;

Thus, for example, length in the above declaration could be used in a public method
specification or invariant.

However, spec_public is more than just a way to change the visibility of a name for
specification purposes. When applied to fields it can be considered to be shorthand for the
declaration of a model field with a similar name. That is, the declaration of length above
can be thought of as equivalent to the following declarations, together with a rewrite of the
Java code that uses length to use _length instead (where we assume _length is fresh, i.e.,
not used elsewhere in the class).

//@ public model int length;
private int _length; //@ in length;
//@ private represents length = _length;
The above desugaring allows one to change the underlying field without affecting the
readers of the specification.

The desugaring of spec_protected is the same as for spec_public, except that one
uses protected instead of public in the desugared form.

The second rule for visibility prohibits an annotation context from writing specifications
in an annotation context that constrain fields that are visible to more clients than the
specifications (see section 3 of [Leavens-Mueller07]). In particular, this applies to invariants
and history constraints. Thus, for example, a private invariant cannot mention a public field,
since clients could see the public field without seeing the invariant, and thus would not know
when they might violate the private invariant by assigning to the public field. Thus, for
example, the invariants in the following example are all illegal, since they constrain fields
that are more visible than the invariant itself.

public class PrivacyDemoIllegal {
public int pub;
protected int prot;
int def;
private int priv;

//@ protected invariant pub > 1; // illegal!

//@ invariant pub > 1; // illegal!
//@ invariant prot > 1; // illegal!
//@ private invariant pub > 1; // illegal!
//@ private invariant prot > 1; // illegall

//@ private invariant def > 1; // illegal!

Chapter 2: Fundamental Concepts 15

}

2.5 Instance vs. Static

In Java, a feature of a class or interface may declared to be static. This means that the
feature is not part of instances of that type, and it means that references to that feature
(from outside the type and its subtypes) must use a qualified name of the form T.f, which
refers to the static feature f in type 7.

A feature, such as a field or method, of a type that is not static is an instance feature.
For example, in a Java interface, all the methods declared are instance methods, although
fields are static by default. In a Java class the default is that all features are instance
features, unless the modifier static is used.

In JML declarations follow the normal Java rules for determining whether they are
instance or static features of a type. However, within annotations it is possible to explicitly
label features as instance (see Chapter 6 [Type Declarations|, page 37 for the syntax).
The use of the instance modifier is necessary to declare model and ghost instance fields
in interfaces, since otherwise the Java default modifier for fields in interfaces (static) would
apply.

It is also useful, in JML, to label invariants as either static or instance invariants. See
Section 8.2.1 [Static vs. instance invariants|, page 56, for more on this topic.

2.6 Locations and Aliasing

A location is a field of an object or a local variable. A local variable is either a variable
declared inside a block (such as a method body) or a formal parameter of a method.

An access path is an expression either of the form x, where x is an identifier, or p.uz,
where p is an access path and z is an identifier.! (In forming an access path, we ignore
visibility.)

In a given program state, s, a location [is aliased if there are two or more access paths
that, in s, both denote I. The access paths in question are said to be aliases for [. Similarly,
we say that an object o is aliased in a state s if there are two access paths that, in s, both
have o as their value. In Java, it is impossible to alias local variables, so the only aliasing
possible involves objects and their fields.

2.7 Expression Evaluation and Undefinedness

Within JML annotations, Java expressions generally have the values that are defined in the
Java Language Specification [Gosling-etal00]. This has consequences on the interpretation
of assertion expressions [Chalin07] [Rioux-Chalin07]: an assertion is taken to be valid if and
only if its interpretation

e does not cause an exception to be raised, and

e yields the value true.

Note that this interpretation of assertions, said to be based on “strong validity”
[Chalin07], was made the default assertion semantics for JML in 2007. Prior to that,

1 By an identifier, we technically mean an ident in the Java grammar. See Section 4.6 [Tokens], page 29,

for details.

Chapter 2: Fundamental Concepts 16

assertions were interpreted using a classical definition of validity [Leavens-etal05]
[Leavens-Baker-Ruby06] [Gries-Schneider95] [Jones95e].

The strong validity semantics for assertion evaluation means that exceptions may arise
during evaluation of subexpressions within assertions. These exceptions should be avoided
by the specifier and tools are encouraged to warn users when they detect that an exception
may arise during assertion evaluation.

To avoid exceptions during assertion evaluation, specifiers should practice good Java
coding habits, and write specifications that prevent such exceptions. To do this, one can
use left-to-right ordering of evaluation of subexpressions and the short-curcuit nature of the
Java operators && and ||. JML also evaluates the its two implication operators, ==> and
<== in short-curcuit fashion from left to right. Within a specification case, the precondition
can protect the rest of the specification from exceptions [Leavens-Wing98]. That is, one can
assume that the precondition holds in the remainder of the clauses in a specification case.
JML also evaluates multiple occurrences of clauses of the same kind (such as requires or
ensures) within a spec case in top to bottom order, so earlier clauses can protect later
ones, just as if they were combined with &&.

2.8 Null is Not the Default

One common problem that occurs in Java and JML specifications is the possibility
of null dereferences. For example, if x is null then x.f and x.m() both result in a
NullPointerException. Such null pointer exceptions cause undefinedness in expression
evaluation, as described above (see Section 2.7 [Expression Evaluation and Undefinedness],
page 15).

To avoid having to constantly specify that declarations (other than local variables) are
non-null, JML makes them implicitly non_null by default. That is, unless a

e member field (see Section 7.1.2 [Field and Variable Declarations]|, page 49),
e formal parameter, (see Section 7.1.1.1 [Formal Parameters|, page 46),

e method return type (see Section 7.1.1 [Method and Constructor Declarations|, page 45),
or

e bound variable (see Section 12.4.24.5 [Modifiers for Bound Variables], page 103)

is explicitly annotated with the modifier nullable, that declaration is assumed to be non_
null.

For a field whose type is an array of reference types, such as a field of type Object[],
both the field that refers to the array and the elements of the array are non_null by default.
If a field whose type is an array of reference types is declared as nullable, then both the
reference to the array and all of its elements may potentially be null. To specify that the
field is not null but the elements may be null, use an invariant to state that the field cannot
contain null, as follows.

private /*@ spec_public nullable @*/ Object[] a;
//@ public invariant a != null;
While these defaults differ from Java, research has found that in most cases a declaration

is expected to be non-null [Chalin-Rioux05]. More importantly, since one of the most
common mistakes in JML specifications (and in Java programs) is forgetting to specify that

Chapter 2: Fundamental Concepts 17

a declaration is non-null, making the default be that they cannot hold null helps eliminate
a source of common errors in specifications.

See Section 6.2.13 [Nullity Modifiers|, page 44, for more details on the nullity modifiers.

2.9 Language Levels

One of JML’s goals is to provide a single language that can be used with a variety of different
tools. However, JML is also an evolving language that is used as a research vehicle by many
groups. The evolution of JML means that some features are not completely documented
or implemented. Use of JML in research means that some tools will have features that are
not supported by other tools. All of this has the potential to threaten portability and to
make JML more difficult to learn and use.

The research groups working on JML are committed to making these problems as invis-
ible to non-researchers as possible, and for this reason have defined several language levels.
The goal of defining these language levels is to make it easier to learn and use JML and its
various tools.

We define the following language levels.?

e Level 0 should be supported by all JML tools and constitutes the heart of JML. All
users should be familiar with these level 0 features. They are fundamental to all uses
of JML, including its use as a design by contract language, as documentation, and as
formal specification for formal verification efforts. Thus the level 0 features should be
the ones that tutorial materials concentrate on. Users should be able to count on these
features being understood and checked by all tools.

e Level 1 should be supported by most JML tools and should be a first priority for de-
velopers after implementing the Level 0 features. There are three categories of features
that level 1 adds to level 0. The first is the redundancy features of JML, which are use-
ful in documentation, but not absolutely vital. The second is features that are sugars
for features present in level 0. The third is various features for which modular static
verification is still problematic, although a runtime assertion checking semantics has
been implemented. This includes the use of methods and constructor calls in assertions.

e Level 2 contains features that are more specialized to particular uses of JML, but are
still useful for several different tools. It also contains some features that are mainly
needed to explain JML’s semantics, and have not been heavily used (so far).

e Level 3 features are even less commonly used and more exotic features. The semantics of
some of these features are not yet well understood, and the features are not implemented
by many tools.

e Level C contains features related to specification and verification of concurrent Java
programs. Some of these are from ESC/Java [Leino-Nelson-Saxe00], and others are
from [Rodriguez-etal05].

e Level X contains experimental features, which may eventually be moved to other levels.
Many tools will have other experimental features not documented here.

When learning JML, one should focus on levels 0 features first, as these form the heart
of the language which should be understood by all JML tools. Features at level 1 are next

2 Thanks to Patrice Chalin for pushing to define these. Patrice, Joe Kiniry, Peter Miiller, Adam Darvas,
and David Naumann participated in the initial discussions about what should be in each level.

Chapter 2: Fundamental Concepts 18

in importance and should be supported by most tools that are interested in having a large
user base. Features at higher levels are less important and may not be present in all tools.
Users should feel free to ignore them unless they meet some specific need.

The language levels also provide guidance for tool designers. JML tools should parse
all of the syntax in this reference manual that is not marked as experimental. This is the
most important way to guarantee portability for users, and the easiest way for tools to get
feedback. In addition, tools should check at least level 0, and preferably level 1 features.
Features at levels 2 and 3 are candidates for the tool to just parse and ignore, if they are
not features of interest for that tool. Experimental features may ignored (or added) by any
tool.

Many tool developers may want to start off supporting only a subset of JML defined by
level 0 and then move on to higher levels.

It is also suggested that tools give users optional feedback, perhaps in a verbose mode,
as to which features are fully and partially supported. Clearly stating which JML levels are
supported in a tool release is also very important.

More details are provided in the subsections below.

2.9.1 Level 0 Features

The features in this level form the core of JML and should be understood and checked by all
JML tools. Beginning users should pay the most attention to these features. These features
include all of Java and the syntax described in the rest of this section.

Synonyms for the keywords used in level 0 features are also considered to be part of level
0’s lexical syntax. For example, since assignable is a keyword used in level 0, its synonyms
modifiable and modifies are also included in the lexical syntax for level 0.

Many, but not all, of the JML additions to Java’s modifiers (see Section 6.2 [Modifiers|,
page 39) are level 0 features. The following modifiers are included in level 0.

e The modifier spec_public (see Section 6.2.3 [Spec Public|, page 41).

e The modifier spec_protected (see Section 6.2.4 [Spec Protected], page 41).

e The modifier instance (see Section 6.2.8 [Instance], page 42).

e The modifier model (see Section 6.2.6 [Model|, page 41), as applied to field declarations
(see Section 7.1.2.1 [JML Modifiers for Fields|, page 49). Note that this modifier as
applied to other declarations is not a level 0 feature.

e The modifier ghost (see Section 6.2.7 [Ghost], page 42), as applied to both field and
variable declarations (see Section 7.1.2 [Field and Variable Declarations], page 49).

e The modifier helper (see Section 6.2.9 [Helper|, page 42).

Type specifications (see Chapter 8 [Type Specifications|, page 52) are a level 0 feature,
although not all clauses and features of type specifications are level 0. The following type-
level clauses are included in level 0.

e Object invariants, that is an invariant (see Section 8.2 [Invariants|, page 52) that is
either written in an interface using the modifier instance (see Section 6.2.8 [Instance],
page 42) or one that is written in a class and that does not use the modifier static
(see Section 8.2.1 [Static vs. instance invariants|, page 56).

e The functional form of a represents-clause (see Section 8.4 [Represents Clauses],
page 60). That is, a represents clause that uses = and (not \such_that).

Chapter 2: Fundamental Concepts 19

e The initially-clause (see Section 8.5 [Initially Clauses], page 61).

e The type-spec \TYPE (optionally, as a type of array element). See Section 7.1.2.2
[Type-Specs], page 50, for more details.

Method specifications (see Chapter 9 [Method Specifications], page 63) are a level 0
feature. This includes the ability to combine specification cases using also (see Section 9.6.5
[Semantics of nested behavior specification cases|, page 71) and specification inheritance
[Dhara-Leavens96] [Leavens-Naumann06] [LeavensO6b]. It also includes the use of \not_
specified for all specification clauses that are at level 0. However, not all clauses and
features of method specifications are level 0. The following parts of method specifications
are included in level 0. Redundancy features of method specifications are only present at
level 1, not at level 0. The details are described below.

e Lightweight specification cases (see Section 9.4 [Lightweight Specification Cases],
page 65), although not all clauses that are allowed in the syntax are in level 0.

e Heavyweight specification cases (see Section 9.5 [Heavyweight Specification Cases],
page 67) that do not use the keyword code. This includes behavior-spec-case (see
Section 9.6 [Behavior Specification Cases|, page 67), normal-behavior-spec-case (see
Section 9.7 [Normal Behavior Specification Cases|, page 72), and exceptional-behavior-
spec-case (see Section 9.8 [Exceptional Behavior Specification Cases|, page 73). How-
ever, note that not all clauses that are allowed in the syntax are in level 0.

e The requires-clause (see Section 9.9.2 [Requires Clauses|, page 76). The redundant
form of this clause (requires_redundantly, pre_redundantly) is a level 1 feature.

e The ensures-clause (see Section 9.9.3 [Ensures Clauses|, page 77). The redundant form
of this clause (ensures_redundantly, post_redundantly) is a level 1 feature.

e The signals-clause (see Section 9.9.4 [Signals Clauses|, page 77). The redundant form
of this clause (signals_redundantly, exsures_redundantly) is a level 1 feature.

e The signals_only-clause (see Section 9.9.5 [Signals-Only Clauses|, page 79). The redun-
dant form of this clause (signals_only_redundantly) is a level 1 feature.

e The assignable-clause (see Section 9.9.9 [Assignable Clauses|, page 83). The redundant
form of this clause (assignable_redundantly, modifiable_redundantly, modifies_
redundantly) is a level 1 feature.

Only static data groups (see Chapter 10 [Data Groups|, page 87) are part of level 0.

e The in-group-clause (see Section 10.1 [Static Data Group Inclusions], page 87) kind of
jml-data-group-clause that attaches to field declarations (see Section 7.1.2 [Field and
Variable Declarations|, page 49).

Some of JML’s extensions to Java’s expression syntax (see Chapter 12 [Predicates and
Specification Expressions], page 90), but not all of them, can be used at level 0. Note that
calls to pure methods and constructors in spec-expressions are not part of level 0, but are
only found at level 1. We describe the level 0 specification expressions below.

e The result-expression (see Section 12.4.1 [Backslash result], page 93).
e The old-expression (see Section 12.4.2 [Backslash old and Backslash pre|, page 93).
e The fresh-expression (see Section 12.4.9 [Backslash fresh], page 97).

e The nonnullelements-expression (see Section 12.4.14 [Backslash nonnullelements],
page 99).

Chapter 2: Fundamental Concepts 20

e The informal-description (see Section 12.4.15 [Informal Predicates|, page 99).
e The typeof-expression (see Section 12.4.16 [Backslash typeof], page 99).

e The elemtype-expression (see Section 12.4.17 [Backslash elemtype], page 99).
e The type-expression (see Section 12.4.18 [Backslash type|, page 100).

e The spec-quantified-expr (see Section 12.4.24 [Quantified Expressions|, page 101) forms
that use the quantifier keywords \forall and \exists (see Section 12.4.24.1 [Universal
and Existential Quantifiers|, page 102).

(The quantifier keywords \max, \min, \product, and \sum (see Section 12.4.24.2 [Gen-
eralized Quantifiers], page 102), as well as \num_of (see Section 12.4.24.3 [Numerical
Quantifier|, page 103, are all level 1 features.)

e The <: operator (see Section 12.6.1 [Subtype operator|, page 105).

e The <==> and <=!=> operators (see Section 12.6.2 [Equivalence and Inequivalence Op-
erators|, page 105).

e The ==> and <== operators (see Section 12.6.3 [Forward and Reverse Implication Op-
erators], page 105).

e The syntax for store-refs (see Section 12.7 [Store Refs], page 106).

All of the Java statements and most of the JML extensions for adding assertions to
statements and annotation statements (see Chapter 13 [Statements and Annotation State-
ments|, page 108) are at level 0. But redundancy features of the JML extensions are only
present at level 1, not at level 0. We describe the level 0 extensions to Java statements
below.

e Using the modifier ghost in local-declarations (see Section 13.1.1 [Modifiers for Local
Declarations], page 109).

e The possibly-annotated-loop statement (see Section 13.2 [Loop Statements|, page 109),
with a loop-invariant (see Section 13.2.1 [Loop Invariants|, page 111). The redun-
dant forms of loop-invariants, namely those that use the keywords maintaining_
redundantly and loop_invariant_redundantly are level 1 features. Furthermore,
the variant-function is a level 1 feature.

e The assert-statement (see Section 13.3 [Assert Statements|, page 113). Note that the
assert-redundantly-statement, which uses the keyword assert_redundantly, is in level

1.

e The non-redundant form of the assume-statement (see Section 13.4.1 [Assume State-
ments|, page 114). Use of the keyword assume_redundantly is a level 1 feature.

e The set-statement (see Section 13.4.2 [Set Statements|, page 114).

The ability to use a .jml file (see Section 17.1 [File Name Suffixes|, page 129) to give
a separate specification for a compilation unit that only appears in binary form (e.g., in a
.class file) is a level 0 feature.

Some syntax from the Universe type system (see Chapter 18 [Universe Type System],
page 133) is included in level 0. However, readonly is considered to be in level X, as is the
semantics of the Universe type system. The rep and peer modifiers are included in level
0 because, in some form, they are important to the semantics of several level 0 features
[Mueller-Poetzsch-Heffter-Leavens03] [Mueller-Poetzsch-Heffter-Leavens06].

e The \rep and rep ownership-modifiers (see Section 18.2 [Rep and Peer|, page 134).

Chapter 2: Fundamental Concepts 21

e The \peer and peer ownership-modifiers (see Section 18.2 [Rep and Peer|, page 134).

2.9.2 Level 1 Features

The features in this level will be understood and checked by many JML tools. They are
quite important in practice, especially the use of methods and constructors in writing the
specifications of other methods and constructors. Also useful are all of JML’s redundancy
features (see Chapter 14 [Redundancy], page 118), which are included here for all level 0
features and for other features at level 1.

The following additions to Java’s modifiers (see Section 6.2 [Modifiers|, page 39) are
level 1 features.

e Method or constructor declarations that use the modifier model (see Section 7.1.1.2
[Model Methods and Constructors|, page 46). However, note that using model on a
field declarations is a level 0 feature and that using model on a type declaration is a
level 3 feature.

e import-declarations that use the modifier model (see Section 5.2 [Import Declarations],
page 36).

e The modifier pure (see Section 6.2.5 [Pure], page 41).

e The modifier uninitialized (see Section 6.2.11 [Uninitialized], page 43).

The following type-level clauses (see Chapter 8 [Type Specifications|, page 52) are in-
cluded in level 1.

e Attaching a method-specification to a class-initializer-decl (see Section 7.2 [Class Ini-
tializer Declarations|, page 50).

e Static invariants, that is an invariant (see Section 8.2 [Invariants|, page 52) that is
either written in an interface without using the modifier instance (see Section 6.2.8
[Instance], page 42), or one that is written in a class and that uses the modifier static
(see Section 8.2.1 [Static vs. instance invariants|, page 56).

e Both instance (object) and static history-constraints (see Section 8.3 [Constraints],
page 57).
e The axiom-clause (see Section 8.6 [Axioms], page 61).

e The maps-into-clause (see Section 10.2 [Dynamic Data Group Mappings|, page 88) kind
of jml-data-group-clause that attaches to field declarations (see Section 7.1.2 [Field and
Variable Declarations], page 49).

The following features of method specifications (see Chapter 9 [Method Specifications],
page 63) are included in level 1.

e The spec-var-decls that may occur in a specification case (see Section 9.9.1 [Specifica-
tion Variable Declarations], page 75).

e The redundant-spec parts of a method specification (see Chapter 14 [Redundancy],
page 118) are also included in level 1. The following describes these parts.

e The implications (implies_that) part of a redundant-spec (see Section 14.1 [Re-
dundant Implications and Redundantly Clauses|, page 118).

e The examples (for_example) part of a redundant-spec.

The following extensions to Java’s expression syntax (see Chapter 12 [Predicates and
Specification Expressions], page 90) are included in level 1.

Chapter 2: Fundamental Concepts 22

The spec-quantified-expr (see Section 12.4.24 [Quantified Expressions|, page 101) forms
that use the quantifier keywords \max, \min, \product, and \sum (see Section 12.4.24.2
[Generalized Quantifiers], page 102), as well as \num_of (see Section 12.4.24.3 [Numer-
ical Quantifier|, page 103).

(Note that the \max quantifier is distinct from the max-expression (see Section 12.4.20
[Backslash max], page 100), which is a level C feature. Also, note that the quantifier
keywords \forall and \exists are level 0 features.)

Calls to pure methods and constructors (see Section 7.1.1.3 [Pure Methods and Con-
structors|, page 46) in spec-expressions (see Chapter 12 [Predicates and Specification
Expressions], page 90).

The set-comprehension expression (see Section 12.5 [Set Comprehensions], page 104).

The following additions to Java’s statement syntax (see Chapter 13 [Statements and

Annotation Statements], page 108) are included in level 1.

ext

The use of redundant forms of loop-invariants (see Section 13.2.1 [Loop Invariants],
page 111) namely those that use the keywords maintaining_redundantly and loop_
invariant_redundantly. Non-redundant loop-invariants are in level 0.

The possibly-annotated-loop statement (see Section 13.2 [Loop Statements], page 109),
with a variant-function (see Section 13.2.2 [Loop Variant Functions], page 112).

The assert-redundantly-statement (see Section 13.3 [Assert Statements|, page 113);
that is, assert statements that use the keyword assert_redundantly. The non-
redundant assert-statements are a level 0 feature.

The redundant form of the assume-statement (see Section 13.4.1 [Assume Statements],
page 114); that is, assume statements that use the keyword assume_redundantly. The
non-redundant assume-statements are a level 0 feature.

The \bigint type (see Section 19.1 [Backslash bigint], page 140) from the safe math
ensions (see Chapter 19 [Safe Math Extensions|, page 140) is a level 1 feature.

2.9.3 Level 2 Features

Level 2 contains features that are more specialized to particular uses of JML, but are still
useful for several different tools. It also contains some features that are mainly needed to
explain JML’s semantics, and have not been heavily used (so far).

The nowarn-pragma (see Section 4.2 [Lexical Pragmas]|, page 26).

The following type-level clauses (see Chapter 8 [Type Specifications|, page 52) are in-

cluded in level 2.

The relational form of a represents-clause (see Section 8.4 [Represents Clauses],
page 60). That is, a represents clause that uses \such_that. Note that the functional
form of such represents clauses is a level 0 feature.

The readable-if-clause clause (see Section 8.7 [Readable If Clauses|, page 61).
The writable-if-clause clause (see Section 8.8 [Writable If Clauses|, page 62).

The following features of method specifications (see Chapter 9 [Method Specifications],

page 63) are included in level 2.

The diverges-clause (see Section 9.9.7 [Diverges Clauses|, page 81).

Chapter 2: Fundamental Concepts 23

The accessible-clause (see Section 9.9.10 [Accessible Clauses], page 83).

The callable-clause (see Section 9.9.11 [Callable Clauses], page 84).

The measured-by-clause (see Section 9.9.12 [Measured By Clauses|, page 84).
The captures-clause (see Section 9.9.13 [Captures Clauses|, page 84).

The working-space-clause (see Section 9.9.14 [Working Space Clauses|, page 85).
The duration-clause (see Section 9.9.15 [Duration Clauses]|, page 85).

The model-program style of method specification (see Chapter 15 [Model Programs],
page 122).

The refining-statement (see Section 13.4.3 [Refining Statements|, page 114).

The extract modifier (see Section 15.2 [Extracting Model Program Specifications],
page 124).

The following extensions to Java’s expression syntax (see Chapter 12 [Predicates and

Specification Expressions|, page 90) are included in level 2.

The not-assigned-expression (see Section 12.4.3 [Backslash not_assigned], page 94).
The not-modified-expression (see Section 12.4.4 [Backslash not_modified], page 95).
The only-accessed-expression (see Section 12.4.5 [Backslash only_accessed], page 95).
The only-assigned-expression (see Section 12.4.6 [Backslash only_assigned], page 96).
The only-called-expression (see Section 12.4.7 [Backslash only_called], page 96).

The only-captured-expression (see Section 12.4.8 [Backslash only_captured], page 97).
The reach-expression (see Section 12.4.10 [Backslash reach|, page 97).

The is-initialized-expression (see Section 12.4.21 [Backslash is_initialized], page 100).
The invariant-for-expression (see Section 12.4.22 [Backslash invariant_for], page 101).
The Iblneg-expression and the Iblpos-expression (see Section 12.4.23 [Backslash Iblneg
and lblpos], page 101).

The following additions to Java’s statement syntax (see Chapter 13 [Statements and

Annotation Statements], page 108) are included in level 2.

are

The unreachable-statement (see Section 13.4.4 [Unreachable Statements|, page 115).
The debug-statement (see Section 13.4.5 [Debug Statements|, page 116)
The hence-by-statement (see Section 13.4.6 [Hence By Statements|, page 116).
Note that all the model-prog-statements (see Chapter 15 [Model Programs|, page 122)
at level 2, because the model program style of method specification is at this level.

Aside from the \bigint type (see Section 19.1 [Backslash bigint], page 140), which is a

level 1 feature, the rest of the safe math extensions (see Chapter 19 [Safe Math Extensions],
page 140) are level 2 features. This includes the following particulars.

The \real type (see Section 19.2 [Backslash real], page 140).

The modifiers code_bigint_math, code_java_math, code_safe_math, spec_bigint_
math, spec_java_math, and spec_safe_math (see Section 6.2.12 [Math Modifiers|,
page 43).

Chapter 2: Fundamental Concepts 24

2.9.4 Level 3 Features

Level 3 features are more exotic and even less commonly used. The semantics of some of
these features are not yet well understood, and the features are not implemented by many
tools.

type-declarations that use the modifier model (see Section 6.1.2 [Modifiers for Type
Declarations|, page 38).

The duration-expression (see Section 12.4.11 [Backslash duration], page 98).
The space-expression (see Section 12.4.12 [Backslash space|, page 98).
The working-space-expression (see Section 12.4.13 [Backslash working space], page 98).

2.9.5 Level C Features

The features in this level are related to the specification of concurrency. This includes
features inherited from ESC/Java having to do with concurrency. The features of this level
are as follows.

The monitors-for-clause clause (see Section 8.9 [Monitors For Clause], page 62).
The when-clause (see Section 9.9.8 [When Clauses], page 82).
The lockset-expression (see Section 12.4.19 [Backslash lockset], page 100).

The max-expression (see Section 12.4.20 [Backslash max], page 100). Note that this
is not the quantifier \max (see Section 12.4.24.2 [Generalized Quantifiers|, page 102),
which is a level 1 feature.

The <# and <=# operators applied to test ordering of locks (see Section 12.6.4 [Lockset
Ordering], page 106).

2.9.6 Level X Features

The features in this level are experimental. Some of the ones we know about are as follows.

The \readonly and readonly ownership-modifiers from the Universe type system (see
Chapter 18 [Universe Type System|, page 133). Note that the \peer and \rep modifiers
are level 0 features.

Chapter 3: Syntax Notation 25

3 Syntax Notation

We use an extended Backus-Naur Form (BNF) grammar to describe the syntax of JML.
The extensions are as follows [Ledgard80].

e Nonterminal symbols are written as follows: nonterminal. That is, nonterminal symbols
appear in an italic font (in the printed manual).

e Terminal symbols are written as follows: terminal. In a few cases it is also necessary
to quote terminal symbols, such as when using ‘|’ as a terminal symbol instead of a
meta-symbol.

e Square brackets ([and |) surround optional text. Note that [and] are terminals.
e The notation ... means that the preceding nonterminal or group of optional text can
be repeated zero (0) or more times.

For example, the following gives a production for a non-empty list of init-declarators,
separated by commas.

init-declarator-list ::= init-declarator | , init-declarator | ...
To remind the reader that the notation ...’ means zero or more repetitions, we try to
use ‘... only following optional text, although, in cases such as the following, the brackets

could have been omitted.
modifiers ::= | modifier | . ..

As in the above examples, we follow the C++ standard’s conventions [ANSI95] in using
nonterminal names of the form X-list to mean a comma-separated list, and nonterminal
names of the form X-seq to mean a sequence not separated by commas. An example of a
sequence is the following

spec-case-seq ::= spec-case | also spec-case | . ..

We use “//” to start a comment (to you, the reader) in the grammar.

A complete summary of the JML grammar appears in an appendix (see Appendix C
[Grammar Summary], page 144). When reading the HTML version of this appendix, one
can click on the names of nonterminals to bring that nonterminal’s definition to the top of
the browser’s window. This is helpful when dealing with such a large grammar.

Another help in dealing with the grammar is to use the index (see [Index], page 182).
Every nonterminal and terminal symbol in the grammar is found in the index, and each
definition and use is noted.

Chapter 4: Lexical Conventions 26

4 Lexical Conventions

This chapter presents the lexical conventions of JML, that is, the microsyntax of JML.

Throughout this chapter, grammatical productions are to be understood lexically. That
is, no white-space (see Section 4.1 [White Space], page 26) may intervene between the
characters of a token. (However, outside this chapter, the opposite of this convention is in
force.)

The microsyntax of JML is described by the production microsyntax below; it describes
what a program looks like from the point of view of a lexical analyzer [Watt91].

microsyntax ::= lexeme [lexeme | . ..
lexeme ::= white-space | lexical-pragma | comment
| annotation-marker | doc-comment | token
token ::= ident | keyword | special-symbol
| java-literal | informal-description

In the rest of this section we provide more details on each of the major nonterminals
used in the above grammar.

4.1 White Space

Blanks, horizontal and vertical tabs, carriage returns, formfeeds, and newlines, collectively
called white space, are ignored except as they serve to separate tokens. Newlines and car-
riage returns are special in that they cannot appear in some contexts where other whitespace
can appear, and are also used to end Java-style comments (see Section 4.3 [Comments],
page 27).

white-space ::= non-nl-white-space | end-of-line
non-nl-white-space ::= a blank, tab, or formfeed character
end-of-line ::= newline | carriage-return

| carriage-return newline
newline ::= a newline character
carriage-return ::= a carriage return character

4.2 Lexical Pragmas

ESC/Java [Leino-etal00] has a single kind of “lexical pragma”, nowarn, whose syntax is
described below in general terms. The JML checker currently ignores these lexical pragmas,
but nowarn is only recognized within an annotation. Note that, unlike ESC/Java, the
semicolon is mandatory. This restriction seems to be necessary to prevent lexical ambiguity.

lexical-pragma ::= nowarn-pragma
nowarn-pragma ::= nowarn | spaces | | nowarn-label-list | ;
spaces ::= non-nl-white-space | non-nl-white-space | . . .
nowarn-label-list ::= nowarn-label [spaces |

[, [spaces | nowarn-label | spaces |] ...
nowarn-label ::= letter | letter | ...

See Section 4.6 [Tokens], page 29, for the syntax of letter.

Chapter 4: Lexical Conventions 27

4.3 Comments

Both kinds of Java comments are allowed in JML: multiline C-style comments and single
line C++-style comments. However, if what looks like a comment starts with the at-sign (@)
character, or with a sequence of annotation-keys and an at-sign (@), then JML considers it
to be the start of an annotation (see Section 4.4 [Annotation Markers], page 27), and not a
comment. Furthermore, if what looks like a comment starts with an asterisk (*), then it is
a documentation comment, which is parsed by JML.

comment ::= C-style-comment | C++-style-comment
C-style-comment ::= /* [C-style-body | C-style-end
C-style-body ::= non-at-plus-minus-star [non-stars-slash | . . .

| + non-letter | non-stars-slash | . . .

| - non-letter [non-stars-slash | . ..

| stars-non-slash [non-stars-slash | . . .

non-letter ::= any character except _, a through z, or A through Z
non-stars-slash ::= non-star
| stars-non-slash
stars-non-slash ::= * [* | ... non-star-slash
non-at-plus-minus-star ::= any character except @, +, —, or *
non-star ::= any character except *
non-slash ::= any character except /
non-star-slash ::= any character except * or /
C-style-end ::= [*] ... */
C++-style-comment ::= // | +] end-of-line
| // non-at-plus-minus-end-of-line | non-end-of-line | . .. end-of-line
| //+ non-letter-end-of-line | non-end-of-line | . .. end-of-line
| //- non-letter-end-of-line | non-end-of-line | . .. end-of-line
non-letter-end-of-line ::= any character except _, a through z, A through Z, a new-
line, or a carriage return
non-end-of-line ::= any character except a newline or carriage return
non-at-plus-minus-end-of-line ::= any character except @, +,—, newline, or carriage return
non-at-end-of-line ::= any character except @, newline, or carriage return

4.4 Annotation Markers

If what looks to Java like a comment starts with an at-sign (@) as its first character, or
starts with a sequence of annotation-keys followed by an at-sign, then it is not considered
a comment by JML. We refer to the tokens between //@ and the following end-of-line, and
between pairs of annotation start (/*@) and end (*/ or @*/) markers as annotations.
The definition of an annotation marker is given below.

annotation-marker ::=

// [annotation-key |... @ [ignored-at-in-annotation | . . .
| /* [annotation-key]... @ | ignored-at-in-annotation | . . .
| [ignored-at-in-annotation | ... @+*/
| [ignored-at-in-annotation | ... */
annotation-key ::= positive-key | negative-key

positive-key ::= + ident

Chapter 4: Lexical Conventions 28

negative-key ::= - ident
ignored-at-in-annotation ::= @

Within annotations, on each line, initial white-space and any immediately following
at-signs (@) are ignored.

Note that JML annotations are not the same as Java annotations (see Section 6.2.2 [Java
Annotations|, page 41). Besides the syntactic differences, JML annotations can appear
anywhere a comment may appear, not just attached to declarations.

An annotation-key is a + or - sign followed by an ident (see Section 4.6 [Tokens]|, page 29).
Note that no white space can appear within, before, or after the annotation-key. Tools will
provide a way to enable a selection of annotation-key identifiers. These identifiers, hereafter
called “keys” provide for conditional inclusion of JML annotations as follows:

e a JML annotation with no keys is always included,

e a JML annotation with at least one positive-key is only included if at least one of these
positive keys is enabled and there are no negative-keys in the annotation that have
enabled keys, and

e a JML annotation with an enabled negative-key is ignored (even if there are enabled
positive-keys).

For example, a comment beginning with //+ESCQ is included as a JML annotation only
if the ESC key is enabled; a comment beginning with //-ESCQ is included except when the
ESC key is enabled.

Annotations must hold entire grammatical units of JML specifications, in the sense
that the text of some nonterminals may not be split across two separate annotations. For
example the following is illegal, because the postcondition of the ensures clause is split over
two annotations, and thus each contains a fragment instead of a complete grammatical unit.

//@ ensures 0 <= x // illegal!
//@ && x < a.length;

However, implementations are not required to check for such errors. On the other hand,
ESC/Java [Leino-Nelson-Saxe00] and ESC/Java2 assume that nonterminals that define
clauses are not split into separate annotations, and so effectively do check for them.

Annotations look like comments to Java, and are thus ignored by it, but they are signif-
icant to JML. One way that this can be achieved is by having JML drop (ie., ignore) the
character sequences that are annotation-markers, as well as the ignored-at-in-annotations.
However, note that this technique does not properly check for annotations that do not con-
tain entire grammatical units of JML specifications, as described in the previous paragraph.

Note that JML will recognize jml-keywords only within JML annotations.

4.5 Documentation Comments

If what looks like a C-style comment starts with an asterisk (*) then it is a documenta-
tion comment. The syntax is given below. The syntax doc-comment-ignored is used for
documentation comments that are ignored by JML.

doc-comment ::= /*x [* | ... doc-comment-body [* | ... */
doc-comment-ignored ::= doc-comment

Chapter 4: Lexical Conventions 29

At the level of the rest of the JML grammar, a documentation comment that does not
contain an embedded JML method specification is essentially described by the above, and
the fact that a doc-comment-body cannot contain the two-character sequence */.

However, JML and javadoc both pay attention to the syntax inside of these documenta-
tion comments. This syntax is really best described by a context-free syntax that builds on
a lexical syntax. However, because much of the documentation is free-form, the context-free
syntax has a lexical flavor to it, and is quite line-oriented. Thus it should come as no sur-
prise that the first non-whitespace, non-asterisk (ie., not *) character on a line determines
its interpretation.

doc-comment-body ::= [description | . ..
[tagged-paragraph | . ..
[jml-specs | [description]
description ::= doc-non-empty-textline
tagged-paragraph ::= paragraph-tag [doc-non-nl-ws | . ..
[doc-atsign | ... [description | . ..
jml-specs ::= jml-tag [method-specification | end-jml-tag

[jml-tag [method-specification | end-jml-tag | ...

The microsyntax or lexical grammar used within documentation comments is as follows.
Note that the token doc-nl-ws can only occur at the end of a line, and is always ignored
within documentation comments. Ignoring doc-nl-ws means that any asterisks at the begin-
ning of the next line, even in the part that would be a JML method-specification, are also
ignored. Otherwise the lexical syntax within a method-specification is as in the rest of JML.
This method specification is attached to the following method or constructor declaration.
(Currently there is no useful way to use such specifications in the documentation comments
for other declarations.) Note the exception to the grammar of doc-non-empty-textline.

paragraph-tag ::= @author | @deprecated | @exception
| @param | @return | @see
| @serial | @serialdata | @serialfield
| @since | @throws | @version
| @ letter [letter | . ..
doc-atsign ::= @

doc-nl-ws ::= end-of-line

[doc-non-nl-ws | ... [*[*] ... [doc-non-nl-ws | ...]
doc-non-nl-ws ::= non-nl-white-space
doc-non-empty-textline ::= non-at-end-of-line | non-end-of-line | . . .

jml-tag ::= <jml> | <JML> | <esc> | <ESC>
end-jml-tag ::= </jml> | </JML> | </esc> | </ESC>
A jml-tag marks the (temporary) end of a documentation comment and the beginning

of text contributing to a method specification. The corresponding end-jml-tag marks the
reverse transition. The end-jml-tag must match the corresponding jml-tag.

4.6 Tokens

Character strings that are Java reserved words are made into the token for that reserved
word, instead of being made into an ident token. Within an annotation this also applies to
jml-keywords. The details are given below.

Chapter 4: Lexical Conventions 30

ident ::= letter [letter-or-digit | . ..

letter ::= _, $, a through z, or A through Z
digit:=0111213141516171819
letter-or-digit ::= letter | digit

Several strings of characters are recognized as keywords or reserved words in JML. These
fall into three separate categories: Java keywords, JML predicate keywords (which start
with a backslash), and JML keywords. Java keywords are truly reserved words, and are
recognized in all contexts. The nonterminal java-reserved-word represents the reserved
words in Java (as in the JDK version supported by the tool in question, hopefully the latest
official release).

The jml-keywords are only recognized as keywords when they occur within an anno-
tation, but outside of a spec-expression store-ref-list or constrained-list. JML predicate
keywords are also only recognized within annotations, but they are recognized only inside
spec-expressions, store-ref-lists, and constrained-lists.

There are options to the JML tools that extend the language in various ways. For
example, when an option to parse the syntax for the Universe type system [Dietl-Mueller05]
is used, the words listed in the nonterminal java-universe-reserved also act like reserved
words in Java (and are thus recognized in all contexts). When an option to recognize the
Universe system syntax in annotations is used, these words instead act as jml-keywords and
are only recognized in annotations. However, even when no Universe options are used, pure
is recognized as a keyword in annotations, since it is also a jml-keyword. (The Universe type
system support in JML is experimental. Most likely the list of java-universe-reserved
will be added to the list of jml-keywords eventually.)

However, even without the Universe option being on, the jml-universe-pkeyword syn-
tax is recognized within JML annotations in the same way as JML predicate keywords are
recognized.

The details are given below.

keyword ::= java-reserved-word
| jml-predicate-keyword | jml-keyword
java-reserved-word ::= abstract | assert

| boolean | break | byte

| case | catch | char

| class | const | continue
| default | do | double

| else | extends | false

| final | finally | float

| for | goto | if

| implements | import | instanceof
| int | interface | long

| native | new | null

| package | private | protected

| public | return | short

| static | strictfp | super

| switch | synchronized | this

| throw | throws | transient

Chapter 4: Lexical Conventions

| true | try | void
| volatile | while
| java-universe-reserved // When the Universe option is on
Jjava-universe-reserved ::= peer | pure
| readonly | rep
jml-predicate-keyword ::= \TYPE
| \bigint | \bigint_math | \duration
| \elemtype | \everything | \exists
| \forall | \fresh
| \into | \invariant_for | \is_initialized
| \java_math | \1blneg | \1blpos
| \lockset | \max | \min
| \nonnullelements | \not_assigned
| \not_modified | \not_specified
| \nothing | \nowarn | \nowarn_op
| \num_of | \old | \only_accessed
| \only_assigned | \only_called
| \only_captured | \pre
| \product | \reach | \real
| \result | \same | \safe_math
| \space | \such_that | \sum
| \typeof | \type | \warn_op
| \warn | \working_space
| jml-universe-pkeyword
jml-universe-pkeyword ::= \peer | \readonly | \rep
jml-keyword ::= abrupt_behavior | abrupt_behaviour
| accessible | accessible_redundantly
| also | assert_redundantly
| assignable | assignable_redundantly
| assume | assume_redundantly | axiom
| behavior | behaviour
| breaks | breaks_redundantly
| callable | callable_redundantly
| captures | captures_redundantly
| choose | choose_if
| code | code_bigint_math
| code_java_math | code_safe_math
| constraint | constraint_redundantly
| constructor | continues | continues_redundantly
| decreases | decreases_redundantly
| decreasing | decreasing_redundantly
| diverges | diverges_redundantly
| duration | duration_redundantly
| ensures | ensures_redundantly | example
| exceptional_behavior | exceptional_behaviour
| exceptional_example
| exsures | exsures_redundantly | extract

Chapter 4: Lexical Conventions 32

field | forall

for_example | ghost

helper | hence_by | hence_by_redundantly
implies_that | in | in_redundantly
initializer | initially | instance

invariant | invariant_redundantly
loop_invariant | loop_invariant_redundantly
maintaining | maintaining_redundantly

maps | maps_redundantly

measured_by | measured_by_redundantly
method | model | model_program

modifiable Imodifiable_redundantly
modifies | modifies_redundantly

monitored | monitors_for | non_null
normal_behavior | normal_behaviour
normal_example | nowarn

nullable | nullable_by_default

old | or

post | post_redundantly

pre | pre_redundantly

pure | readable

refining

represents | represents_redundantly
requires | requires_redundantly

returns | returns_redundantly

set | signals | signals_only
signals_only_redundantly | signals_redundantly
spec_bigint_math | spec_java_math
spec_protected | spec_public | spec_safe_math
static_initializer | uninitialized | unreachable
when | when_redundantly

working_space | working_space_redundantly
writable

| jml-universe-keyword
jml-universe-keyword ::= peer | readonly | rep

The following describes the special symbols used in JML. The nonterminal java-special-
symbol is the special symbols of Java, taken without change from Java [Gosling-Joy-

Steele96].
special-symbol ::= java-special-symbol | jml-special-symbol
java-special-symbol ::= java-separator | java-operator
java-separator == C |) | {1 X1 C 11T 1;1,1.1@
java-operator == | < | > | V|~ | 7] :
[==l<=|> =& | ‘II"|++ | —-
L+l =1x 1/ 1&1 1T 1% I<<T>>]>>>
4= -=1*=|/=1&=|"‘|I=" | "= | Y%=
|

L= | >>=| >>>=

Chapter 4: Lexical Conventions 33

jml-special-symbol ::= ==> | <== | <==> | <=1=>
| > <=1 <:0..01€9¥
| <# | <#=

The nonterminal java-literal represents Java literals which are taken without change
from Java [Gosling-Joy-Steele96].

java-literal ::= integer-literal
| floating-point-literal | boolean-literal
| character-literal | string-literal | null-literal

integer-literal ::= decimal-integer-literal
| hex-integer-literal | octal-integer-literal
decimal-integer-literal ::= non-zero-digit [digits | [integer-type-suffix |

digits ::= digit | digit] ...
digit ::= 0 | non-zero-digit
non-zero-digit := 1121314151617 1819
integer-type-suffix :=1 | L
hex-integer-literal ::= hex-numeral | integer-type-suffix]
hex-numeral ::= 0x hex-digit [hex-digit | . ..
| OX hex-digit [hex-digit | ...
hex-digit :==digit | a | bl cld|lel £
|[AIBICIDIEIF
octal-integer-literal ::= octal-numeral | integer-type-suffix |
octal-numeral ::= 0 octal-digit [octal-digit | ...
octal-digit :=0 1112314151617

floating-point-literal ::= digits . [digits |
[exponent-part | [float-type-suffix |
| . digits | exponent-part | [float-type-suffix |
| digits exponent-part | float-type-suffix |
| digits [exponent-part | float-type-suffix

exponent-part ::= exponent-indicator signed-integer
exponent-indicator ::= e | E

signed-integer ::= [sign | digits

sign ==+ | -

float-type-suffix :=f | F | d | D

boolean-literal ::= true | false
character-literal ::= ’ single-character > | ’> escape-sequence ’
single-character ::= any character except ’, \, carriage return, or newline
escape-sequence ::= \b // backspace

I\t // tab

| \n // newline

| \r // carriage return

I\’ // single quote

[\" // double quote

Chapter 4: Lexical Conventions 34

I \\ // backslash
| octal-escape
| unicode-escape
octal-escape ::= \ octal-digit [octal-digit |
| \ zero-to-three octal-digit octal-digit
zero-to-three :=0 1112 | 3
unicode-escape ::= \u hex-digit hex-digit hex-digit hex-digit
string-literal ::= " | string-character | ... "
string-character ::= escape-sequence
| any character except ", \, carriage return, or newline

null-literal ::= null
An informal-description looks like (* some text *). It is used in predicates (see Sec-
tion 12.1 [Predicates|, page 90) and in store-ref expressions (see Section 12.7 [Store Refs],
page 106) as an escape from formality. The exact syntax is given below.

informal-description ::= (¥ non-stars-close [non-stars-close | ... *)
non-stars-close ::= non-star

| stars-non-close
stars-non-close ::= * [*] ... non-star-close

non-star-close ::= any character except) or *

Chapter 5: Compilation Units 35

5 Compilation Units

A compilation unit in JML is similar to that in Java, with some additions. It has the
following syntax.

compilation-unit ::= | package-declaration |
[import-declaration | . ..
[top-level-declaration | . . .
top-level-declaration ::= type-declaration

The compilation-unit rule is the start rule for the JML grammar. (In this syntactic
rule and in all other rules in the rest of the body of this manual, white-space may appear
between any two tokens. See Chapter 4 [Lexical Conventions|, page 26, for details.)

See Chapter 6 [Type Declarations], page 37, for the syntax and semantics of type-
declarations.

See Chapter 17 [Separate Files for Specifications|, page 129, for a discussion of how you
can place JML specification in separate (.jml) files.

Some JML tools may support various optional extensions to JML. This manual partially
describes one such extension: the Universe type system [Dietl-Mueller05]. Comments in the
grammar indicate optional productions; these are only used by tools that select an option
to parse the syntax in question. Tools for JML do not have to support these extensions
to JML, and may themselves support other JML extensions. In general, JML tools will
support a (hopefully well-documented) variant of the language described in this manual.

The Java code in a compilation unit must be legal Java code (or legal code in the Java
extension, such as the Universe type system, selected by any options); in particular it must
obey all of Java’s static restrictions. For example, at most one of the type declarations in
a compilation unit may be declared public. See the Java Language Specification [Gosling-
etal05] for details.

As in Java, JML can be implemented using files to store compilation units. When this is
done there must also be a correspondence between the name of any public type defined in
a compilation unit and the file name. This is done exactly as in Java, although JML allows
additional file name suffixes. See Section 17.1 [File Name Suffixes|, page 129, for details on
the file name suffixes allowed in JML and how the extra files determine the specification for
the compilation unit.

The specification of the compilation unit consists of the specifications of the top-level-
declarations it contains, placed in the declared package (if any). The interface part of this
specification is determined as in Java [Gosling-etal05] (or as in the Java extension used).
The specifications of each type-declaration are computed by starting from an environment
that contains the declared package (if any), each top-level definition in the compilation
unit (to allow for mutual recursion), and the imports [Gosling-etal05]. In JML, not only is
the package java.lang implicitly imported, but also there is an implicit model import of
org.jmlspecs.lang. (See Section 5.2 [Import Declarations], page 36, for the meaning of a
model import.)

A Java compilation unit satisfies such a JML specification if it satisfies the specified
package-declaration (if any), and if for each specified type-declaration, there is a corre-
sponding Java type-declaration that satisfies that type’s JML specification. Furthermore, if

Chapter 5: Compilation Units 36

the JML specification does not contain a public type, then the Java compilation unit may
not contain a public type.

The syntax and semantics of package-declarations and import-declarations are discussed
in the subsections below.

5.1 Package Declarations

The syntax of a package-declaration is as in Java (see Section 7.4 of [Gosling-etal05]). See
Section 6.2.2 [Java Annotations], page 41, for the syntax of java-annotations.

package-declaration ::= | java-annotations | package name ;
name ::= ident [. ident | ...

A Java package declaration satisfies the JML specification only if its java-annotations
are satisfied by the declaration and if the remainder of the package declaration is the same
as that specified. That is, the Java code has to be the same (modulo white-space) as the
JML specification.

5.2 Import Declarations

The syntax of a import-declaration is as follows. The only difference from the Java syntax
[Gosling-etal05] is the optional model modifier.
import-declaration ::= [model | import [static | name-star ;
name-star = ident [. ident | ... [. *]
An import-declaration may use the model modifier if and only if the whole import-

declaration is entirely contained within a single annotation. For example, the following is
illegal.

/*@ model @/ import com.foo.*; // illegal!

To write an import that affects both the JML annotations and Java code, just use a normal
java import, without using the model modifier.

The effect on the interface computed for a compilation unit of an import-declaration
without the model keyword is the same as in Java (Section 7.5 of [Gosling-etal05]). Checking
of such import declarations is done exactly as in Java. Such import declarations affect the
computation of the interface of the Java code as well as the JML specification (that is, they
apply to both equally).

When the model keyword is used, the import only has an effect on the JML annotations
(and not on the Java code). The abbreviation permitted by the use of such an import,
however, is the same as would be effected by a normal Java import. Such model imports
can affect the computation of the interface of the JML specification by being used in the
declarations of model and ghost features.

Both normal Java and model imports do not themselves contribute to the interface of a
JML specification. As such, they do not have to be present in a correct implementation of
the specification. An implementation could, for example, use different forms of import, or
it could use fully qualified names instead of imports, and achieve the same effect as using
the imports in the specification.

Chapter 6: Type Declarations 37

6 Type Declarations

The following is the syntax of type declarations.

type-declaration ::= class-declaration
| interface-declaration
(i
The specification of a type-declaration is determined as follows. If the type-declaration
consists only of a semicolon (;), then the specification is empty. Otherwise the specification
is that of the class or interface declaration. Such a specification must be satisfied by the
corresponding class or interface declaration.

The rest of this chapter discusses class and interface declarations, as well as the syntax
of modifiers.

6.1 Class and Interface Declarations

Class and interface declarations are quite similar, as interfaces may be seen as a special
kind of class declaration that only allows the declaration of abstract instance methods and
final static fields (in the Java code, see Chapter 9 of [Gosling-etal05]). Their syntax is also
similar.

class-declaration ::= [doc-comment | modifiers class ident
[class-extends-clause | | implements-clause |
class-block

class-block := { [field] ... }

interface-declaration ::= [doc-comment | modifiers interface ident
[interface-extends |
class-block

Documentation comments for classes and interfaces may not contain JML specification
information. See Section 4.5 [Documentation Comments|, page 28, for the syntax of docu-
mentation comments.

See Chapter 7 [Class and Interface Member Declarations|, page 45, for the syntax and
semantics of fields, which form the essence of classes and interfaces.

The rest of this section discusses subtyping for classes and interfaces and also the par-
ticular modifiers used in classes and interfaces.
6.1.1 Subtyping for Type Declarations

Classes in Java can use single inheritance and may also implement any number of interfaces.
Interfaces may extend any number of other interfaces.

class-extends-clause ::= | extends name |
implements-clause ::= implements name-list
name-list ::= name | , name | ...
interface-extends ::= extends name-list

The meaning of inheritance in JML is similar to that in Java. In Java, a when class S
names a class T in S’s class-extends-clause, then S is a subclass of T and T is a superclass
of S; we also say that S inherits from T. This relationship also makes S a subtype of T,

Chapter 6: Type Declarations 38

meaning that variables of type T' can refer to objects of type S. In Java, when S is a subclass
of T, then S inherits all the instance fields and methods from 7.

A class may also implement several interfaces, declared in its implements-clause; the
class thus becomes a subtype of each of the interfaces that it implements.

Similarly, an interface may extend several other interfaces. In Java, such an interface
inherits all of the abstract methods and static final fields from the interfaces it extends.
When interface U extends another interface V, then U is a subtype of V.

In addition, every type in Java is a subtype of Object. In particular every class S and
every interface U is a subtype of Object.

In JML, model and ghost features, as well as specifications are inherited. A subtype
inherits from its supertypes:

e all instance fields, including model and ghost fields,
e instance methods are also inherited along with their specifications,

e instance invariants and instance history constraints.

It is an error for a type to inherit a field x from two different supertypes if that field is
declared with different types.

It is an error for a type to inherit a method with the same formal parameter types but
with either different return types or with conflicting throws clauses [Gosling-etal00].

In Java one cannot inherit method implementations from interfaces, but this is possible
in JML, where one can implement a model method in an interface. It is illegal for a class
or interface to inherit two different implementations of a model method.

In JML, specifications of supertypes are inherited by subtypes, and thus must be obeyed
by subtypes. This forces subtypes to be behavioral subtypes [Dhara-Leavens96] [Leavens-
Naumann06| [Leavens06b]. See Chapter 11 [Specification Inheritance|, page 89, for details
about specification inheritance and behavioral subtyping.

6.1.2 Modifiers for Type Declarations

In addition to the Java modifiers that can be legally attached to a class or interface decla-
ration [Gosling-etal00], in JML one can use the following modifiers.

pure model

spec_java_math spec_safe_math spec_bigint_math
code_java_math code_safe_math code_bigint_math
nullable_by_default

See Section 6.2 [Modifiers|, page 39, for the syntax and semantics of modifiers in general.

The modifiers spec_java_math, spec_safe_math, and spec_bigint_math are mutually
exclusive. They declare that all the math used in the type’s specifications uses the rules
of Java’s math, safe math, or bigint math, respectively. The modifiers code_java_math,
code_safe_math, and code_bigint_math are also mutually exclusive. They say that the
math used in the type’s Java code uses the rules of Java’s math, safe math, or bigint
math, respectively. See Section 6.2.12 [Math Modifiers|, page 43, for more details on these
modifiers.

We discuss the use of pure and model on type declarations below.

Chapter 6: Type Declarations 39

6.1.2.1 Pure Type Declarations

A type declaration may be modified with the JML modifier keyword pure. The effect
of declaring a type pure is that all constructor and instance method declarations within
the type are automatically declared to be pure (see Section 7.1.1.3 [Pure Methods and
Constructors], page 46, for more about pure methods). However, its static methods may
still have side effects in a type declared with pure, as the pure does not apply to the static
methods declared in a type. So, in essence, declaring a class pure is merely a shorthand for
declaring all of the constructors and instance methods declared in that class pure.

Although an override of a pure method must be pure, instance methods declared in
subtypes that do not override a pure supertype’s methods need not be pure. Hence, some
methods of such a subtype object may mutate the objects of such a subtype. In other
words, such a subtype does not necessarily have immutable objects.

However, if one is careful, once an object of class declared to be pure is created, such
an object will be immutable, since none of its instance methods will have any side effects.
Being careful to avoid problems means first that the class’s fields must be either final or
encapsulated (e.g., declared as private, to avoid direct mutation by clients), and second
that the type’s constructors and methods, must either avoid representation exposure (see
Section 18.1 [Basic Concepts of Universes|, page 134) or all of its fields must be immutable
objects or values (such as integers).

6.1.2.2 Model Type Declarations

A type declaration that is declared with the modifier model is a specification-only type.
Hence, such a type may not be used in Java code, and may only be used in annotations. It
follows that the entire type declaration must be contained within an annotation comment,
and consequently annotations within the type declaration do not need to be separately
enclosed in annotation comments.

The scope rules for a model type declaration are the same as for Java type definitions,
except that a model type declaration is not in scope for any Java code, only for annotations.

Types declared with the keyword model are seldom used in JML. If a tool does not
support such types, one can always just define a Java type, which will also be useful in
runtime assertion checking.

Various authors refer to “model types” when they really mean “types with modifier pure
that are used for modeling.” Such a usage is contrary to JML’s notion of a type with a
model modifier.

6.2 Modifiers

The following is the syntax of modifiers.

modifiers ::= | modifier | . ..
modifier ::= public | protected | private
| abstract | static |
| final | synchronized
| transient | volatile
| native | strictfp
| const // reserved but not used in Java

Chapter 6: Type Declarations 40

| java-annotation
| jml-modifier
jml-modifier ::= spec_public | spec_protected
| model | ghost | pure
| instance | helper
| uninitialized
| spec_java_math | spec_safe_math | spec_bigint_math
| code_java_math | code_safe_math | code_bigint_math
| non_null | nullable | nullable_by_default
| extract

The jml-modifiers are only recognized as keywords in annotation comments. See Chap-
ter 4 [Lexical Conventions], page 26, for more details.

The Java modifiers have the same meaning as in Java [Gosling-etal00].

Note that although the modifiers grammar non-terminal is used in many places through-
out the grammar, not all modifiers can be used with every grammar construct. See the dis-
cussion regarding each grammar construct, which is summarized in Appendix D [Modifier
Summary], page 163.

In the following we first discuss the suggested ordering of modifiers The rest of this
section discusses the JML-specific modifiers in general terms. Their use and meaning for
each kind of grammatical construct should be consulted directly for more details.

6.2.1 Suggested Modifier Ordering

There are various guidelines for ordering modifiers in Java (see, for example section 8 of
[Gosling-etal00], which is enforced by Checkstyle). As JML has several extra modifiers,
we also suggest an ordering; although this ordering is not enforced, various tools may give
warnings if the suggestions are not followed, as following a standard ordering tends to make
reading declarations easier. For use in JML, we suggest the following ordering groups, where
the ones at the top should appear first (leftmost), and the ones at the bottom should appear
last (rightmost). In each line, the modifiers are either mutually exclusive, or their order
does not matter (or both).

java-annotations

public private protected spec_public spec_protected
abstract static

model ghost pure

final

synchronized

instance

transient

volatile

native strictfp

monitored uninitialized

helper

spec_java_math spec_safe_math spec_bigint_math
code_java_math code_safe_math code_bigint_math
non_null nullable nullable_by_default

code extract

Chapter 6: Type Declarations 41

peer rep readonly

6.2.2 Java Annotations

A Java annotation (see section 9.7 of [Gosling-etal05]) has the following syntax. Note
that these are quite different from JML annotations (see Section 4.4 [Annotation Markers|,
page 27).

java-annotations ::= java-annotation | java-annotation | . . .
java-annotation ::= @ name ([element-value-pairs | ...)

| @ name

| @ name (element-values)
element-value-pairs ::= element-value | , element-value |
element-value-pair ::= ident = element-value
element-value ::= conditional-expr

| annotation

| element-value-array-initializer
element-value-array-initializer ::= ‘{’ element-values | ‘}’
element-values ::= element-value | , element-value | ... [,]

A Java annotation forms part of the Java interface of a declaration, and as such is only
satisfied by an implementation if the implementation contains the same annotation. Its
semantics and checking is exactly as in Java.

6.2.3 Spec Public

The spec_public modifier allows one to declare a feature as public for specification pur-
poses. It can only be used when the feature has a more restrictive visibility in Java. A
spec_public field is also implicitly a data group.

6.2.4 Spec Protected

The spec_protected modifier allows one to declare a feature as protected for specification
purposes. It can only be used when the feature has a more restrictive visibility in Java.
That is, it can only be used to change the visibility of a field or method that is, for Java,
either declared private or default access (package visible). A spec_protected field is also
implicitly a data group.

6.2.5 Pure

In general terms, a pure feature is one that has no side effects when executed. In essence
pure only applies to methods and constructors. The use of pure for a type declaration is
shorthand for applying that modifier to all constructors and instance methods in the type
(see Section 6.1.2 [Modifiers for Type Declarations], page 38).

See Section 7.1.1.3 [Pure Methods and Constructors|, page 46, for the exact semantics
of pure methods and constructors.

6.2.6 Model

The model modifier introduces a specification-only feature. For fields it also has a special
meaning, which is that the field can be represented by concrete fields. See Section 2.2
[Model and Ghost], page 11.

Chapter 6: Type Declarations 42

The modifiers model and ghost are mutually exclusive.

A model field may not be declared to be final. This is because model fields are ab-
stractions of concrete fields, and thus it would complicate JML to allow final model fields.
If you feel that you want a final model field, what you should use instead is a final ghost
field. See Section 6.2.7 [Ghost], page 42.

Note that in an interface, a model field is implicitly declared to be static. Thus if you
want an instance field, you should use the modifier instance, so that the field will act as if
it were a member of all objects whose type is a subtype of that interface. Conversely, in a
class, a model field is implicitly declared to be instance. Thus, if you want a static field,
you should use the modifier static, so that the value of the model field is shared by all
instances of the class and its subclasses.

6.2.7 Ghost

The ghost modifier introduces a specification-only field that is maintained by special set
statements. See Section 2.2 [Model and Ghost|, page 11.

The modifiers ghost and model are mutually exclusive.

A ghost field declared in an interface is not final by default. If you want a final ghost
field in an interface, you must declare it to be final explicitly. Ghost fields in classes are
also not final by default.

In an interface, a ghost field is implicitly declared to be static. Thus if you want an
instance field, you should use the modifier instance, so that the field will act as if it were
a member of all objects whose type is a subtype of that interface. Conversely, in a class, a
ghost field is implicitly declared to be instance. Thus, if you want a static field, you should
use the modifier static, so that the value of the ghost field is shared by all instances of the
class and its subclasses.

6.2.8 Instance

The instance modifier says that a field is not static. See Section 2.5 [Instance vs. Static],
page 15.

6.2.9 Helper

The helper modifier may be used on a method that is either pure or private or on a
private constructor to say that its specification is not augmented by invariants and history
constraints that would otherwise be relevant. that is, when a method or constructor is
declared with the helper modifier, no invariants or history constraints apply to it (see
Section 7.1.1.4 [Helper Methods and Constructors], page 48). Thus helper makes such a
method or constructor an exception to the general rule that each invariant must be obeyed
by all methods in a class or interface and its subtypes. (see Section 8.2 [Invariants|, page 52).
Similar remarks apply to helper methods and history constraints.

The paper “Information Hiding and Visibility in Interface Specifications” [Leavens-
Mueller07] describes why helper methods must be private. Essentially, the reason is that a
helper method (or constructor) may violate various invariants, and all of the potentially vi-
olated invariants “must be visible wherever the helper method is visible” (Rule 7 in Section
5.2 of [Leavens-Mueller07]). The only way to guarantee that in all cases all such invariants
are visible is to force all helper methods to be private. However, the discussion in that

Chapter 6: Type Declarations 43

paper did not consider pure methods, and it is sometimes helpful to make a pure method a
helper method, so this case is also allowed.

6.2.10 Monitored

The monitored modifier may be used on a non-model field declaration to say that a thread
must hold the lock on the object that contains the field (i.e., the this object containing
the field) before it may read or write the field [Leino-Nelson-Saxe00].

6.2.11 Uninitialized

The uninitialized modifier may be used on a field declaration to say that despite the
initializer, the location declared is to be considered uninitialized. Thus, the field should be
assigned in each path before it is read. [Leino-Nelson-Saxe00].

6.2.12 Math Modifiers

The modifiers spec_java_math, spec_safe_math, spec_bigint_math, code_java_math,
code_safe_math, and code_bigint_math describe what math modes are used for specifica-
tions (spec_. . .) and for Java code (code_. . .) [Chalin04]. For each of these two dimensions
of specifications and code, there are there are three kinds of math modes.

e In Java math mode, integral arithmetic can cause silent wrap-around of computations.
For example 1+Integer.MAX_VALUE will equal 1+Integer .MIN_VALUE. This is the de-
fault math mode.

e In safe math mode, wrap-around of integral arithmetic causes exceptions. For example
1+Integer .MAX_VALUE will throw an exception.

e In bigint math mode, integeral artihmetic is considered to use infinite precision integers,
and thus there is no wrap-around. (This semantics will be approximated in runtime
assertion checking by using integers that can grow to very large numbers, limited only
by the size of a computer’s memory.) For example 1+Integer.MAX_VALUE will be the
next integer past Integer .MAX_VALUE.

The spec_ modifiers spec_java_math, spec_safe_math, and spec_bigint_math de-
termine the kind of mathematics used in specifications at the level in which the modifier
appears. For example, if the modifier spec_java_math is used on a type declaration, all
arithmetic used in specifications written in that type use Java math mode. Similarly, if the
modifier spec_java_math is used on a method declaration, then Java math mode will be
used for the specifications written in that file for that method. The mode spec_java_math is
the default math used in specifications, used if neither spec_safe_math, nor spec_bigint_
math are given. Within a type marked with one of these modifiers, individual method or
constructors can have one of the other modifiers, which is used for that method or con-
structor’s specifications in that file. Similarly, spec_safe_math specifies that safe math
mode will be used for the specifications in the type or method to which it is attached, and
spec_bigint_math specifies that bigint math mode will be used for the specifications in
the type or method to which it is attached.

The modifiers code_java_math, code_safe_math, and code_bigint_math are similar
to the specification math modes, but describe the way that the Java code used in an im-
plementation is compiled. For example, code_java_math specifies that the type or method
to which the modifier is attached is to be compiled using the default Java math mode.

Chapter 6: Type Declarations 44

For example, code_safe_math specifies that the type or method to which the modifier is
attached is to be compiled using the safe math mode, and code_bigint_math specifies that
the type or method to which the modifier is attached is to be compiled using bigint math
mode.

These modes are level 2 features of JML. See Chalin’s paper [Chalin04] for more details
on the use of these modes.

6.2.13 Nullity Modifiers

Any declaration (other than that of a local variable) whose type is a reference type is
implicitly declared non_null unless (explicitly or implicitly) declared nullable. Hence
reference type declarations are assumed to be non-null by default (see Section 2.8 [Null is
Not the Default], page 16).

A declaration can be explicitly declared nullable by annotating it with the nullable
modifier. A declaration is implicitly declared nullable when the (outer most) class or
interface containing the declaration is adorned by the class-level modifier nullable_by_
default.

Attempting to use both the non_null and nullable modifiers is a compile time error.

Chapter 7: Class and Interface Member Declarations 45

7 Class and Interface Member Declarations

The nonterminal field describes all the members of classes and interfaces (see Section 6.1
[Class and Interface Declarations|, page 37).

field ::= member-decl
| jml-declaration
| class-initializer-decl
("

Also see Section G.2.1 [Non-null by Default], page 169. In the rest of this chapter we
describe mostly the syntax and Java details of member declarations and class initializers. See
Chapter 8 [Type Specifications], page 52, for the syntax and semantics of jml-declaration,
and, more generally, how to use JML to specify the behavior of types.

7.1 Java Member Declarations

The following gives the syntax of Java member declarations.

member-decl ::= method-decl
| variable-definition
| class-declaration
| interface-declaration

See Section 6.1 [Class and Interface Declarations|, page 37, for details of class-declaration
and interface-declaration. We discuss method and variable declarations below.

7.1.1 Method and Constructor Declarations

The following is the syntax of a method declaration.

method-decl ::= [doc-comment | . . .
method-specification
modifiers [method-or-constructor-keyword |
[type-spec | method-head
method-body
| [doc-comment | . ..

modifiers [method-or-constructor-keyword]

[type-spec | method-head

[method-specification |

method-body

method-or-constructor-keyword ::= method | constructor
method-head ::= ident formals [dims | | throws-clause |
method-body ::= compound-statement | ;

throws-clause ::= throws name [, name | ...

Notice that the specification of a method (see Chapter 9 [Method Specifications], page 63)
may appear either before or after the method-head.

The use of non_null as a modifier in a method-decl really is shorthand for a postcon-
dition describing the normal result of a method, indicating that it must not be null. It can
also be seen as a modifier on the method’s result type, saying that the type returned does
not contain null.

Chapter 7: Class and Interface Member Declarations 46

The use of extract as a modifier in a method-decl is shorthand for writing a model pro-
gram specification. See Section 15.2 [Extracting Model Program Specifications|, page 124,
for an explanation of this modifier.

7.1.1.1 Formal Parameters

formals ::= (| param-declaration-list |)
param-declaration-list ::= param-declaration
[, param-declaration | . ..
param-declaration ::= [param-modifier | ... type-spec ident [dims |

param-modifier ::= final | non_null | nullable

See Section 7.1.2.2 [Type-Specs], page 50, for more about the nonterminals type-spec
and dims.

The modifier non_null when attached to a formal parameter is shorthand for a precon-
dition that says that the corresponding actual parameter may not be null. The type of a
parameter that has the non_null modifier must be a reference type [Raghavan-Leavens05].

The non_null modifier on a parameter is inherited in the same way as the equivalent
precondition would be, so it need not be declared on every declaration of the same method
in a subtype or refinement. The non_null modifier may be added to a method in a separate
file (see Chapter 17 [Separate Files for Specifications], page 129), and thus need not appear
originally in the Java source code. It can be added to a method override in a subtype, but
that will generally make the method non-implementable, as the method must also satisfy
an inherited specification without the corresponding precondition.

7.1.1.2 Model Methods and Constructors

A method or constructor that uses the modifier model is called a model method or con-
structor. Since a model method is not visible to Java code, the entire method, including its
body, should be written in an annotation.

As usual in JML (see Section 2.2 [Model and Ghost], page 11), a model method or
constructor is a specification-only feature. A model method or constructor may have either
a body or a specification, or both. The specification may be used in various verification tools,
while the body allows it to be executed during runtime assertion checking. Model methods
may also be abstract, and both model methods and constructors may be final (although
there is no particular purpose served by making a constructor final, since constructors are
not overridden in any case).

It is usual in JML to declare model methods and constructors as pure. However, it is
possible to have a model method or constructor that is not pure; such methods are useful
in model programs (see Chapter 15 [Model Programs|, page 122). On the other hand, aside
from their use in model programs, most model methods only exist to be called in assertions,
and since only pure methods can be called in assertions, they should usually be declared as
pure.

7.1.1.3 Pure Methods and Constructors

This subsubsection, which describes the effect of the pure modifier on methods and construc-
tor declarations, is quoted from the preliminary design document [Leavens-Baker-Ruby06].

Chapter 7: Class and Interface Member Declarations 47

We say a method is pure if it is either specified with the modifier pure or is a method
that appears in the specification of a pure interface or class. Similarly, a constructor is pure
if it is either specified with the modifier pure or appears in the specification of a pure class.

A pure method that is not a constructor implicitly has a specification that does not
allow any side-effects. That is, its specification has the clauses

diverges false;
assignable \nothing;

added to each specification case; if the method has no specification given explicitly, then
these clauses are added as a lightweight specification. For this reason, if one is writing a
pure method, it is not necessary to otherwise specify an assignable clause (see Section 9.9.9
[Assignable Clauses], page 83), although doing so may improve the specification’s clarity.

A pure constructor has the clauses

diverges false;
assignable this.x*;

added to each specification case; if the constructor has no specification given explicitly,
then these clauses are added as a lightweight specification. This specification allows the
constructor to assign to the non-static fields of the class in which it appears (including
those inherited from its superclasses and ghost model instance fields from the interfaces
that it implements).

Implementations of pure methods and constructors will be checked to see that they meet
these conditions on what locations they can assign to. To make such checking modular,
some JML tools prohibit a pure method or constructor implementation from calling methods
or constructors that are not pure. However, more sophisticated tools could more directly
check the intended semantics [Salcianu-Rinard05].

A pure method or constructor must also be provably terminating. Although JML does
not force users to make such proofs of termination, users writing pure methods and con-
structors are supposed to make pure methods total in the sense that whenever, a pure
method is called it either returns normally or throws some exception. This is supposed to
lessen the possibility that assertion evaluation could loop forever, aids theorem provers by
making pure methods more like mathematical functions.

Furthermore, a pure method is supposed to always either terminate normally or throw
an exception, even for calls that do not satisfy its precondition. Static verification tools for
JML should enforce this condition, by requiring a proof that a pure method implementation
satisfies the following specification

private behavior
requires true;
diverges false;
assignable \nothing;

(and similarly for constructors, except that the assignable clause becomes assignable
this.*; for constructors).

However, this implicit verification condition is a specification, and thus cannot be used
in reasoning about calls to the method, even calls from within the class itself and recursive
calls from within the implementation. For this reason we recommend writing the method
or constructor specification in such a way that the effective precondition of the method is

Chapter 7: Class and Interface Member Declarations 48

“true,” making the proof of the above implicit verification condition trivial, and allowing
the termination behavior of the implementation to be relied upon by all clients.

Recursion is permitted, both in the implementation of pure methods and the data struc-
tures they manipulate, and in the specifications of pure methods. When recursion is used in
a specification, the proof of well-formedness for the specification involves the use of JML’s
measured_by clause.

Since a pure method may not go into an infinite loop, if it has a non-trivial precondition,
it should throw an exception when its normal precondition is not met. This exceptional
behavior does not have to be specified or programmed explicitly, but technically there is an
obligation to meet the specification that the method never loops forever.

Furthermore, a pure method must be deterministic, in the sense that when called in a
given state, it must always return the same value. Similarly a pure constructor should be
deterministic in the sense that when called in a given state, it always initializes the object
in the same way.

A pure method can be declared in any class or interface, and a pure constructor can be
declared in any class. JML will specify the pure methods and constructors in the standard
Java libraries as pure.

As a convenience, instead of writing pure on each method declared in a class and in-
terface, one can use the modifier pure on classes and interfaces and classes. This simply
means that each non-static method and each constructor declared in such a class or inter-
face is pure. Note that this does not mean that all methods inherited (but not declared
in and hence not overridden in) the class or interface are pure. For example, every class
inherits ultimately from java.lang.0bject, which has some methods, such as notify and
notifyAll that are manifestly not pure. Thus each class will have some methods that are
not pure. Despite this, it is convenient to refer to classes and interfaces declared with the
pure modifier as pure.

In JML the modifiers model and pure are orthogonal. (Recall something declared with
the modifier model does not have to be implemented, and is used purely for specification
purposes.) Therefore, one can have a model method that is not pure (these might be useful
in JML’s model programs) and a pure method that is not a model method. Nevertheless,
usually a model method (or constructor) should be pure, since there is no way to use
non-pure methods in an assertion, and model methods cannot be used in normal Java code.

By the same reasoning, model classes should, in general, also be pure. Model classes
cannot be used in normal Java code, and hence their methods are only useful in assertions
(and JML’s model programs). Hence it is typical, although not required, that a model class
also be a pure class.

As can be seen from the semantics, if a pure method has a return type of void, then it
can essentially only do nothing. So, while pure methods with void as their return type are
not illegal, they are useless.

7.1.1.4 Helper Methods and Constructors

The helper modifier may only be used on a private method or constructor [Leavens-
Mueller07]. See Section 6.2.9 [Helper|, page 42, for more on why such methods and con-
structors must be private.

Chapter 7: Class and Interface Member Declarations 49

A method or constructor with the helper modifier, has a specification that is not aug-
mented by invariants and history constraints that would otherwise apply to it. It can thus
be thought of as an abbreviation device. However, whatever specifications are given explic-
itly for such a method or constructor still apply. See Section 8.2 [Invariants|, page 52, for
more details.

7.1.2 Field and Variable Declarations
The following is the syntax of field and variable declarations.

variable-definition ::= [doc-comment | ... modifiers variable-decls
variable-decls ::= [field | type-spec variable-declarators ;

[jml-data-group-clause | . ..
variable-declarators ::= variable-declarator

[, variable-declarator | . ..

variable-declarator ::= ident | dims | | = initializer]
initializer ::= expression | array-initializer
array-initializer ::= { [initializer-list | }
initializer-list ::= initializer [, initializer | ... [,]

The field keyword is not normally needed, but can be used to change JML’s parsing
mode. Within an annotation, such as within a declaration of a model method, it is some-
times necessary to switch from JML annotation mode to JML spec-expression mode, in
order to parse words that are JML keywords but should be recognized as Java identifiers.
This can be accomplished in a field declaration by using the keyword field, which changes
parsing to spec-expression mode. [[[When does the mode revert back? e.g. in a method
declaration - DRC]]]

[[[Needs example, move elsewhere?]|]

In a non-Java file, such as a file with suffix ‘. jml’ (see Chapter 17 [Separate Files for
Specifications|, page 129), one may omit the initializer of a variable-declarator, even one
declared to be final. In such a file, one may also omit the body of a method-decl. Of
course, in a ‘. java’ file, one must obey all the rules of Java for declarations that are not in
annotations.

See Chapter 10 [Data Groups|, page 87, for more about jml-data-group-clauses. See Sec-
tion 12.2 [Specification Expressions|, page 90, for the syntax of expression. In the following
we discuss the modifiers for field and variable declarations and type-specs.

7.1.2.1 JML Modifiers for Fields

The ghost and model modifiers for fields both say that the field is a specification-only
field; it thus cannot be accessed by the Java code. The difference is that a ghost field is
explicitly manipulated by initializations and set statements (see Chapter 13 [Statements and
Annotation Statements|, page 108), whereas a model field cannot be explicitly manipulated.
Instead a model field is indirectly given a value by a represents clause (see Section 8.4
[Represents Clauses], page 60). See Section 2.2 [Model and Ghost|, page 11, for a general
discussion of this distinction in JML.

While fields can be declared as either model or ghost fields, a field cannot be both.
Furthermore, local variables cannot be declared with the model modifier.

Chapter 7: Class and Interface Member Declarations 50

The non_null modifier in a variable declaration is shorthand for an invariant saying
that each variable declared in the variable-decls may not be null. This invariant has the
same visibility as the visibility declaration of the variable-definition itself. See Section 8.2
[Invariants|, page 52, for more about invariants.

The monitored modifier says that each variable declared in the variable-decls can only
be accessed by a thread that holds the lock on the object that contains the field [Leino-
Nelson-Saxe00]. It may not be used with model fields.

The instance modifier says that the field is to be found in instances instead of in class
objects; it is the opposite of static. It is typically only needed for model or ghost fields
declared in interfaces. When used in an interface, it makes the field both non-static and
non-final (unless the final modifier is used explicitly). See Section 2.5 [Instance vs. Static|,
page 15.

To declare a static field in an interface, one omits the instance modifier; such a field,
as in Java is both static and final.

7.1.2.2 Type-Specs

The syntax of a type-spec is as in Java [Gosling-etal00], except for the addition of the type
\TYPE and the possibility of using ownership-modifiers. The ownership-modifiers are only
available when the Universe type system is turned on. See Chapter 18 [Universe Type
System]|, page 133, for how to do that, and for the syntax and semantics of ownership-
modifiers.

type-spec ::= [ownership-modifiers | type [dims]
| \TYPE [dims]

type ::= reference-type | built-in-type

reference-type ::= name

dims =:= ‘17" [0] ...
The type \TYPE represents the kind of all Java types. It can only be used in annotations.
It is equivalent to java.lang.Class.

7.2 Class Initializer Declarations

The following is the syntax of class initializers.
class-initializer-decl ::= | method-specification |
[static | compound-statement

| method-specification static_initializer
| method-specification initializer

The first form above is the form of Java class instance and static initializers. The
initializer is static, and thus run when the class is loaded, if it is labeled static. The effect
of the initializer can be specified by a JML method specification (see Chapter 9 [Method
Specifications], page 63), which treats the initializer as a private helper method with return
type void, whose body is given by the compound-statement (see Chapter 13 [Statements
and Annotation Statements|, page 108).

The last two forms are used in JML to specify static and instance initializers without
giving the body of the initializer. They would be used in annotations in non-Java files
(see Chapter 17 [Separate Files for Specifications|, page 129). At most one of each of

Chapter 7: Class and Interface Member Declarations 51

these may appear in a type specification file. Such a specification is satisfied if there is at
least one corresponding initializer in the implementation, and if the sequential composition
of the bodies of the corresponding initializer(s), when considered as the body of a private
helper method with return type void, satisfy the specification given (see Chapter 9 [Method
Specifications], page 63).

Note that, due to this semantics, the method-specifications for an initializer can only
have private specification cases.

[[[But initializers can be interspersed between field initializations, which will affect their
meaning. Thus I think the composition has to include the field initializations. The effect is
that the post-condition of the JML initializer refers to the state before a constructor begins
executing; a static_initializer refers to the state after class loading, I think. — DRCok]]] [[|

Is the restriction to private true for static initialization as well - don’t think it should be. -
DRCOX]]]

Chapter 8: Type Specifications 52

8 Type Specifications

This chapter describes the way JML can be used to specify abstract data types (ADTs).

Overall the mechanisms used in JML to specify ADTs can be described as follows.
First, the interface of a type is described using the Java syntax for such a type’s declaration
(see Chapter 7 [Class and Interface Member Declarations], page 45); this includes any
required fields and methods, along with their types and visibilities, etc. Second, the behavior
of a type is described by declaring model and ghost fields to be the client (or subtype)
visible abstractions of the concrete state of the objects of that type, by writing method
specifications using those fields, and by writing various jml-declarations to further refine
the logical model defined by these fields. These jml-declarations can also be used to record
various design and implementation decisions.

The syntax of these jml-declarations is as follows.

jml-declaration ::= modifiers invariant
| modifiers history-constraint
| modifiers represents-clause
| modifiers initially-clause
| modifiers monitors-for-clause
| modifiers readable-if-clause
| modifiers writable-if-clause
| axiom-clause

The semantics of each of kind of jml-declaration is discussed in the sections below.
However, before getting to the details, we start with some introductory examples.

8.1 Introductory ADT Specification Examples

[[[Need examples here, which should be first written into the org.jmlspecs.samples.jmlrefman
package and then included and discussed here.]]]

8.2 Invariants

The syntax of an invariant declaration is as follows.

invariant ::= invariant-keyword predicate ;
invariant-keyword ::= invariant | invariant_redundantly

An example of an invariant is given below. The invariant in the example has default
(package) visibility, and says that in every state that is a visible state for an object of type
Invariant, the object’s field b is not null and the array it refers to has exactly 6 elements.
In this example, no postcondition is necessary for the constructor since the invariant is an
implicit postcondition for it.

package org.jmlspecs.samples. jmlrefman;
public abstract class Invariant {
boolean[] b;

//@ invariant b != null && b.length == 6;

Chapter 8: Type Specifications 53

//@ assignable b;
Invariant() {
b = new boolean[6];
}
}

Invariants are properties that have to hold in all visible states. The notion of visible
state is of crucial importance in the explanation of the semantics of both invariants and
constraints. A state is a visible state for an object o if it is the state that occurs at one of
these moments in a program’s execution:

e at end of a non-helper constructor invocation that is initializing o,

at the beginning of a non-helper finalizer invocation that is finalizing o,

e at the beginning or end of a non-helper non-static non-finalizer method invocation with
o as the receiver,

e at the beginning or end of a non-helper static method invocation for a method in o’s
class or some superclass of o’s class, or

e when no constructor, destructor, non-static method invocation with o as receiver, or
static method invocation for a method in o’s class or some superclass of 0’s class is in
progress.

Note that visible states for an object o do not include states at the beginning and end of
invocations of helpers, which are constructors or methods declared with the helper modifier
(see Section 9.6.4 [Semantics of helper methods and constructors], page 71). Thus the post-
state of a helper constructor and the pre- and post-states of helper methods are not visible
states.

A state is a visible state for a type T if it occurs after static initialization for T is
complete and it is a visible state for some object that has type T. Note that objects of
subtypes of type T also have type T.

JML distinguishes static and instance invariants. These are mutually exclusive and any
invariant is either a static or instance invariant. An invariant may be explicitly declared to
be static or instance by using one of the modifiers static or instance in the declaration
of the invariant. An invariant declared in a class declaration is, by default, an instance
invariant. An invariant declared in an interface declaration is, by default, a static invariant.

For example, the invariant declared in the class Invariant above is an instance invariant,
because it occurs inside a class declaration. If Invariant had been an interface instead of
a class, then this invariant would have been a static invariant.

A static invariant may only refer to static fields of an object. An instance invariant, on
the other hand, may refer to both static and non-static fields.

The distinction between static and instance invariants also affects when the invariants
are supposed to hold. A static invariant declared in a type T must hold in every state that
is a visible state for type 7. An instance invariant declared in a type T must hold for every
object o of type T, for every state that is a visible state for o.

For reasoning about invariants we make a distinction between assuming, establishing,
and preserving an invariant. A method (or constructor) assumes an invariant if the invariant
must hold in its pre-state. A method or constructor establishes an invariant if the invariant

Chapter 8: Type Specifications 54

must hold in its post-state. A method or constructor preserves an invariant if the invariant
is both assumed and established.

JML’s verification logic enforces invariants by making sure that each non-helper method,
constructor, or finalizer:

e assumes the static invariants of all types, T, for which its pre-state is a visible state for
T.

)

e establishes the static invariants of all types, T, for which its post-state is a visible state
for T,

e assumes the instance invariants of all objects, o, for which its pre-state is a visible state
for o, and

e establishes the instance invariants of all objects, o, for which its post-state is a visible
state for o.

This means that each non-helper constructor found in a class C preserves the static
invariants of all types, including C, that have finished their static initialization, establishes
the instance invariant of the object under construction, and, modulo creation and deletion
of objects, preserves the instance invariants of all other objects. (Objects that are cre-
ated by a constructor must have their instance invariant established; and objects that are
deleted by the action of the constructor can be assumed to satisfy their instance invariant
in the constructor’s pre-state.) Note in particular that, at the beginning of a constructor
invocation, the instance invariant of the object being initialized does not have to hold yet.

Furthermore, each non-helper non-static method found in a type T preserves the static
invariants of all types that have finished their static initialization, including 7, and, modulo
creation and deletion of objects, preserves the instance invariants of all objects, in particular
the receiver object. However, finalizers do only assume the instance invariant of the receiver
object, and do not have to establish it on exit.

The semantics given above is highly non-modular, but is in general necessary for the
enforcement of invariance when no mechanisms are available to prevent aliasing problems,
or when constructs like (concrete) public fields are used [Poetzsch-Heffter97]. Of course,
one would like to enforce invariants in a more modular way. By a modular enforcement of
invariants, we mean that one could verify each type independently of the types that it does
not use, and that a well-formed program put together from such verified types would still
satisfy the semantics for invariants given above. That is, each type would be responsible for
the enforcement of the invariants it declares and would be able to assume, without checking,
the invariants of other types it uses.

To accomplish this ideal, it seems that some mechanism for object ownership and alias
control [Noble-Vitek-Potter98] [Mueller-Poetzsch-Heffter00] [Mueller-Poetzsch-Heffter00a]
[Mueller-Poetzsch-Heffter0la] ~ [Mueller02] [Mueller-Poetzsch-Heffter-Leavens03] is
necessary. However, this mechanism is still not a part of JML, although some design work
in this direction has taken place [Mueller-Poetzsch-Heffter-Leavens06].

On the other hand, people generally assume that there are no object ownership alias
problems; this is perhaps a reasonable strategy for some tools, like run-time assertion check-
ers, to take. The alternative, tracking which types and objects are in visible states, and
checking every applicable invariant for every type and object in a visible state, is obviously
impractical.

Chapter 8: Type Specifications 55

Therefore, assuming or ignoring the problems with object ownership and alias control,
one obtains a simple and more modular way to check invariants. This is as follows.

e FEach non-helper constructor declared in a class C| must preserve the static invariant of
C, if C is finished with its static initialization, and must establish the instance invariant
of the object being constructed.

e Each non-helper non-static non-finalizer method declared in a type T, must preserve
the static invariant of T, if T is finished with its static initialization, and must preserve
the instance invariant of the receiver object.

e FEach non-helper static method declared in a type T, must preserve the static invariant
of T, if T is finished with its static initialization.

When doing such proofs, one may assume the static invariant of any type (that is finished
with its static initialization), and one may also assume the instance invariant of any other
object.

In this, more modular, style of checking invariants, one can think of all the static invari-
ants in a class as being implicitly conjoined to the pre- and postconditions of all non-helper
constructors and methods, and the instance invariants in a class as being implicitly con-
joined to the postcondition of all non-helper constructors, and to the pre- and postconditions
of all non-helper methods.

As noted above, helper methods and constructors are exempt from the normal rules for
checking invariants. That is because the beginning and end of invocations of these helper
methods and constructors are not visible states, and therefore they do not have to preserve
or establish invariants. Note that only private methods and constructors can be declared
as helper. See Section 7.1.1.4 [Helper Methods and Constructors]|, page 48.

The following subsections discuss other points about the semantics of invariants:

e Invariants can be declared static; see Section 8.2.1 [Static vs. instance invariants],
page 56.

e Invariants can be declared with the access modifiers public, protected, and private,
or be left with default access; see Section 8.2.3 [Access Modifiers for Invariants|, page 57.

e Invariants should also hold in case a constructor or method terminates abruptly, by
throwing an exception; see Section 8.2.2 [Invariants and Exceptions|, page 56.

e A class inherits all visible invariants specified in its superclasses and superinterfaces;
see Section 8.2.4 [Invariants and Inheritance|, page 57.

e Although some aspects of invariants are discussed in isolation here, the full explanation
of their semantics can only be given considered together with that of method specifica-
tions. After all, a method only has to preserve invariants when one of the preconditions
(i.e., requires clauses) specified for that method holds. So invariants are an integral
part of the explanation of method specifications in Chapter 9 [Method Specifications],
page 63.

e When considering an individual method body, remember that invariants should not
just hold in the beginning and the end of it, but also at any program point halfway
where another (non-helper) method or constructor is invoked. After all, these program
points are also visible states, and, as stated above, invariants should hold at all visible
states.

Chapter 8: Type Specifications 56

e A method invocation on an object should not just preserve the instance invariants of
that object and the static invariants of the class, but it should preserve the invariants
of all other (reachable) objects as well [Poetzsch-Heffter97].

It should be noted that the last two points above are not specific to Java or JML, but
these are tricky issues that have to be considered for any notion of invariant in an object-
oriented languages. Indeed, these two issues make the familiar notion of invariant a lot
more complicated than one might guess at first sight!

8.2.1 Static vs. instance invariants

As discussed above (see Section 8.2 [Invariants], page 52), invariants can be declared static
or instance. Just like a static method, a static invariant cannot refer to the current object
this and thus cannot refer to instance fields of this or non-static methods of the type.

Instance invariants must be established by the constructors of an object, and must be
preserved by all non-helper instance methods. If an object has fields that can be changed
without calling methods (usually a bad idea), then any such changes must also preserve the
invariants. For example, if an object has a public field, each assignment to that field must
establish all invariants that might be affected.

Static methods do not have a receiver object for which they need to assume or establish
an instance invariant, since they have no receiver object. However, a static method may
assume instance invariants of other objects, such as argument objects passed to the method.*

Static invariants must be established by the static initialization of a class, and must
be preserved by all non-helper constructors and methods, i.e., by both static and instance
methods.

The table below summarizes this:

| static non-helper non-helper non-helper
| initialization static method constructor instance method

static | establish preserve preserve preserve
invariant |
|
instance | (irrelevant) (irrelevant) establish preserve,
invariant | if not a
finalizer

A word of warning about terminology. As stated above, we call an invariant about
static properties “static invariants” and we call an invariant about the dynamic properties
of objects an “instance invariant” or, equivalently, an “object invariant.” This terminology
is contrary to the literature but it is more accurate with respect to the nomenclature of
Java.

8.2.2 Invariants and Exceptions

Methods and constructors should preserve and establish invariants both in the case of nor-
mal termination and in the case of abrupt termination (i.e., when an exception is thrown). In
other words, invariants are implicitly included in both normal postconditions, i.e., ensures

! Thanks to Peter Miiller for clarifying this paragraph.

Chapter 8: Type Specifications 57

clauses, and in exceptional postconditions, i.e., signals clauses, of methods and construc-
tors.

The requirement that invariants hold after abrupt termination of a method or constructor
may seen excessively strong. However, it is the only sound option in the long run. After
all, once an object’s invariant is broken, no guarantees whatsoever can be made about
subsequent method invocations on that object. When faced with a method or constructor
that may violate an invariant in case it throws an exception, one will typically try to
strengthen the precondition of the method to rule out this exceptional behavior or try to
weaken the invariant. Note that a method that does not have any side effects when it throws
an exception automatically preserves all invariants.

8.2.3 Access Modifiers for Invariants

Invariants can be declared with any one of the Java access modifiers private, protected,
and public. Like class members, invariants declared in a class have package visibility if they
do not have one of these keywords as modifier. Similarly, invariants declared in an interface
implicitly have public visibility if they do not have one of these keywords as modifier.

The access modifier of an invariant affects which members, i.e. which fields and which
(pure) methods, may be used in it, according to JML’s usual visibility rules. See Section 2.4
[Privacy Modifiers and Visibility], page 12, for the details and an example using invariants.

The access modifiers of invariants do not affect the obligations of methods and construc-
tors to maintain and establish them. That is, all non-helper methods are expected to
preserve invariants irrespective of the access modifiers of the invariants and the methods.
For example, a public method must preserve private invariants as well as public ones.

As noted in See Section 2.4 [Privacy Modifiers and Visibility], page 12, there are restric-
tions on the visibility of fields that can be referenced in invariants to prevent specifications
that clients cannot understand and to prevent invariants that clients cannot preserve. Thus,
for example, private invariants cannot mention public fields [Leavens-Mueller07].

8.2.4 Invariants and Inheritance

Each type inherits all the instance invariants specified in its superclasses and superinterfaces.
[[[Erik wrote: “Static invariants are not inherited”, but there seems to be some kind of static
field inheritance in Java...]|] [[[| DRCok- but all the static invariants of a superclass have to
be maintained by the subclass methods - isn’t this equivalent to inheritance?]]]

The fact that (instance) invariants are inherited is one of the reasons why the use of
the keyword super is not allowed in invariants. [[[Is this true? - I don’t understand this.
DRCok |]]

8.3 Constraints

History constraints [Liskov-Wing93b] [Liskov-Wing94], which we call constraints for short,
are related to invariants. But whereas invariants are predicates that should hold in all visible
states, history constraints are relationships that should hold for the combination of each
visible state and any visible state that occurs later in the program’s execution. Constraints
can therefore be used to constrain the way that values change over time.

The syntax of history constraints in JML is as follows.

Chapter 8: Type Specifications 58

history-constraint ::= constraint-keyword predicate
[for constrained-list | ;
constraint-keyword ::= constraint | constraint_redundantly
constrained-list ::= method-name-list | \everything
method-name-list ::= method-name [, method-name | ...
method-name ::= method-ref | (| param-disambig-list |) | | method-ref-start . *
method-ref ::= method-ref-start [. method-ref-rest | . ..
| new reference-type
method-ref-start ::= super | this | ident
method-ref-rest ::= this | ident
param-disambig-list ::= param-disambig [, param-disambig | ...
param-disambig ::= type-spec | ident | dims | |
Because methods will not necessarily change the values referred to in a constraint, a
constraint will generally describe reflexive and transitive relations.
For example, the constraints in the example below say that the value of field a and the
length of the array b will never change, and that the length of the array ¢ will only ever
increase.

package org.jmlspecs.samples. jmlrefman;
public abstract class Constraint {

int a;
//Q@ constraint a == \old(a);

boolean[] b;

//@ invariant b != null;
//@ constraint b.length == \old(b.length) ;

boolean[] c;

//@ invariant c != null;
//@ constraint c.length >= \old(c.length) ;

//@ requires bLength >= 0 && cLength >= 0;
Constraint (int bLength, int cLength) {

b = new boolean[bLength];

¢ = new boolean[cLength];

}

Note that, unlike invariants, constraints can — and typically do — use the JML keyword
\old.

A constraint declaration may optionally explicitly list one or more methods. It is the
listed methods that must respect the constraint. If no methods are listed, then all non-helper
methods of the class (and any subclasses) must respect the constraint. A method respects a

Chapter 8: Type Specifications 59

history constraint iff the pre-state and the post-state of a non-static method invocation are
in the relation specified by the history constraint. So one can think of history constraints
as being implicitly included in the postcondition of relevant methods. However, history
constraints do not apply to constructors and destructors, since constructors do not have a
pre-state and destructors do not have a post-state.

Private methods declared as helper methods do not have to respect history constraints,
just like these do not have to preserve invariants.

A few points to note about history constraints:

e Constraints can be declared static; see Section 8.3.1 [Static vs. instance constraints],
page H9.

e Constraints can be declared with the access modifiers public, protected, and private;
see Section 8.3.2 [Access Modifiers for Constraints|, page 60.

e Constraints should also hold if a method terminates abruptly by throwing an exception.

e A class inherits all constraints specified in its superclasses and superinterfaces; see
Section 8.3.3 [Constraints and Inheritance], page 60.

e Although some aspects of constraints are discussed in isolation here, the full expla-
nation of their semantics can only be given considered together with that of method
specifications. After all, a method only has to respect constraints when one of the
preconditions (ie. requires clauses) specified for that method holds. So constraints
are an integral part of the explanation of method specifications in Chapter 9 [Method
Specifications], page 63.

e When considering an individual method body, remember that constraints not only have
to hold between the pre-state and the post-state, but between all visible state that arise
during execution of the method. So, given that any program points in the method where
(non-helper) methods or constructors are invoked are also visible states, constraints
should also hold between the pre-state and any such program points, between these
program points themselves, and between any such program points and the post-state.

e A method invocation on an object o should not just respect the constraints of o, but
should respect the constraints of all other (reachable) objects as well.

These aspects of constraints are discussed in more detail below.

8.3.1 Static vs. instance constraints

History constraints can be declared static. Non-static constraints are also called instance
constraints. Like a static invariant, a static history constraint cannot refer to the current
object this or to its fields.

Static constraints should be respected by all constructors and all methods, i.e., both
static and instance methods.

Instance constraints must be respected by all instance methods.
The table below summarizes this:

| static non-helper non-helper non-helper
| initialization static method constructor instance method

static | (irrelevant) respect respect respect

Chapter 8: Type Specifications 60

constraint|

|
instance | (irrelevant) (irrelevant) (irrelevant) respect
constraint|

Instance constraints are irrelevant for constructors, in that here there is no pre-state for
a constructor that can be related (or not) to the post-state. However, if a visible state arises
during the execution of a constructor, then any instance constraints have to be respected.

In the same way, and for the same reason, static constraints are irrelevant for static
initialization.
8.3.2 Access Modifiers for Constraints

The access modifiers public, private, and protected pose exactly the same restrictions
on constraints as they do on invariants, see Section 8.2.3 [Access Modifiers for Invariants],
page 57.

8.3.3 Constraints and Inheritance

Any class inherits all the instance constraints specified in its superclasses and superinter-
faces. [[[Static constraints are not inherited.]]] [[[But they still apply to subclasses, no ?
and it says they are above - David]]]

The fact that (instance) constraints are inherited is one of the reasons why the use of
the keyword super is not allowed in constraints. [[| Needs explanation - David |||

8.4 Represents Clauses

The following is the syntax for represents clauses.

represents-clause ::= represents-keyword store-ref-expression = spec-expression ;
| represents-keyword store-ref-expression \such_that predicate ;
represents-keyword ::= represents | represents_redundantly

The first form of represents clauses is called a functional abstraction. This form defines
the value of the store-ref-expression in a visible state as the value of the spec-expression
that follows the =.

The second form (with \such_that) is called a relational abstraction. This form con-
strains the value of the store-ref-expression in a visible state to satisfy the given predicate.

e The left-hand side of a represents clause must be a reference to a model field (See
Chapter 7 [Class and Interface Member Declarations|, page 45, for details of model
fields). Although it is a store-ref-expression, wild cards and array ranges are not per-
mitted.

e In the functional abstraction form, the type of right-hand side of a represents-clause
must be assignment-compatible to the type of left-hand side.

e In the relational abstraction form, the type of right-hand side of a represents-clause
must be boolean.

For each type and model field, there can be at most one non-redundant represents-clause
that in the type that has the given model field in its left-hand side. A represents clause is
redundant if it is introduced using the keyword represents_redundantly.

Chapter 8: Type Specifications 61

A represents-clause can be declared as static (See Chapter 6 [Type Declarations],
page 37, for static declarations). In a static represents clause, only static elements can
be referenced both in the left-hand side and the right-hand side. In addition, the following
restriction is enforced:

e A static represents clause must be declared in the type where the model field on the
left-hand side is declared.

Unless explicitly declared as static, a represents-clause is non-static (for exceptions
see see Chapter 6 [Type Declarations|, page 37). A non-static represents clause can refer
to both static and non-static elements on the right-hand side.

e A non-static represents clause must not have a static model field in its left-hand side.
e A non-static represents clause must be declared in a type descended from (or nested
within) the type where the model field on the left-hand side is declared.

Note that represents clauses can be recursive. That is, a represents clause may name a
field on its right hand side that is the same as the field being represented (named on the left
hand side). It is the specifier’s responsibility to make sure such definitions are well-defined.
But such recursive represents clauses can be useful when dealing with recursive datatypes
[Mueller-Poetzsch-Heffter-Leavens03].

8.5 Initially Clauses

The initially-clause has the following syntax.
initially-clause ::= initially predicate ;

The meaning of an initially-clause is that each non-helper (see Section 6.2.9 [Helper],
page 42) constructor for each concrete subtype of the enclosing type (including that type
itself, if it is concrete) must establish the predicate. Thus, the predicate can be thought of
as implicitly conjoined to the postconditions of all non-helper constructors of such a type
and all of its subtypes.

8.6 Axioms

An axiom-clause has the following syntax.
axiom-clause ::= axiom predicate ;

Such a clause specifies that a theorem prover should assume that the given predicate is
true (whenever such an assumption is needed).

[[[example needed |]]

8.7 Readable If Clauses

The syntax of the readable-if-clause is as follows.
readable-if-clause ::= readable ident if predicate ;

Such a clause gives a condition that must be true before the field named by ident can
be read. This field must be one declared in the type in which the declaration appears, or
in a supertype of the class.

Chapter 8: Type Specifications 62

8.8 Writable If Clauses

The syntax of the writeable-if-clause is as follows.
writable-if-clause ::= writable ident if predicate ;

Such a clause gives a condition that must be true before the field named by ident can
be written. This field must be one declared in the type in which the declaration appears,
or in a supertype of the class.

8.9 Monitors For Clause

The monitors-for-clause is adapted from ESC/Java [Leino-Nelson-Saxe00] [Rodriguez-
etal05]. It has the following syntax.

monitors-for-clause ::= monitors_for ident
= spec-expression-list ;

A monitors-for-clause such as monitors_for f <- el, e2; specifies a relationship be-
tween the field, £ and a set of objects, denoted by a specification expression list el, e2.
The meaning of this declaration is that all of the (non-null) objects in the list, in this exam-
ple, the objects denoted by el and e2, must be locked to read the field (£ in the example)
in this object.

Note that the righthand-side of the monitors-for-clause is not just a store-ref-list, but
is in fact a spec-expression-list, where each spec-expression evaluates to a reference to an
object.

Chapter 9: Method Specifications 63

9 Method Specifications

Although the use of pre- and postconditions for specification of the behavior of methods is
standard, JML offers some features that are not so standard. A good example of such a
feature is the distinction between normal and exceptional postconditions (in ensures and
signals clauses, respectively), and the specification of frame conditions using assignable
clauses. Another example of such a feature is that JML uses privacy modifiers to allow
one to write different specification that are intended for different readers; for example, one
can write a public specification for clients, a protected specification for subclasses, and a
private specification to record implementation design decisions. Yet another such feature is
the use of redundancy to allow one to point out important consequences of a specification
for readers [Tan95] [Leavens-Baker99].

JML provides two constructs for specifying methods and constructors:
e pre- and postconditions, and

e model programs.

This chapter only discusses the first of these, which is by far the most common. Model
programs are discussed in Chapter 15 [Model Programs], page 122.

9.1 Basic Concepts in Method Specification

[Discuss the “client viewpoint” here and give some basic examples here.|]]

[[[Perhaps discuss other common things to avoid repeating ourselves below...]]]

9.2 Organization of Method Specifications

The following gives the syntax of behavioral specifications for methods. We start with the
top-level syntax that organizes these specifications.

method-specification ::= specification | extending-specification
extending-specification ::= also specification
specification ::= spec-case-seq | redundant-spec |
| redundant-spec
spec-case-seq ::= spec-case | also spec-case | . ..
Redundant specifications (redundant-spec) are discussed in Chapter 14 [Redundancy],
page 118.

A method-specification of a method in a class or interface must start with the keyword
also if (and only if) this method is already declared in the parent type that the current
type extends, in one of the interfaces the class implements, or in a previous file of the
refinement sequence for this type. Starting a method-specification with the keyword also
is intended to tell the reader that this specification is in addition to some specifications of
the method that are given in the superclass of the class, one of the interfaces it implements,
or in another file in the refinement sequence.

A method-specification can include any number of spec-cases, joined by the keyword
also, as well as a redundant-spec. Aside from the redundant-spec, each of the spec-cases
specifies a behavior that must be satisfied by a correct implementation of the method or
constructor. That is, whenever a call to the specified method or constructor satisfies the

Chapter 9: Method Specifications 64

precondition of one of its spec-cases, the rest of the clauses in that spec-case must also
be satisfied by the implementation [Dhara-Leavens96] [Leavens-Naumann06] [Leavens06b]
[Raghavan-Leavens05] [Wills92b] [Wing83]. Model program specification cases, which have
no explicit preconditions, must be satisfied by all implementations.

The spec-cases in a method-specification can have several forms:

spec-case ::= lightweight-spec-case | heavyweight-spec-case
| model-program

Model programs are discussed in Chapter 15 [Model Programs|, page 122. The remainder
of this chapter concentrates on lightweight and heavyweight behavior specification cases.
JML distinguishes between

e heavyweight specification cases, which start with one of the keywords behavior,
normal_behavior or exceptional_behavior, or one of their British variant spellings
keywords behaviour, normal_behaviour or exceptional_behaviour (these are
also called behavior, normal behavior, and exceptional behavior specification cases,
respectively), and

e lightweight specification cases, which do not contain one of these behavior keywords.

A lightweight specification case is similar to a behavior specification case, but with
different defaults [Leavens-Baker-Ruby06]. It also is possible to desugar all such specification
cases into behavior specification cases [Raghavan-Leavens05].

9.3 Access Control in Specification Cases

Heavyweight specification cases may be declared with an explicit access modifier, according
to the following syntax.

privacy ::= public | protected | private

The access modifier of a heavyweight specification case cannot allow more access than
the method being specified. So a public method may have a private behavior specifica-
tion, but a private method may not have a public public specification. A heavyweight
specification case without an explicit access modifier is considered to have default (package)
access.

Lightweight specification cases have no way to explicitly specify an access modifier, so
their access modifier is implicitly the same as the method being specified. For example, a
lightweight specification of a public method has public access, implicitly, but a lightweight
specification of a private method has private access, implicitly. Note that this is a
different default than that for heavyweight specifications, where an omitted access modifier
always means package access.

The access modifier of a specification case affects only which annotations are visible in
the specification and does not affect the semantics of a specification case in any other way.

JML’s usual visibility rules apply to specification cases. So, for example, a public spec-
ification case may only refer to public members, a protected specification case may refer
to both public and protected members, as long as the protected members are otherwise
accessible according to Java’s rules, etc. See Section 2.4 [Privacy Modifiers and Visibility],
page 12, for more details and examples.

Chapter 9: Method Specifications 65

9.4 Lightweight Specification Cases

Syntax

The following is the syntax of lightweight specification cases. These are the most concise
specification cases.

lightweight-spec-case ::= generic-spec-case
generic-spec-case ::= | spec-var-decls |
spec-header
[generic-spec-body]
| [spec-var-decls |
generic-spec-body
generic-spec-body ::= simple-spec-body
| {| generic-spec-case-seq |}

generic-spec-case-seq 1= generic-spec-case
[also generic-spec-case | . ..
spec-header ::= requires-clause | requires-clause | . . .

simple-spec-body ::= simple-spec-body-clause
[simple-spec-body-clause | . ..

simple-spec-body-clause ::= diverges-clause

| assignable-clause | accessible-clause

| captures-clause | callable-clause

| when-clause | working-space-clause

| duration-clause | ensures-clause

| signals-only-clause | signals-clause

| measured-clause

As far as the syntax is concerned, the only difference between a lightweight specifica-
tion case and a behavior-specification-case (see Section 9.6 [Behavior Specification Cases],
page 67) is that the latter has the keyword behavior and possibly an access control modifier.

A lightweight specification case always has the same access modifier as the method
being specified, see Section 9.3 [Access Control in Specification Cases|, page 64. To specify
a different access control modifier, one must use a heavyweight specification.

Semantics

A lightweight specification case can be understood as syntactic sugar for a behavior spec-
ification case, except that the defaults for omitted specification clauses are different for
lightweight specification cases than for behavior specification cases. So, for example, apart
from the class names, method m in class Lightweight below

package org.jmlspecs.samples. jmlrefman;
public abstract class Lightweight {

protected boolean P, Q, R;
protected int X;

/*Q@ requires P;

Chapter 9: Method Specifications 66

@ assignable X;
@ ensures Q;
@ signals (Exception) R;
Qx/
protected abstract int m() throws Exception;

}
has a specification that is equivalent to that of method m in class Heavyweight below.

package org.jmlspecs.samples. jmlrefman;
public abstract class Heavyweight {

protected boolean P, Q, R;
protected int X;

/*@ protected behavior

@ requires P;
diverges false;
assignable X;
when \not_specified;
working_space \not_specified;
duration \not_specified;
ensures Q;
signals_only Exception;
signals (Exception) R;

©@ © © © © © © ©

x/
protected abstract int m() throws Exception;

¥

As this example illustrates, the default for an omitted clause in a lightweight specification
is \not_specified for all clauses, except diverges, which has a default of false, and
signals [Leavens-Baker-Ruby06]. The default for an omitted signals clause is to only
permit the exceptions declared in the method’s header to be thrown. Thus, if the method
declares that exceptions DE1 and DE2 may be thrown, then the default for an omitted
signals clause is

signals (Exception e) e instanceof DE1 || e instanceof DE2;

It is intended that the meaning of \not_specified may vary between different uses of
a JML specification. For example, a static checker might treat a requires clause that is
\not_specified as if it were true, while a verification logic may decide to treat it as if it
were false.

A completely omitted specification is taken to be a lightweight specification. If the
default (zero-argument) constructor of a class is omitted because its code is omitted, then
its specification defaults to an assignable clause that allows all the locations that the default
(zero-argument) constructor of its superclass assigns — in essence a copy of the superclass’s
default constructor’s assignable clause. If some other frame is desired, then one has to write
the specification, or at least the code, explicitly.

Chapter 9: Method Specifications 67

A method or constructor with code present has a completely omitted specification if it
has no specification-cases and does not use annotations like non_null or pure that add
implicit specifications.

If a method or constructor has code, has a completely omitted specification, and does
not override another method, then its meaning is taken as the lightweight specification
diverges \not_specified;. Thus, its meaning can be read from the lightweight column
of table above, except that the diverges clause is not given its usual default. This is done
so that the default specification when no specification is given truly says nothing about the
method’s behavior. However, if a method with code and a completely omitted specification
overrides some other method, then its meaning is taken to be the lightweight specification
also requires false;. This somewhat counter-intuitive specification is the unit under
specification conjunction with also; it is used so as not to change the meaning of the
inherited specification.

If the code is annotated with keywords like non_null or pure that add implicit specifi-
cations, then these implicit specifications are used instead of the default. Code with such
annotations is considered to have an implicit specification.

9.5 Heavyweight Specification Cases

There are three kinds of heavyweight specification cases, called behavior, normal behavior,
and exceptional behavior specification cases, beginning (after an optional privacy modifier)
with the one of the keywords behavior, normal_behavior, or exceptional_behavior,
respectively.
heavyweight-spec-case ::= behavior-spec-case
| exceptional-behavior-spec-case
| normal-behavior-spec-case

Like lightweight specification cases, normal behavior and exceptional behavior specifica-
tion cases can be understood as syntactic sugar for special kinds of behavior specification
cases [Raghavan-Leavens05].

9.6 Behavior Specification Cases

The behavior specification case is the most general form of specification case. All other forms
of specification cases simply provide some syntactic sugar for special kinds of behavior
specification cases.

Syntax

As far as the syntax is concerned, the only difference between a behavior specification
case and a lightweight one is the optional access control modifier, privacy, and the keyword
behavior (or the British variant, behaviour). One can use either the British or the Amer-
ican spelling of this keyword, although for historical reasons most examples will use the
American spelling.

behavior-spec-case ::= | privacy | [code | behavior-keyword
generic-spec-case
behavior-keyword ::= behavior | behaviour

See Section 16.2 [Code Contracts|, page 127, for details of the semantics of behavior-
spec-cases that use the code keyword.

Chapter 9: Method Specifications 68

Semantics

To explain the semantics of a behavior specification case we make a distinction between flat
and nested specification cases:

e Flat specification cases are of the form
behavior [spec-var-decls | [spec-header | simple-spec-body
A flat specification case is just made up of a sequence of method specification clauses, ie.

require, ensures, etc. clauses, and its semantics is explained directly in Section 9.6.1
[Semantics of flat behavior specification cases], page 68.

e Nested specification cases are all other specification cases. They use the special brackets
{| and |} to nest specification clauses and possibly also also inside these brackets to
join several specification cases.

A nested specification case can be syntactically desugared into a list of one or more
simple specification cases, joined by the also keyword [Raghavan-Leavens05]. This is
explained in Section 9.6.5 [Semantics of nested behavior specification cases], page 71.

Invariants and constraints

The semantics of a behavior specification case for a method or constructor in a class depends
on the invariants and constraints that have been specified. This is discussed in Section 8.2
[Invariants], page 52 and Section 8.3 [Constraints|, page 57. In a nutshell, methods must
preserve invariants and respect constraints, and constructors must establish invariants.

9.6.1 Semantics of flat behavior specification cases

Below we explain the semantics of a simple behavior-spec-case case with precisely one
requires clause, one diverges clause, one measured_by clause, one assignable clause,
one accessible clause, one callable clause, one when clause, one ensures clause, one
duration clause, one working_space clause, one signals_only clause, and one signals
clause.

A behavior specification case can contain any number of these clauses, and there are
defaults that allow any of them to be omitted. However, as explained in Section 9.9
[Method Specification Clauses], page 75, any behavior specification case is equivalent with
a behavior specification case of this form.

9.6.2 Semantics of non-helper methods

Consider a non-helper instance method m, and a specification case of the following form.

behavior
forall T1 x1; ... forall Tn xn;
old Ul y1 = F1; ... old Uk yk = Fk;

requires P;

measured_by Mbe if Mbp;
diverges D;

when W;

accessible R;

assignable A4;

callable p1(...), ..., pl1(...);
captures Z;

Chapter 9: Method Specifications 69

ensures ({;

signals_only E1, ..., Eo;
signals (E e) S;
working_space Wse if Wsp;
duration De if Dp;

The meaning of this specification case is as follows.
Consider a particular call of the method m.

The state of the program after passing parameters to m, but before running any of the
code of m is called the pre-state of the method call.

Suppose all applicable invariants hold in the pre-state of this call.

For every possible value of the variables declared in the forall clauses, z1, . . ., zn, the
following must be true. (If there are no forall clauses, then the following just has to hold
all by itself.)

Suppose that the variable yI is bound to the pre-state value of F1 in the pre-state (i.e.,
the beginning of the method, after parameter passing), and in turn each of the old variable
declarations are bound to the values of the corresponding expressions, also evaluated in the
pre-state, and finally yk is bound to the value of Fk in the pre-state. These bindings can
depend on previously defined old variable declarations in the specification case. (If there
are no old clauses, then no such variables are bound.) We call the state with such bindings
in place the augmented pre-state.

Suppose also that with these binding (i.e., in the augmented pre-state), that the precon-
dition, P, from the requires clause, holds.

If the method has a measured_by clause, and if the predicate in the measured_by clause,
Mbp, is true in the augmented pre-state, and if this call is in the control flow of another
instance of this method, Caller, then the value of the expression Mbe in this call’'s augmented
pre-state must be non-negative and strictly less than the value of Mbe in the pre-state of
Caller. (If the measured_by clause is omitted, there is no such requirement.) For example,
consider a method fib that calls itself directly and has an integer parameter n and for which
the measured_by clause has n as its expression (Mbe), and the default predicate (Mbp) is
true; then recursive calls of £ib that appear in the body of £ib must have actual argument
exprssions whose value is (non-negative and) strictly less than n, such as n-1 and n-2.!

Then one of the following must also hold:

e the diverges predicate, D, holds in the augmented pre-state and the execution of the
method does not terminate (i.e., it loops forever or the Java virtual machine exits
in such a way that the method call does not return or throw an exception). (If the
diverges clause is omitted, then the default for D is false, and hence these outcomes
are effectively prohibited.) or

e the Java virtual machine throws an error (i.e., an instance of java.lang.Throwable
whose type does not inherit from java.lang.Exception, usually an instance of
java.lang.Error), or

e the method terminates by returning or throwing an exception, reaching a state called
its post-state, in which all of the following hold.

1 Thanks to Jesus Ravelo for correcting the semantics of measured-by clauses.

Chapter 9: Method Specifications 70

e The method’s execution only reaches its commit point (a label in the method
body with the name “commit” [Rogriguez-etal05]) in a state such that the when
clause’s condition, W, holds. (If the condition does not hold, then the method’s
execution waits for a concurrent thread to make it true, and then proceeds. There
is no guarantee that the method will proceed the first time this condition holds, so
the condition may have to hold many times before the thread may proceed to its
commit point.) (If the when clause is omitted, there is no need to have a commit
point in the method, and the method need not wait for the execution of concurrent
threads.)

e During execution of the method (which includes all directly and indirectly called
methods and constructors), only locations that either did not exist in the pre-state,
that are local to the method (including the method’s formal parameters), or that
are either named in the lists R and A found in the accessible and assignable
clauses or that are dependees (see Chapter 10 [Data Groups]|, page 87) of such lo-
cations, are read from. The set of locations named by the accessible and assignable
clauses (and hence the elements of their data groups) are computed in the pre-state.
(If the accessible clause is omitted, it defaults to accessible \everything;,
which allows all locations to be accessed.)

e During execution of the method, only locations that either did not exist in the pre-
state, that are local to the method, or that are either named by the assignable
clause’s list, A, or are dependees (see Chapter 10 [Data Groups|, page 87) of such
locations, are assigned to. The set of locations named by the assignable clause
(and hence the elements of their data groups) are computed in the pre-state. (If
the assignable clause is omitted, it defaults to assignable \everything;, which
allows all locations to be assigned.)

e During execution of the method, the only methods and constructors called are
those listed in the callable clause’s list p1, ..., pl. (If the callable clause
is omitted, it defaults to callable \everything;, which allows all methods and
constructors to be called.)

The form p.* refers to all methods of the object denoted by p.

e During execution of the method, of the formal parameters whose type is a reference
type, only those listed in the captures clause’s list, Z, may be assigned to fields
of some object or to array elements. (References in formals may freely be assigned
to local variables, however, as these are “borrowed” but not captured [Boyland00].
If the captures clause is omitted, then all such formals may be assigned freely.)

e If the execution of the method terminates by returning normally, then the normal
postcondition, @), given in the ensures clause, holds in the post-state.

e If the execution of the method terminates by throwing an exception of some type
Ea that is a subtype of java.lang.Exception, then:

e the type Fa must be a subtype of some type in the list E1, ..., Fo, listed in
the signals_only clause (this list of types has as its default the list in the
method’s throws clause), and

e if Fa is a subtype of the type E given in the signals clause, then the excep-
tional postcondition R must hold in the post-state, augmented by a binding
from the variable e to the exception object thrown.

Chapter 9: Method Specifications 71

e All applicable invariants and history constraints hold in the post-state.

e If the predicate in the working_space clause, Wsp, was true in the augmented
pre-state, then the method execution had available to it the amount of heap space,
in bytes, Wse [Krone-Ogden-Sitaraman03]. (Note that the expression Wse may
depend on post-state values so this expression is conceptually evaluated in the
post-state, although it may use \o1d () to refer to pre-state values. If the working_
space clause is omitted, there is no restriction placed on the maximum space that
the method call may during its execution.)

e If the predicate in the duration clause, Dp, was true in the augmented pre-state,
then the method execution used no more than the number of virtual machine cycles
given by the expression De [Krone-Ogden-Sitaraman03]. (Note that the expression
De may depend on post-state values so this expression is conceptually evaluated
in the post-state, although it may use \old() to refer to pre-state values. If the
duration clause is omitted, there is no restriction placed on the maximum number
of virtual machine cycles that the call may use during its execution.)

In all of these clauses, the value of a formal parameter is always considered to be the
value they had in the pre-state. That is the actual post-state value they take in an execution
is not considered, as explained in See Section 9.9.6 [Parameters in Postconditions|, page 80.

9.6.3 Semantics of non-helper constructors

The semantics of a flat specification case for a (non-helper) constructor is the same as that
for a (non-helper) method given above, except that:

e any instance invariants of the object being initialized by the constructor are not as-
sumed to hold in the precondition,

e any instance constraints do not have to be established as implicit part of the postcon-
dition of the constructor.

These two differences are also discussed in Section 8.2 [Invariants|, page 52 and Sec-
tion 8.3 [Constraints], page 57.

9.6.4 Semantics of helper methods and constructors

The semantics of a flat specification case for a helper method (or constructor) is the same
as that for a non-helper method (or constructor) given above, except that:

e the instance invariants for the current object and the static invariants for the current
class are not assumed to hold in the pre-state, and do not have to be established in the
post-state.

e the instance constraints for current object and the static constraints for the current
class do not have to be established in the post-state

These differences are also discussed in Section 8.2 [Invariants|, page 52 and Section 8.3
[Constraints], page 57.
9.6.5 Semantics of nested behavior specification cases

We now explain how all behavior specification cases can be desugared into a list of one
or more flat specification cases joined by the also keyword [Raghavan-Leavens05]. The

Chapter 9: Method Specifications 72

semantics of a behavior specification case is then simply the semantics of this desugared
version.

The desugaring is as follows. Consider a specification of the form.

spec-var—decls
spec—-header
{l
GenSpecCasel
also
also
GenSpecCasen

|}
The above desugars to the following.

spec-var-decls
spec-header
GenSpecCasel
also
also
spec-var-decls

spec-header
GenSpecCasen

In the above desugaring either the spec-var-decls or the spec-header (or both) may be
omitted.

The meaning of the desugared list of specification cases is explained in Section 9.2 [Or-
ganization of Method Specifications|, page 63. The meaning of a single simple specification
case is explained in Section 9.6.1 [Semantics of flat behavior specification cases|, page 68.

9.7 Normal Behavior Specification Cases

A normal_behavior specification case is just syntactic sugar for a behavior specification
case with an implicit signals clause

signals (java.lang.Exception) false;

ruling out abrupt termination, i.e., the throwing of any exception. Note that this includes
unchecked exceptions, since in Java, RuntimeException is a subclass of Exception.

The following gives the syntax of the body of a normal behavior specification case.

normal-behavior-spec-case ::= | privacy | [code | normal-behavior-keyword
normal-spec-case

normal-behavior-keyword ::= normal_behavior | normal_behaviour

normal-spec-case ::= generic-spec-case

As far as syntax is concerned, the only difference between a normal-spec-case and a
generic-spec-case is that normal behavior specification cases cannot include signals-clauses
or signals-only-clauses.

Chapter 9: Method Specifications 73

The semantics of a normal behavior specification case is the same as the corresponding
behavior specification case (see Section 9.6 [Behavior Specification Cases|, page 67) with
the addition of the following signals-clause

signals (java.lang.Exception) false;

So a normal behavior specification case specifies a precondition which guarantees normal
termination; i.e., it prohibits the method from throwing an exception.

9.8 Exceptional Behavior Specification Cases

The following gives the syntax of the body of an exceptional behavior specification case.

exceptional-behavior-spec-case ::= [privacy | [code | exceptional-behavior-keyword
exceptional-spec-case

exceptional-behavior-keyword ::= exceptional_behavior | exceptional_behaviour

exceptional-spec-case ::= generic-spec-case

As far as syntax is concerned, the only difference between an exceptional-spec-case and
a generic-spec-case is that exceptional behavior specification cases cannot include ensures-
clauses.

The semantics of an exceptional behavior specification case is the same as the correspond-
ing behavior specification case (see Section 9.6 [Behavior Specification Cases|, page 67) with
the addition of the following ensures clause.

ensures false;

So an exceptional behavior specification case specifies a precondition which guarantees
that the method throws an exception, if it terminates, i.e., a precondition which prohibits
the method from terminating normally.

9.8.1 Pragmatics of Exceptional Behavior Specifications Cases

Note that an exceptional behavior specification case says that some exception must be
thrown if its precondition is met (assuming the diverges clause predicate is false, as is the
default.) Beware of the difference between specifying that an exception must be thrown and
specifying that an exception may be thrown. To specify that an exception may be thrown
you should not use an exceptional behavior, but should instead use a behavior specification
case [Leavens-Baker-Ruby06].

For example, the following method specification

package org.jmlspecs.samples. jmlrefman;
public abstract class InconsistentMethodSpec {

/** A specification that can’t be satisfied. */
/*@ public normal_behavior

¢ requires z <= 99;

@ assignable \nothing;
Q ensures \result > z;
@ also

@ public exceptional_behavior
¢ requires z < 0;

Chapter 9: Method Specifications 74

Q assignable \nothing;
e signals (IllegalArgumentException) true;
Qx/
public abstract int cantBeSatisfied(int z)
throws IllegalArgumentException;
b

is inconsistent because the preconditions z <= 99 and z < 0 overlap, for example when z
is =1. When both preconditions hold then the exceptional behavior case specifies that an
exception must be thrown and the normal behavior case specifies that an exception must
not be thrown, but the implementation cannot both throw and not throw an exception.

Similarly, multiple exceptional specification cases with overlapping preconditions may
give rise to an inconsistent specification. For example, the following method specification

package org.jmlspecs.samples. jmlrefman;
public abstract class InconsistentMethodSpec2 {

/** A specification that can’t be satisfied. */
/*@ public exceptional_behavior
e requires z < 99;
assignable \nothing;
signals_only IllegalArgumentException;
also
public exceptional_behavior
requires z > 0;
assignable \nothing;
signals_only NullPointerException;

@ © © © © © ©

ox/
public abstract int cantBeSatisfied(int z)
throws IllegalArgumentException, NullPointerException;

}

is inconsistent because, again, the two preconditions overlap, and the signals_only clauses
do not permit the same exception to be thrown in both cases.

There is an important distinction to be made between the signals and the signals_
only clauses in JML. The signals_only clause says what exceptions may be thrown (when
the specification case’s precondition is met); this clause does not say anything about the
state of the exception object or other locations in the system. On the other hand, the
signals clause only describes what must be true of the system state when an exception is
thrown, and does not say anything about what exceptions may be thrown. For example,
consider the following specification.

package org.jmlspecs.samples. jmlrefman;
public abstract class SignalsClause {

/*Q@ signals (IllegalArgumentException) x < 0;
@ signals (NullPointerException) x < 0;

Chapter 9: Method Specifications 75

x/
public abstract int notPrecise(int x) throws RuntimeException;

¥

The above allows a method to throw either an IllegalArgumentException or a
NullPointerException when x is less than 0, but in that condition the method might
also throw a different exception altogether, as long as that exception was permitted by the
method’s declaration header. The only thing ruled out by this specification is throwing
either a I1legalArgumentException or a NullPointerException when x is not less than
0. Thus from such a specification one may draw the conclusion that x < 0 only when one
of these two exceptions is thrown.

Therefore, if one just wants to specify the exceptions that are permitted to be thrown
in a specific situation, one should use the signals_only clause.

9.9 Method Specification Clauses

The different kinds of clauses that can be used in method specifications are discussed in this
section. See Section 9.4 [Lightweight Specification Cases|, page 65, for the overall syntax
that ties these clauses together.

9.9.1 Specification Variable Declarations
The syntax of spec-var-decls is as follows.

spec-var-decls ::= forall-var-decls | old-var-decls]
| old-var-decls

The scope of the variables declared in the spec-var-decls is the entire specification case in
which they appear. The two types of such declarations are described below.

9.9.1.1 Forall Variable Declarations

The syntax of the forall-var-decls is as follows.

forall-var-decls ::= forall-var-declarator [forall-var-declarator | . . .
forall-var-declarator ::= forall [bound-var-modifiers | type-spec quantified-var-declarator ;|

When a forall-var-declarator is used, it specifies that the specification case that follows
must hold for every possible value of the declared variables. In other words, it is a universal
quantification over the specification case. See Section 12.4.24 [Quantified Expressions],
page 101, for the syntax of quantified-var-declarator.

Note that if such variables are used in preconditions, then they can be thought to range
over all values that satisfy the preconditions. The bound variable may not have the same
name as earlier bound variables in the specification, nor may it shadow the formal param-
eters of the method declaration.

9.9.1.2 0Old Variable Declarations

The syntax of the old-var-decls is as follows. See Section 7.1.2.2 [Type-Specs], page 50, for
the syntax of type-spec. [[[Give cross ref for spec-variable-declarators when ready.||]

old-var-decls ::= old-var-declarator [old-var-declarator | . ..
old-var-declarator ::= 01d [bound-var-modifiers | type-spec spec-variable-declarators ;

Chapter 9: Method Specifications 76

An old-var-declarator allows abbreviation within a specification case. The names defined
in the spec-variable-declarators can be used throughout the specification case for the values
of their initializers. As the name suggests, the expressions are evaluated in the method’s
pre-state. The bound variable may not rename earlier bound variables in the specification,
nor the formal parameters of the method declaration.

[[[Example]]]

9.9.2 Requires Clauses

A requires clause specifies a precondition of method or constructor. Its syntax is as follows.

requires-clause ::= requires-keyword pred-or-not ;

| requires-keyword \same ;
requires-keyword ::= requires | pre

| requires_redundantly | pre_redundantly
pred-or-not ::= predicate | \not_specified

The predicate in a requires clause can refer to any visible fields and to the parameters
of the method. See Section 2.4 [Privacy Modifiers and Visibility], page 12, for more details
on visibility in JML.

Any number of requires clauses can be included a single specification case. Multiple
requires clauses in a specification case mean the same as a single requires clause whose pre-
condition predicate is the conjunction of these precondition predicates in the given requires
clauses. For example,

requires P;
requires (@;

means the same thing as:
requires P && Q;

When a requires clause is omitted in a specification case, a default requires clause is
used. For a lightweight specification case, the default precondition is \not_specified.
The default precondition for a heavyweight specification case is true.

At most one precondition in a specification case can use \same, and \same cannot be
used in the only specification case for a method unless the method is an override (including
overriding a specification from an interface). Similarly, \same cannot be used in the only
specification case for a constructor or a static method. Another restriction is that \same
cannot be used in a requires clause of a nested specification case (see Section 9.6.5 [Semantics
of nested behavior specification cases], page 71).

When the precondition is \same in a specification case, it means that the specification
case being written has, effectively, the same precondition as that specified in the other
(non-\same) specification cases. That is, \same stands for the disjunction (with ||) of the
preconditions in all non-\same specification cases of the method’s specification from the
current class together with the inherited specification cases defined in its supertypes (i.e.,
in its superclasses and implemented interfaces). The order of this disjunction has, from left
to right, inherited preconditions before each of the preconditions from the specification of
any method that overrides it.

Chapter 9: Method Specifications 77

9.9.3 Ensures Clauses

An ensures clause specifies a normal postcondition, i.e., a property that is guaranteed to
hold at the end of the method (or constructor) invocation in the case that this method (or
constructor) invocation returns without throwing an exception. The syntax is as follows
See Section 9.9.2 [Requires Clauses|, page 76, for the syntax of pred-or-not.

ensures-clause ::= ensures-keyword pred-or-not ;
ensures-keyword ::= ensures | post
| ensures_redundantly | post_redundantly

A predicate in an ensures clause can refer to any visible fields, the parameters of
the method, \result if the method is non-void, and may contain expressions of the form
\old(E). See Section 2.4 [Privacy Modifiers and Visibility], page 12, for more details on
visibility in JML.

Informally,

ensures ({;
means

if the method invocation terminates normally (ie. without throwing an excep-
tion), then predicate @ holds in the post-state.

In an ensures clause, \result stands for the result that is returned by the method.
The postcondition) may contain expressions of the form \old(e). Such expressions are
evaluated in the pre-state, and not in the post-state, and allow () to express a relation
between the pre- and the post-state. If parameters of the method occur in the postcondition
@, these are always evaluated in the pre-state, not the post-state. In other words, if a method
parameter x occurs in @, it is treated as \old(z). For a detailed explanation of this see
Section 9.9.6 [Parameters in Postconditions], page 80.

Any number of ensures clauses can be given in a single specification case. Multiple
ensures clauses in a specification case mean the same as a single ensures clause whose
postcondition predicate is the conjunction of the postcondition predicates in the given
ensures clauses. So

ensures P;

ensures ({;
means the same as

ensures P && @Q;

Note that, in JML’s semantics for expressions within assertions, the order of evaluation
of P and @ does not matter. See Section 2.7 [Expression Evaluation and Undefinedness],
page 15, for more details on this topic.

When an ensures clause is omitted in a specification case, a default ensures clause is

used. For a lightweight specification case, the default precondition is \not_specified.
The default precondition for a heavyweight specification case is true.

9.9.4 Signals Clauses

In a specification case a signals clause specifies the exceptional or abnormal postcondi-
tion, i.e., the property that is guaranteed to hold at the end of a method (or constructor)
invocation when this method (or constructor) invocation terminates abruptly by throwing
a given exception.

Chapter 9: Method Specifications 78

The syntax is as follows. See Section 9.9.2 [Requires Clauses|, page 76, for the syntax of
pred-or-not.

signals-clause ::= signals-keyword (reference-type [ident |)
[pred-or-not | ;
signals-keyword ::= signals | signals_redundantly

| exsures | exsures_redundantly
In a signals-clause of the form
signals (E e) P;

E has to be a subclass of java.lang.Exception, and the variable e is bound in P. If
E is a checked exception (i.e., if it does not inherit from java.lang.RuntimeException
[Arnold-Gosling-Holmes00] [Gosling-etal00]), it must either be one of the exceptions listed
in the method or constructor’s throws clause, or a subclass or a superclass of such a declared
exception.

Informally,
signals (E e) P;
means

If the method (or constructor) invocation terminates abruptly by throwing an
exception of type F, then predicate P holds in the final state for this exception
object E.

A signals clause of the form

signals (E e) R;
is equivalent to the signals clause
signals (java.lang.Exception e) (e instanceof E) ==> R;

Several signals clauses can be given in a single lightweight, behavior or exceptional
behavior specification case. Multiple signals clauses in a specification case mean the same
as a single signals clause whose exceptional postcondition predicate is the conjunction of the
exceptional postcondition predicates in the given signals clauses. This should be understood
to take place after the desugaring given above, which makes all the signals clauses refer to
exceptions of type java.lang.Exception. Also, the names in the given signals clauses have
to be standardized [Raghavan-Leavens05]. So for example,

signals (E1 e) R1;
signals (E2 e) R2;

means the same as

signals (Exception e) ((e instanceof E1) ==> R1)
&% ((e instanceof E2) ==> R2);

Note that this means that if an exception is thrown that is both of type E1 and of type
E2, then both R1 and R2 must hold.

[[[EXAMPLE]]]

Beware that a signals clause specifies when a certain exception may be thrown, not
when a certain exception must be thrown. To say that an exception must be thrown in
some situation, one has to exclude that situation from other signals clauses and from ensures
clause (and any diverges clauses). It may also be useful to use the signals_only clause in
such specifications (see Section 9.9.5 [Signals-Only Clauses|, page 79).

Chapter 9: Method Specifications 79

[[[EXAMPLE?]]]

When a behavior or exceptional specification case has no signals-clause, a default signals
clause is used. For a heavyweight specification case, the default signals clause is signals
(Exception) true;. Since normal behavior specification cases do not have signals clauses,
no default applies for such specification cases. For a lightweight specification case, the
default is signals \not_specified;.

9.9.5 Signals-Only Clauses

A signals_only clause is an abbreviation for a signals-clause (see Section 9.9.4 [Signals
Clauses|, page 77) that specifies what exceptions may be thrown by a method, and thus,
implicitly, what exceptions may not be thrown.

The syntax is as follows.

signals-only-clause ::= signals-only-keyword reference-type | , reference-type | ... ;
| signals-only-keyword \nothing ;
signals-only-keyword ::= signals_only | signals_only_redundantly

All of the reference-types named in a signals-only-clause must be subtypes of
java.lang.Exception. Each reference-type that is a checked exception type (i.e.,
that does not inherit from java.lang.RuntimeException [Arnold-Gosling-Holmes00]
[Gosling-etal00]), must either be one of the exceptions listed in the method or constructor’s
throws clause, or a subclass or a superclass of such a declared exception.

A signals-only-clause of the form
signals_only E1, E2, ..., En;

is considered to be an abbreviation (syntactic sugar) for the following signals clause (see

Section 9.9.4 [Signals Clauses], page 77).
signals (java.lang.Exception e)

e instanceof E1
|| e instanceof E2
|
|

That is, such a clause specifies that if the method or constructor throws an exception,
it must be an instance of one of the types named.

e instanceof En;

Several signals-only-clauses can be given in a single lightweight, behavior or exceptional
behavior specification case. Multiple such clauses in a specification case mean the same as
a single clause whose list contains only the names Fj that are subtypes of some type named
in all of the given signals-only-clauses. Thus, the meaning is a kind of intersection of the
signals_only clauses. Since this may be confusing, only one signals_only clause should
ever be used in a given specification case.

The signals_only clause is useful for specifying when a certain exception, or one of
a small set of exceptions, must be thrown. To say that an exception must be thrown in
some situation, one has to exclude the method from returning normally in that situation
(using an ensures clause or the precondition of some other specification case) and from not
terminating (by using the diverges clause).

[[[Example]]]

Chapter 9: Method Specifications 80

If the signals_only is omitted from a specification case, a default signals_only clause
is provided. The same default is used for both lightweight and heavyweight behavior and
exceptional behavior specification cases. (Since normal behavior specification cases cannot
throw exceptions at all, there is no default signals_only clause for such specification cases.)
This default prohibits any exception not declared by the method in the method’s header
from being thrown. Thus the exact default depends on the method header. If the method
header does not list any exceptions that can be thrown, then the default is signals_only
\nothing; (which means that the method cannot throw any exceptions). However, if the
method header declares that the method may throw exceptions DE_1, ..., DE_n, FErr_1,
.., Err_m, where each DE_¢ is a subtype of java.lang.Exception, and each Err_j is not
a subtype of java.lang.Exception, then the default signals_only clause is as follows.

signals_only DE_1, ..., DE_n
For example, if the method has the header
public void foo() throws E1, E2
then the default signals_only clause would be
signals_only E1, E2;

It is important to note that the set of exceptions included in the default signals
clause described above never includes java.lang.Throwable, and does not include
java.lang.Error or any of its subtypes. Furthermore, this default would not normally
include java.lang.RuntimeException or any of its subtypes, because Java explicitly
allows RuntimeExceptions to be thrown even if they are not declared in the method
header’s throws clause. Since such unchecked, runtime exceptions are not usually listed in
the method header, they would not find their way into the default signals_only clause.
In JML, however, if you wish to allow such runtime exceptions, you can either explicitly
list them in the method header or, more usually, you would list them in an explicit
signals_only clause.

9.9.6 Parameters in Postconditions

Parameters of methods are passed by value in Java, meaning that parameters are local
variables in a method body, which are initialized when the method is called with the values
of the parameters for the invocation.

This leads us to the following two rules:
e The parameters of a method or constructor can never be listed in its assignable clause.

e If parameters of a method (or constructor) are used in a normal or exceptional post-
condition for that method (or constructor), i.e., in an ensures or signals clause, then
these always have their value in the pre-state of the method (or constructor), not the
post-state. In other words, there is an implicit \o1d () placed around any occurrence
of a formal parameter in a postcondition.

The justification for the first convention is that clients cannot observe assignments to the
parameters anyway, as these are local variables that can only be used by the implementation
of the method. Given that clients can never observe these assignments, there is no point in
making them part of the contract between a class and its clients.

The justification for the second convention is that clients only know the initial values
of the parameter that they supply, and do not have any knowledge of the final values that
these variables may have in the post-state.

Chapter 9: Method Specifications 81

The reason for this is best illustrated by an example. Consider the following class and its
method specifications. Without the convention described above the implementations given
for methods notCorrectl and notCorrect2 would satisfy their specifications. However,
clearly neither of these satisfies the specification when read from the caller’s point of view.

package org.jmlspecs.samples. jmlrefman;
public abstract class Implicit0ld {

/*@ ensures 0 <= \result && \result <= x;
@ signals (Exception) x < 0;
ex/
public static int notCorrectl(int x) throws Exception {
x = b;
return 4;

¥

/*¥Q@ ensures 0 <= \result && \result <= x;
@ signals (Exception) x < 0;

x/
public static int notCorrect2(int x) throws Exception {
x = -1;

throw new Exception();

}

/*@ ensures 0 <= \result && \result <= x;
@ signals (Exception) x < 0;
x/
public static int correct(int x) throws Exception {
if (x < 0) {
throw new Exception();
} else {
return O;

}

¥

The convention above rules out such pathological implementations as notCorrectl
above; because mention of a formal parameter name, such as x above, in postconditions
always means the pre-state value of that name, e.g., \old(x) in the example above

9.9.7 Diverges Clauses

The diverges clause is a seldom-used feature of JML. It can be used to specify when a
method may either loop forever or not return normally to its caller. The syntax is as
follows See Section 9.9.2 [Requires Clauses|, page 76, for the syntax of pred-or-not.

diverges-clause ::= diverges-keyword pred-or-not ;
diverges-keyword ::= diverges | diverges_redundantly

Chapter 9: Method Specifications 82

When a diverges clause is omitted in a specification case, a default diverges clause is used.
For both lightweight and heavyweight specification cases, the default diverges condition is
false. Thus by default, specification cases give total correctness specifications [Dijkstra76].
Explicitly writing a diverges clause allows one to obtain a partial correctness specification
[Hoare69]. Being able to specify both total and partial correctness specification cases for a
method leads to additional power [Hesselink92] [Nelson89.

As an example of the use of diverges, consider the abort method in the following class.
(This example is simplified from the specification of Java’s System.exit method. This
specification says that the method can always be called (the implicit precondition is true),
may always not return to the caller (i.e., diverge), and may never return normally, and
may never throw an exception. Thus the only thing the method can legally do, aside from
causing a JVM error, is to not return to its caller.

package org.jmlspecs.samples. jmlrefman;
public abstract class Diverges {

/*@ public behavior

¢ diverges true;

@ assignable \nothing;

Q@ ensures false;

Q signals (Exception) false;
x/

public static void abort();

¥

The diverges clause is also useful to specify things like methods that are supposed to
abort the program when certain conditions occur, although that isn’t really good practice
in Java. In general, it is most useful for examples like the one given above, when you want
to say when a method cannot return to its caller.

9.9.8 When Clauses

The when clause allows concurrency aspects of a method or constructor to be specified
[Lerner91] [Rodriguez-etal05]. A caller of a method will be delayed until the condition
given in the when clause holds. What is checked is that the method does not proceed to its
commit point, which is the start of execution of statement with the label commit, until the
given predicate is true.

The syntax is as follows. See Section 9.9.2 [Requires Clauses|, page 76, for the syntax of
pred-or-not.

when-clause ::= when-keyword pred-or-not ;
when-keyword ::= when | when_redundantly

When a when clause is omitted in a specification case, a default when clause is used.
For a lightweight specification case, the default when condition is \not_specified. The
default when condition for a heavyweight specification case is true.

See [Rodriguez-etal05] for more about the when clause and JML’s plans for support of
multithreading.

Chapter 9: Method Specifications 83

9.9.9 Assignable Clauses

An assignable clause gives a frame axiom for a specification. It says that, from the client’s
point of view, only the locations named, and locations in the data groups associated with
these locations, can be assigned to during the execution of the method. The values of all
subexpressions used in assignable clauses, such as i-1 in a[i-1], are computed in the pre-
state of the method, because the assignable clause only talks about locations that exist in
the pre-state.

See Chapter 10 [Data Groups|, page 87, for more about specification of data groups.
However, locations that are local to the method (or methods it calls) and locations that are
created during the method’s execution are not subject to this restriction.

The syntax is as follows. See Section 12.7 [Store Refs], page 106, for the syntax of
store-ref-list.

assignable-clause ::= assignable-keyword store-ref-list ;
assignable-keyword ::= assignable | assignable_redundantly
| modifiable | modifiable_redundantly
| modifies | modifies_redundantly

When an assignable clause is omitted in a specification case, a default assignable clause is
used. This default has a default store-ref-list. For a lightweight specification case, the default
store-ref-list is \not_specified. The default store-ref-list for a heavyweight specification
case is \everything.

If one wants the opposite of the default (for a heavyweight specification case), then one
can specify that a method cannot assign to any locations by writing;:

assignable \nothing;

Using the modifier pure on a method achieves the same effect as specifying assignable
\nothing, but does so for the method’s entire specification as opposed to a single
specification-case.

Assignable clauses are subject to several restrictive rules in JML. The first rule has to do
with fields of model objects. Because model objects are abstract and do not have a concrete
state or concrete fields, the JML typechecker does not allow fields of model objects to be
listed in the assignable clause; that is, such expressions do not specify a set of locations
(concrete fields) that can be assigned to. Thus expressions like f.x are not allowed in the
assignable clause when f is a model field.

[Flesh out other restrictions. Refer to [Mueller-Poetzsch-Heffter-Leavens03] for de-
tails.]]]

9.9.10 Accessible Clauses

The accessible clause is a seldom-used feature of JML. Together with the assignable clause
(see Section 9.9.9 [Assignable Clauses|, page 83), it says what (pre-existing) locations a
method may read during its execution. It has the following syntax.
accessible-clause ::= accessible-keyword store-ref-list ;
accessible-keyword ::= accessible | accessible_redundantly
During execution of the method (which includes all directly and indirectly called methods

and constructors), only locations that either did not exist in the pre-state, that are local to
the method (including the method’s formal parameters), or that are either named in the lists

Chapter 9: Method Specifications 84

found in the accessible and assignable clauses or that are dependees (see Chapter 10
[Data Groups], page 87) of such locations, are read from. Note that locations that are local
to the method (or methods it calls) and locations that are created during the method’s
execution are not subject to this restriction and may be read from freely.

When an accessible clause is omitted in a code contract specification case, a default
accessible clause is used. This default has a default store-ref-list which is \everything.

See Chapter 16 [Specification for Subtypes|, page 127, for more discussion and examples.

9.9.11 Callable Clauses

The callable clause says what methods may be called, either directly or indirectly, by the
method being specified. It has the following syntax.

callable-clause ::= callable-keyword callable-methods-list ;
callable-keyword ::= callable | callable_redundantly
callable-methods-list ::= method-name-list | store-ref-keyword

During execution of a method, the only methods and constructors that may be called
are those listed in the callable clause’s list.

When a callable clause is omitted in a code contract specification case, a default callable
clause is used. This default has a default callable-methods-list which is \everything.

See Chapter 16 [Specification for Subtypes|, page 127, for more discussion and examples.

9.9.12 Measured By Clauses

A measured by clause can be used in a termination argument for a recursive specification.
It has the following syntax.

measured-clause ::= measured-by-keyword \not_specified ;
| measured-by-keyword spec-expression [if predicate | ;
measured-by-keyword ::= measured_by | measured_by_redundantly
The spec-expression in a measured by clause must have type int.

In both lightweight and heavyweight specification cases, an omitted measured by clause
means the same as a measured by clause of the following form.

measured_by \not_specified;

9.9.13 Captures Clauses

The captures clause has the following syntax.

captures-clause ::= captures-keyword store-ref-list ;
captures-keyword ::= captures | captures_redundantly

The captures clause says that references to the store-refs listed can be retained after the
method returns, for example in a field of the receiver object or in a static field. Therefore,
the captures clause specifies when an object, passed as an actual parameter in a method
call, may be captured during the call.

An actual parameter object (including the receiver this) is captured if it appears on the
right-hand side of an assignment statement during the call. This can also happen indirectly
through another method or constructor call or by returning the parameter object as the

method result (we assume the result will be assigned to a field or local variable after the
call).

Chapter 9: Method Specifications 85

The captures clause is used to prevent certain kinds of representation exposure as part of
an alias control technique. For example, if an object should not be aliased, then that object
must not be passed to a method that may capture it, i.e., may create an alias to it (this
includes the receiver). Furthermore, objects used as part of the abstract representation of
a type should not be aliased, and thus should not be passed to methods that capture it.
JML tools will eventually prevent such aliasing.

When a captures clause is omitted in a method specification case, then a default captures
clause is used. This default has a default store-ref-list which is \everything. Thus when
omitted, a method is allowed to capture any of the actual parameter objects or the receiver.

9.9.14 Working Space Clauses

A working-space-clause can be used to specify the maximum amount of heap space used by
a method, over and above that used by its callers. The clause applies only to the particular
specification case it is in, of course This is adapted from the work of Krone, Ogden, and
Sitaraman on RESOLVE [Krone-Ogden-Sitaraman03].

working-space-clause ::= working-space-keyword \not_specified ;
| working-space-keyword spec-expression [if predicate | ;
working-space-keyword ::= working_space | working_space_redundantly

The spec-expression in a working space clause must have type long. It is to be under-
stood in units of bytes.

The spec-expression in a working space clause may use \old and other JML operators
appropriate for postconditions. This is because it is considered to be evaluated in the post-
state, and provides a guarantee of the maximum amount of additional space used by the
call. In some cases this space may depend on the \result, exceptions thrown, or other
post-state values. [[[There is however no way to identify the exception thrown - DRCok]]]

In both lightweight and heavyweight specification cases, an omitted working space clause
means the same as a working space clause of the following form.

working_space \not_specified;

See Section 12.4.13 [Backslash working space|, page 98, for information about the
\working_space expression that can be used to describe the working space needed by a
method call. See Section 12.4.12 [Backslash space], page 98, for information about the
\space expression that can be used to describe the heap space occupied by an object.

9.9.15 Duration Clauses

A duration clause can be used to specify the maximum (i.e., worst case) time needed to
process a method call in a particular specification case. [[[Tools are simpler if the argument
can simply be an arbitrary expression rather than a method call. — DRCok ||| This is adapted
from the work of Krone, Ogden, and Sitaraman on RESOLVE [Krone-Ogden-Sitaraman03].

duration-clause ::= duration-keyword \not_specified ;
| duration-keyword spec-expression [if predicate | ;
duration-keyword ::= duration | duration_redundantly

The spec-expression in a duration clause must have type long. It is to be understood in
units of [[[the JVM instruction that takes the least time to execute, which may be thought
of as the JVM’s cycle time.]|] The time it takes the JVM to execute such an instruction can
be multiplied by the number of such cycles to arrive at the clock time needed to execute

Chapter 9: Method Specifications 86

the method in the given specification case. [[[This time should also be understood as not
counting garbage collection time.]]]

The spec-expression in a duration clause may use \old and other JML operators appro-
priate for postconditions. This is because it is considered to be evaluated in the post-state,
and provides a guarantee of the maximum amount of additional space used by the call. In
some cases this space may depend on the \result, exceptions thrown, or other post-state
values. [[[There is no way to identify the exception thrown - DRCok]]]

In both lightweight and heavyweight specification cases, an omitted duration clause
means the same as a duration clause of the following form.

duration \not_specified;

See Section 12.4.11 [Backslash duration], page 98, for information about the \duration
expression that can be used in the duration clause to specify the duration of other methods.

Chapter 10: Data Groups 87

10 Data Groups

A data group is a set of locations; data groups are used in JML’s frame axioms (see Sec-
tion 9.9.9 [Assignable Clauses], page 83) to name such sets of locations in a way that does
not expose representation details [Leino98].

Each location (field or array element) in a program defines a data group, whose name is
the same as that of the field or array element.

The main purpose for putting locations into data groups is so that these sets of locations
may described succinctly in data groups by assignable clauses (see Section 9.9.9 [Assignable
Clauses], page 83) For example, if locations x.f and x.y are in data group x.d, then an
assignable clause of the form

assignable x.d;

allows x.d, x.f, x.y, and any other locations in the data group of x.d to be assigned during
the execution of a method.

JML requires users to put fields that are used to compute the value of a model field (see
Section 8.4 [Represents Clauses|, page 60) into the data group of that model field. This is
especially useful for private and protected fields, since they would not be visible to clients
who can see the public model field. However, one can also put other fields into a model
field’s data group, just to allow them to be assigned when the model field is assignable.

It is sometimes convenient to declare a data group without any other information about
the model of data. This can be done using the type org. jmlspecs.lang.JMLDataGroup.
This type has exactly one non-null object, named JMLDataGroup.IT. For example, the class
java.lang.0Object has the following data group declaration.

// public non_null model JMLDataGroup objectState;

The objectState data group provides a convenient way to talk about “the state” of
an object without committing to any modeling or representation details. Fields are not
automatically put into objectState by JML, (indeed, there is no default datagroup for a
field), but it is often convenient to put fields into this datagroup.

To place a field or array element in a data group, one uses the following syntax.
jml-data-group-clause ::= in-group-clause | maps-into-clause

The details of the two kinds of data group clauses are discussed below.

10.1 Static Data Group Inclusions

in-group-clause ::= in-keyword group-list ;
in-keyword ::= in | in_redundantly
group-list ::= group-name [, group-name | . ..
group-name ::= | group-name-prefix | ident
group-name-prefix ::= super . | this .

The in-group-clause puts the field being declared in all the data groups named in the
group-list.

[[needs discussion]]]

Chapter 10: Data Groups 88

10.2 Dynamic Data Group Mappings

See Section 12.7 [Store Refs], page 106, for the definition of spec-array-ref-expr.
maps-into-clause ::= maps-keyword member-field-ref \into group-list ;
maps-keyword ::= maps | maps_redundantly
member-field-ref ::= ident . maps-member-ref-expr

| maps-array-ref-expr [. maps-member-ref-expr |
maps-member-ref-expr ::= ident | *
maps-array-ref-expr ::= ident maps-spec-array-dim
[maps-spec-array-dim | . . .
maps-spec-array-dim ::= ‘[’ spec-array-ref-expr ‘]’
The maps-into-clause describes elements of a data group that are determined dynami-
cally, through a field reference or an array index, or a field of an array index.

The meaning of a member-field-ref of the form F.* depends on the denotation of the
ident or maps-array-ref-expr E. If E denotes a data group whose locations are objects, then
E . * denotes the union of the data groups of all visible instance fields in E’s (static) type.
On the other hand, if £ names a class or interface, then E.* denotes the union of the data
groups of all visible static fields of the named class or interface.

Similarly, when E denotes a set of locations containing arrays, then E [*] denotes the
union of all data groups of all elements in all the arrays denoted by E. Also, when E denotes
a set of locations containing arrays, then E[L..H] denotes the union of all data groups of
all elements in the arrays denoted by SR whose indexes are between L and H inclusive. In
the case where E denotes a set of locations containing arrays, then £ [J] denotes the union
of all data groups of those arrays at the index denoted by the spec-expression J.

The fields of a model object do not denote locations because model objects are abstract
and do not have concrete fields. Therefore, in JML, the maps clause is not allowed in
the declaration of a model field because such maps clauses do not denote a specific set of
locations to be added to a data group, and this is the primary purpose of the maps clause
(see also the discussion of model fields in the assignable clause).

[needs discussion ||]

Chapter 11: Specification Inheritance 89

11 Specification Inheritance

JML uses specification inheritance to impose the specifications of supertypes on their
subtypes [Dhara-Leavens96] [Leavens-Naumann06] [Leavens06b] to support the concept
of behavioral subtyping [America87] [Leavens90] [Leavens91] [Leavens-Weihl90] [Leavens-
Weihl95] [Liskov-Wing94].

In JML, specification inheritance means that instance methods have to obey the specifi-
cations of all methods they override. This, together with the inheritance of invariants and
history constraints, forces subtypes to be behavioral subtypes [Dhara-Leavens96] [Leavens-
Naumann06] [Leavens06b].

See the report, “Desugaring JML Method Specifications” [Raghavan-Leavens05] for more
about the details of specification inheritance in JML.

[[[This needs more work..., examples, etc.]]]

Chapter 12: Predicates and Specification Expressions 90

12 Predicates and Specification Expressions

This chapter describes predicates in JML and JML’s extensions to Java’s expressions. It
also describes store references, which are similar to specification expressions, but are used
to describe locations instead of values. Details are found in the sections below.

12.1 Predicates

A predicate The following gives the syntax of predicates, which are simply spec-expressions
that must have a boolean value. See Section 12.2 [Specification Expressions]|, page 90, for
the syntax of specification expressions.

predicate ::= spec-expression

12.2 Specification Expressions

The following gives the syntax of specification expressions in JML. See Section 12.3 [Ex-
pressions], page 90, for the syntax of expression.
spec-expression-list ::= spec-expression
[, spec-expression | . ..
spec-expression ::= expression
Within a spec-expression, one cannot use any of the operators (such as ++, -—, and the
assignment operators) that would necessarily cause side effects. In addition, one can use
extensions that are specific to JML, in particular the JML primary expressions.

12.3 Expressions

The JML syntax for expressions extends the Java syntax with several operators and prim-
itives.

The precedence of operators in JML expressions is similar to that in Java The precedence
levels are given in the following table, where the parentheses, quantified expressions, [], .,
and method calls on the first three lines all have the highest precedence, and for the rest,
only the operators on the same line have the same precedence.

highest new () \forall \exists \max \min
\num_of \product \sum informal-description
[1 . and method calls

unary + and - ~ ! (typecast)
* /%

+ (binary) - (binary)

<< >> >>>

< <= > >= <: instanceof
|

Chapter 12: Predicates and Specification Expressions 91

<==><=I=>
?:

The following is the syntax of Java expressions, with JML additions. The additions are
the operators ==>, <==, <==> <=!=> and <:, and the syntax found under the nonterminals
jml-primary (see Section 12.4 [JML Primary Expressions|, page 92) and set-comprehension
(see Section 12.5 [Set Comprehensions]|, page 104). The JML additions to the Java syntax
can only be used in assertions and other annotations. Furthermore, within assertions, one
cannot use any of the operators (such as ++, -—, and the assignment operators) that would
necessarily cause side effects.

expression-list ::= expression | , expression | . ..
expression ::= assignment-expr
assignment-expr ::= conditional-expr
[assignment-op assignment-expr |
assignment-op == = | += | —= | x=| /= | J=| >>=
| >>>= | <<= [&= | ‘=" | °=
conditional-expr ::= equivalence-expr
[? conditional-expr : conditional-expr |
equivalence-expr ::= implies-expr
[equivalence-op implies-expr | . ..
equivalence-op ::= <==> | <=1=>
implies-expr ::= logical-or-expr
[==> implies-non-backward-expr |
| logical-or-expr <== logical-or-expr
[<== logical-or-expr | ...
implies-non-backward-expr ::= logical-or-expr
[==> implies-non-backward-expr |
logical-or-expr ::= logical-and-expr | ‘| |’ logical-and-expr | . ..
logical-and-expr ::= inclusive-or-expr | && inclusive-or-expr | . ..
inclusive-or-expr ::= exclusive-or-expr [‘|’ exclusive-or-expr | . ..
exclusive-or-expr ::= and-expr | ~ and-expr | . ..
and-expr ::= equality-expr [& equality-expr | ...
equality-expr ::= relational-expr | == relational-expr]| . . .
| relational-expr [!'= relational-expr]| . ..
relational-expr ::= shift-expr < shift-expr
| shift-expr > shift-expr
| shift-expr <= shift-expr
| shift-expr >= shift-expr
| shift-expr <: shift-expr
| shift-expr | instanceof type-spec |
shift-expr ::= additive-expr | shift-op additive-expr | ...

shift-op ::= << | >> | >>>

additive-expr ::= mult-expr [additive-op mult-expr | . ..
additive-op =+ | -

mult-expr ::= unary-expr | mult-op unary-expr | ...

mult-op == * | / | %

Chapter 12: Predicates and Specification Expressions

unary-expr ::= (type-spec) unary-expr
| ++ unary-expr
| == unary-expr
| + unary-expr
| - unary-expr
| unary-expr-not-plus-minus
unary-expr-not-plus-minus ::= ~ unary-expr
| ' unary-expr
| C built-in-type) unary-expr
| (reference-type) unary-expr-not-plus-minus
| postfix-expr

postfix-expr ::= primary-expr | primary-suffix | ... [++]

| primary-expr [primary-suffix | ... [==]

| built-in-type [‘[’ 1’] class
primary-suffix ::= . ident

| . this

| . class

| . new-expr

|

. super ([expression-list |)

| ([expression-list |)

| ‘[’ expression ‘]’

[T]....class
primary-expr ::= ident | new-expr

| constant | super | true

| false | this | null

| (expression)

| jml-primary
built-in-type ::= void | boolean | byte

| char | short | int

| long | float | double

constant ::= java-literal
new-expr ::= new type new-suffix
new-suffix ::= ([expression-list |) | class-block |

| array-decl | array-initializer |
| set-comprehension

array-decl ::= dim-exprs | dims |

dim-exprs ::= ‘[’ expression ‘1’ [‘[’ expression ‘1’| . ..
array-initializer ::= { [initializer | , initializer | ... [,]] %
initializer ::= expression

| array-initializer

[[[Need to have semantics of the new things explained here.]]]

12.4 JML Primary Expressions

The following is the syntax of jml-primary.
jml-primary ::= result-expression
| old-expression

Chapter 12: Predicates and Specification Expressions

| not-assigned-expression
| not-modified-expression
| only-accessed-expression
| only-assigned-expression
| only-called-expression

| only-captured-expression
| fresh-expression

| reach-expression

| duration-expression

| space-expression

| working-space-expression
| nonnullelements-expression
| informal-description

| typeof-expression

| elemtype-expression

| type-expression

| lockset-expression

| max-expression

| is-initialized-expression

| invariant-for-expression
| Iblneg-expression

| Iblpos-expression

| spec-quantified-expr

93

All of the JML keywords that can be used in expressions which would otherwise start
with an alphabetic character start with a backslash (\), so that they cannot clash with the

program’s variable names.

The new expressions that JML introduces are described below. Several of the descrip-

tions below quote, without attribution, descriptions from [Leavens-Baker-Ruby06].

12.4.1 \result

The syntax of a result-expression is as follows.

result-expression ::= \result

The primary \result can only be used in ensures, duration, and workingspace clauses
of a non-void method. Its value is the value returned by the method. Its type is the return
type of the method; hence it is a type error to use \result in a void method or in a

constructor.

12.4.2 \old and \pre

An old-expression has the following syntax. See Section 12.2 [Specification Expressions],

page 90, for the syntax of spec-expression.

old-expression ::= \old (spec-expression [, ident |)

| \pre (spec-expression)

An expression of the form \old (Ezpr) refers to the value that the expression Ezpr had

in the pre-state of a method.

Chapter 12: Predicates and Specification Expressions 94

JML uses Java’s reference semantics, hence the pre-state value of an expression whose
type is a reference type is simply the reference; it is not a clone of the object the reference
points to. For example, suppose in the pre-state that v is field that holds a reference to
a HashMap; concretely, suppose that the location stored in v is 0x952ab340. Then the
expression \old(v) denotes the pre-state value of v, which is the same reference, i.e., it is
the address 0x952ab340. Note that \old(v) is not a reference to a copy of the HashMap
stored at that location, but simply a copy of the location’s address (the reference), which is
the value of v. If the fields of the object at that location have changed in the post-state, then
changes to those fields will be visible through \old(v); for example, \old(v) .size () will
be the same as v.size (). To write a post-condition that refers to v’s size in the pre-state,
one should instead write \old(v.size()). Indeed as a general rule, it is always safest to
use \old () only around expressions whose type is a value type or a type with immutable
values, such as String.

Expressions of this form may be used in both normal and exceptional postconditions
(see Chapter 9 [Method Specifications], page 63, for more about such ensures and signals
clauses), in history constraints, in duration and working space clauses, and also in asser-
tions that appear in the bodies of methods (see Chapter 13 [Statements and Annotation
Statements|, page 108, for more about assert and assume statements, loop invariants, and
variant functions).

However, we recommend that inside the bodies of methods, one of the two other forms
of old-expression (see below) be used instead. The reason for this is that the reader may
wonder whether \old (Expr) in the body of a method means the pre-state value of FExpr
(which it does) or the value of Expr before some previous statement (which it does not).

An expression of the form \pre (Fzpr) also refers to the value that the expression Expr
had in the pre-state of a method. Expressions of this form may only be used in assertions
that appear in the bodies of methods (i.e., in assert and assume statements, and in loop
invariants and variant functions). That is, such expressions may not be used in specifica-
tion cases, and hence may not appear in normal or exceptional postconditions, in history
constraints, or in duration and working space clauses.

An expression of the form \old(Ezpr, Label) refers to the value that the expression
Ezpr had when control last reached the statement label Label. That is, it refers to the value
of the expression just before control last reached the statement the label is attached to.
Expressions of this form may only be used when the Label has been declared in a surrounding
context. Thus such expressions may be used in assert and assume statements, and in loop
invariants and variant functions, where such a label has been declared. They may also be
used in specification cases that occur in model program spec-statement (see Section 15.6
[Specification Statements], page 125) and in the refining-statements (see Section 13.4.3
[Refining Statements|, page 114).

In an expression of the form \old(Ezpr, Label), Label must be a label defined in the
current method. The type of \old(FEzpr), \old(Fzpr, Label), or \pre(Ezxpr), is simply
the type of Expr.

12.4.3 \not_assigned

The syntax of a not-assigned-expression is as follows. See Section 12.7 [Store Refs|, page 106,
for the syntax of store-ref-list.

Chapter 12: Predicates and Specification Expressions 95

not-assigned-expression ::= \not_assigned (store-ref-list)

The JML operator \not_assigned can be used in both normal and exceptional precon-
ditions (i.e., in ensures and signals clauses), and in history constraints. It asserts that
the locations in the data group (see Chapter 10 [Data Groups|, page 87) named by the
argument were not assigned to during the execution of the method being specified (or all
methods to which a history constraint applies). For example, \not_assigned(xval,yval)
says that the locations in the data groups named by xval and yval were not assigned during
the method’s execution.

A predicate such as \not_assigned(x.f) refers to the entire data group named by x.f
not just to the location x. f itself. This allows one to specify absence of even temporary side-
effects in various cases of a method. See Section 12.4.4 [Backslash not_modified], page 95, for
ways to specify that just the value of a given field was not changed, which allows temporary
side effects.

The \not_assigned operator can be applied to both concrete and model or ghost fields.
When applied to a model field, the meaning is that all (concrete) locations in that model
field’s data group were not assigned. [[[A real example would help here.]]]

The type of a \not_assigned expression is boolean.

12.4.4 \not_modified

The syntax of a not-modified-expression is as follows. See Section 12.7 [Store Refs|, page 106,
for the syntax of store-ref-list.
not-modified-expression ::= \not_modified (store-ref-list)

The JML operator \not_modified can be used in both normal and exceptional precon-
ditions (i.e., in ensures and signals clauses), and in history constraints. It asserts that
the values of the named fields are the same in the post-state as in the pre-state; for example,
\not_modified(xval,yval) says that the fields xval and yval have the same value in the
pre- and post-states (in the sense of the equals method for their types).

A predicate such as \not_modified(x.f) refers to the location named by x.f, not to
the entire data group of x.f. This allows one to specify benevolent side-effects, as one
can name x.f (or a data group in which it participates) in an assignable clause, but use
\not_modified(x.f) in the postcondition. See Section 12.4.3 [Backslash not_assigned],
page 94, for ways to specify that no assignments were made to any location in a data group,
disallowing temporary side effects.

The \not_modified operator can be applied to both concrete and model or ghost fields.
When applied to a model field, the meaning is that only the value of the model field
is unchanged (in the sense of its type’s equals operation); concrete fields involved in its
representation may have changed. [[[A real example would help here.]]]

The type of a \not_modified expression is boolean.

12.4.5 \only_accessed
The syntax of an only-accessed-expression is as follows. See Section 12.7 [Store Refs],
page 106, for the syntax of store-ref-list.

only-accessed-expression ::= \only_accessed (store-ref-list)

The JML operator \only_accessed can be used in both normal and exceptional pre-
conditions (i.e., in ensures and signals clauses), and in history constraints. Used in

Chapter 12: Predicates and Specification Expressions 96

a method’s postcondition (perhaps implicitly in a history constraint), it asserts that the
method’s execution only reads from a subset of the data groups named by the given fields.
For example, \only_accessed(xval,yval) says that no fields, outside of the data groups
of xval and yval were read by the method. This includes both direct reads in the body
of the method, and reads during calls that were made by the method (and methods those
methods called, etc.).

A predicate such as \only_accessed(x.f) refers to the entire data group named by x.f
not just to the location x.f itself.

The \only_accessed operator can be applied to both concrete and model or ghost fields.
When applied to a model field, the meaning is that the (concrete) locations in that model
field’s data group are permitted to be accessed during the method’s execution.

The type of an \only_accessed expression is boolean.

12.4.6 \only_assigned

The syntax of an only-assigned-expression is as follows. See Section 12.7 [Store Refs],
page 106, for the syntax of store-ref-list.

only-assigned-expression ::= \only_assigned (store-ref-list)

The JML operator \only_assigned can be used in both normal and exceptional pre-
conditions (i.e., in ensures and signals clauses), and in history constraints. Used in
a method’s postcondition (perhaps implicitly in a history constraint), it asserts that the
method’s execution only assigned to a subset of the data groups named by the given fields.
For example, \only_assigned(xval,yval) says that no fields, outside of the data groups
of xval and yval were assigned by the method. This includes both direct assignments in
the body of the method, and assignments during calls that were made by the method (and
methods those methods called, etc.).

A predicate such as \only_assigned(x.f) refers to the entire data group named by x. f
not just to the location x.f itself.

The \only_assigned operator can be applied to both concrete and model or ghost fields.
When applied to a model field, the meaning is that the (concrete) locations in that model
field’s data group are permitted to be assigned during the method’s execution.

The type of an \only_assigned expression is boolean.

12.4.7 \only_called

The syntax of an only-called-expression is as follows. See Section 8.3 [Constraints|, page 57,
for the syntax of method-name-list.

only-called-expression ::= \only_called (method-name-list)

The JML operator \only_called can be used in both normal and exceptional precondi-
tions (i.e., in ensures and signals clauses), and in history constraints. Used in a method’s
postcondition (perhaps implicitly in a history constraint), it asserts that the method’s ex-
ecution only called from a subset of methods given in the method-name-list. For exam-
ple, \only_called(p,q) says that methods, apart from p and q, were called during this
method’s execution.

The type of an \only_called expression is boolean.

Chapter 12: Predicates and Specification Expressions 97

12.4.8 \only_captured

The syntax of an only-captured-expression is as follows. See Section 12.7 [Store Refs],
page 106, for the syntax of store-ref-list.

only-captured-expression ::= \only_captured (store-ref-list)

The JML operator \only_captured can be used in both normal and exceptional pre-
conditions (i.e., in ensures and signals clauses), and in history constraints. Used in
a method’s postcondition (perhaps implicitly in a history constraint), it asserts that the
method’s execution only captured references from a subset of the data groups named by
the given fields. For example, \only_captured(xv,yv) says that no references, outside of
the data groups of xv and yv were captured by the method.

A reference is captured when it is stored into a field (as opposed to a local variable).
Typically a method captures a formal parameter (or a reference stored in a static field) by
assigning it to a field in the method’s receiver (the this object), a field in some object (or
to an array element), or to a static field.

A predicate such as \only_captured(x.f) refers to the references stored in the entire
data group named by x.f in the pre-state, not just to those stored in the location x.f itself.
However, since the references being captured are usually found in formal parameters, the
complications of data groups can usually be ignored.

The \only_captured operator can be applied to both concrete and model or ghost fields.
When applied to a model field, the meaning is that the (concrete) locations in that model
field’s data group are permitted to be captured during the method’s execution.

The type of an \only_captured expression is boolean.

12.4.9 \fresh

The syntax of a fresh-expression is as follows. See Section 12.2 [Specification Expressions],
page 90, for the syntax of spec-expression-list.

fresh-expression ::= \fresh (spec-expression-list)

The operator \fresh asserts that objects were freshly allocated; for example,
\fresh(x,y) asserts that x and y are not null and that the objects bound to these
identifiers were not allocated in the pre-state. The arguments to \fresh can have any
reference type, and the type of the overall expression is boolean.

Note that it is wrong to use \fresh(this) in the specification of a constructor, because
Java’s new operator allocates storage for the object; the constructor’s job is just to initialize
that storage.

12.4.10 \reach

The syntax of a reach-expression is as follows. See Section 12.2 [Specification Expressions],
page 90, for the syntax of spec-expression.

reach-expression ::= \reach (spec-expression)

The \reach expression allows one to refer to the set of objects reachable from some
particular object. The syntax \reach(z) denotes the smallest JMLObjectSet containing
the object denoted by =z, if any, and all objects accessible through all fields of objects in
this set. That is, if z is null, then this set is empty otherwise it contains z, all objects
accessible through all fields of z, all objects accessible through all fields of these objects,

Chapter 12: Predicates and Specification Expressions 98

and so on, recursively. If z denotes a model field (or data group), then \reach(z) denotes
the smallest JMLObjectSet containing the objects reachable from z or reachable from the
objects referenced by fields in that data group.

12.4.11 \duration

The syntax of a duration-expression is as follows. See Section 12.3 [Expressions], page 90,
for the syntax of expression.

duration-expression ::= \duration (expression)

\duration, which describes the specified maximum number of virtual machine cycle
times needed to execute the method call or explicit constructor invocation expression that
is its argument; e.g., \duration(myStack.push(o)) is the maximum number of virtual
machine cycles needed to execute the call myStack.push(o), according to the contract of
the static type of myStack’s type’s push method, when passed argument o. Note that the
expression used as an argument to \duration should be thought of as quoted, in the sense
that it is not to be executed; thus the method or constructor called need not be free of side
effects. Note that the argument to \duration is an expression instead of just the name
of a method, because different method calls, i.e., those with different parameters, can take
different amounts of time [Krone-Ogden-Sitaraman03].

The argument expression passed to \duration must be a method call or explicit con-
structor invocation expression; the type of a \duration expression is long.

For a given Java Virtual Machine, a virtual machine cycle is defined to be the minimum
of the maximum over all Java Virtual Machine instructions, ¢, of the length of time needed
to execute instruction 1.

12.4.12 \space

The syntax of a space-expression is as follows. See Section 12.2 [Specification Expressions],
page 90, for the syntax of spec-expression. [[[Shouldn’t this take an expression instead of
a spec-expression? - DRC]]]

space-expression ::= \space (spec-expression)

\space, which describes the amount of heap space, in bytes, allocated to the object
referred to by its argument [Krone-Ogden-Sitaraman03]; e.g., \space (myStack) is number
of bytes in the heap used by myStack, not including the objects it contains. The type of
the spec-expression that is the argument must be a reference type, and the result type of a
\space expression is long.

12.4.13 \working_space
working-space-expression ::= \working_space (expression)

\working_space, which describes the maximum specified amount of heap space, in bytes,
used by the method call or explicit constructor invocation expression that is its argument;
e.g., \working_space(myStack.push(o)) is the maximum number of bytes needed on the
heap to execute the call myStack.push(o), according to the contract of the static type of
myStack’s type’s push method, when passed argument o. Note that the expression used
as an argument to \working_space should be thought of as quoted, in the sense that
it is not to be executed; thus the method or constructor called need not be free of side
effects. The detailed arguments are needed in the specification of the call because different

Chapter 12: Predicates and Specification Expressions 99

method calls, i.e., those with different parameters, can use take different amounts of space
[Krone-Ogden-Sitaraman03]. The argument expression must be a method call or explicit
constructor invocation expression; the result type of a \working_space expression is long.

12.4.14 \nonnullelements

The syntax of a nonnullelements-expression is as follows. See Section 12.2 [Specification
Expressions], page 90, for the syntax of spec-expression.
nonnullelements-expression ::= \nonnullelements (spec-expression)

The operator \nonnullelements can be used to assert that an array and its elements
are all non-null. For example, \nonnullelements (myArray), is equivalent to [Leino-Nelson-
Saxe00]

myArray != null &&
(\forall int i; 0 <= i && i < myArray.length;
myArray[i] !'= null)

12.4.15 Informal Predicates

An informal-description is some text enclosed in (* and *). See Section 4.6 [Tokens],
page 29, for details of its syntax. It is used as an escape form formality.

An informal description used as a predicate has type boolean. Hence the text in an infor-
mal description should describe a condition, for example (* the value of x is displayed
*) .

The value of an informal description is only known to the user, not to any JML tools,
so it is never executable. Informal descriptions should thus be avoided when possible, but
can be used to avoid formalizing everything when doing so would be too expensive.

12.4.16 \typeof

The syntax of a typeof-expression is as follows. See Section 12.2 [Specification Expressions],
page 90, for the syntax of spec-expression.
typeof-expression ::= \typeof (spec-expression)

The operator \typeof returns the most-specific dynamic type of an expression’s value
[Leino-Nelson-Saxe00]. The meaning of \typeof (E) is unspecified if F is null. If E
has a static type that is a reference type, then \typeof (F) means the same thing as
E .getClass(). For example, if c is a variable of static type Collection that holds an
object of class HashSet, then \typeof (c) is HashSet.class, which is the same thing as
\type (HashSet). If F has a static type that is not a reference type, then \typeof (£)
means the instance of java.lang.Class that represents its static type. For example,
\typeof (true) is Boolean.TYPE, which is the same as \type(boolean). Thus an ex-
pression of the form \typeof (F) has type \TYPE, which JML considers to be the same as
java.lang.Class.

12.4.17 \elemtype

The syntax of a elemtype-expression is as follows.
elemtype-expression ::= \elemtype (spec-expression)

The \elemtype operator returns the most-specific static type shared by all elements
of its array argument [Leino-Nelson-Saxe00]. For example, \elemtype (\type(int[])) is

Chapter 12: Predicates and Specification Expressions 100

\type(int). The argument to \elemtype must be an expression of type \TYPE, which
JML considers to be the same as java.lang.Class, and its result also has type \TYPE (see
Section 7.1.2.2 [Type-Specs|, page 50). If the argument is not an array type, then the result
is null. For example, \elemtype (\type(int)) and \elemtype (\type(Object)) are both
null.

12.4.18 \type
The syntax of a type-expression is as follows. See Section 7.1.2.2 [Type-Specs|, page 50, for
the syntax of type.

type-expression ::= \type (type)

The operator \type can be used to introduce literals of type \TYPE in expressions. An
expression of the form \type (T), where T is a type name, has the type \TYPE. Since in JML
\TYPE is the same as java.lang.Class, an expression of the form \type(7T) means the
same thing as T'.class, if T is a reference type. If T is a primitive type, then \type (T)
is equivalent to the value of the TYPE field of the corresponding reference type. Thus
\type (boolean) equals Boolean.TYPE.

For example, in
\typeof (myObj) <: \type(PlusAccount)

the use of \type(PlusAccount) is used to introduce the type PlusAccount into this ex-
pression context.

12.4.19 \lockset

The syntax of a lockset-expression is as follows.
lockset-expression ::= \lockset

The \lockset primitive denotes the set of locks held by the current thread. It is of type
JMLObjectSet. (This is an adaptation from ESC/Java [Leino-etal00] [Leino-Nelson-Saxe00]
for dealing with threads.)

12.4.20 \max
The syntax of a max-expression is as follows. See Section 12.2 [Specification Expressions],
page 90, for the syntax of spec-expression.

max-expression ::= \max (spec-expression)

The \max operator returns the "largest" (as defined by <) of a set of lock objects, given
a lock set as an argument. The result is of type Object. (This is an adaptation from
ESC/Java [Leino-etal00] [Leino-Nelson-Saxe00] for dealing with threads.)

If you are looking to take the maximum of several integers, use the max quantifier (see
Section 12.4.24.2 [Generalized Quantifiers], page 102).

12.4.21 \is_initialized
The syntax of the is-initialized-expression is as follows. See Section 7.1.2.2 [Type-Specs],
page 50, for the syntax of reference-type
is-initialized-expression ::= \is_initialized (reference-type)
The \is_initialized operator returns true just when its reference-type argument is a
class that has finished its static initialization. It is of type boolean.

Chapter 12: Predicates and Specification Expressions 101

12.4.22 \invariant_for
invariant-for-expression ::= \invariant_for (spec-expression)

The \invariant_for operator returns true just when its argument satisfies the invariant
of its static type; for example, \invariant_for ((MyClass)o) is true when o satisfies the
invariant of MyClass. The entire \invariant_for expression is of type boolean.

12.4.23 \1lblneg and \lblpos

The syntax of the two kinds of labeled expressions is as follows. See Section 12.2 [Specifi-
cation Expressions], page 90, for the syntax of spec-expression.

Iblneg-expression ::= (\1blneg ident spec-expression)
Iblpos-expression ::= (\1blpos ident spec-expression)

Parenthesized expressions that start with \1blneg and \1blpos can be used to attach
labels to expressions [Leino-Nelson-Saxe00]; these labels might be printed in various mes-
sages by support tools, for example, to identify an assertion that failed. Such an expression
has a label and a body; for example, in

(\1lblneg indexInBounds O <= index && index < length)

the label is indexInBounds and the body is the expression 0 <= index && index < length.
The value of a labeled expression is the value of its body, hence its type is the type of its
body. The idea is that if this expression is used in an assertion and its value is false (e.g.,
when doing run-time checking of assertions), then a warning will be printed that includes
the label indexInBounds. The form using \1blpos has a similar syntax, but should be used
for warnings when the value of the enclosed expression is true.

12.4.24 Quantified Expressions

spec-quantified-expr ::= (quantifier quantified-var-decls ;
[[predicate | ; |
spec-expression)

quantifier ::= \forall | \exists

| \max | \min
| \num_of | \product | \sum
quantified-var-decls ::= [bound-var-modifiers | type-spec quantified-var-declarator
[, quantified-var-declarator | . ..
quantified-var-declarator ::= ident [dims |
spec-variable-declarators ::= spec-variable-declarator
[, spec-variable-declarator | ...
spec-variable-declarator ::= ident | dims]
[= spec-initializer]
spec-array-initializer ::= { [spec-initializer
[, spec-initializer | ... [,]] %}
spec-initializer ::= spec-expression
| spec-array-initializer
Note that each quantified expression includes a set of parentheses; these parentheses can-
not be omitted. The first part of a quantified expression is the quantifier, which determines
the operation to be performed. Every quantifier starts with a backslash (\). Following
the quantifier are quantified-var-decls, which declare bound variables whose scope is the

Chapter 12: Predicates and Specification Expressions 102

spec-quantified-expr. The bound variables may not conflict with existing local variables,
but may hide static and instance fields. The optional predicate between the two semicolons
is the range predicate; a quantifier ranges over all possible values of its bound variables that
satisfy the range predicate (for a discussion of the ranges of values for reference types, see
Section 12.4.24.6 [Quantifying over Reference Types|, page 104). If the range predicate is
omitted, it defaults to true. The final spec-expression is called the body of the quantifier.

We discuss the various kinds of quantified expressions below.

12.4.24.1 Universal and Existential Quantifiers

The quantifiers \forall and \exists, are universal and existential quantifiers (respec-
tively). For example,

(\forall int i,j; 0 <=1 && i < j && j < 10; alil < a[j])
says that the values a[0] ... a[9] are sorted.

The body of a universal or existential quantifier must be of type boolean. The type
of a universal or existential quantified expression as a whole is boolean. When the range
predicate is not satisfiable, the value of a \forall expression is true and the value of an
\exists expression is false. For example:

(\forall int i; 0 < i && i < 0; 0 < i) == true
(\exists int i; 0 < i && i < 0; 0 < i) == false

12.4.24.2 Generalized Quantifiers

The quantifiers \max, \min, \product, and \sum, are generalized quantifiers that return
the maximum, minimum, product, or sum of the values of the expressions given, where the
variables satisfy the given range. The expression in the body must be of a built-in numeric
type, such as int or double; the type of the quantified expression as a whole is the type of
its body. For example, the following equations are all true (see chapter 3 of [Cohen90]):
(\sum int i; 0 <=1 & i < 5; i) == 0+ 1+ 2+ 3 + 4
(\product int i; 0 < i & i < 5; i) == 1 % 2 * 3 * 4
(\max int i; 0 <= i && i < 5; i) == 4
(\min int i; 0 <= i && i < 5; i-1) == -1
For computing the value of a sum or product, Java’s arithmetic is used. [[[This would
depend on the arithmetic mode in force - DRC]]]The meaning thus depends on the type of
the expression. For example, in Java, floating point numbers use the IEEE 754 standard,
and thus when an overflow occurs, the appropriate positive or negative infinity is returned.
However, Java integers wrap on overflow. Consider the following examples.

(\product float f; 1.0e30f < f && f < 1.0e38f; f)
== Float.POSITIVE_INFINITY

(\sum int i; i == Integer .MAX_VALUE || i == 1; i)
== Integer.MAX_VALUE + 1
== Integer .MIN_VALUE
When the range predicate is not satisfiable, the sum is 0 and the product is 1; for
example:

(\sum int i; false; i) ==

Chapter 12: Predicates and Specification Expressions 103

(\product double d; false; dxd) == 1.0

When the range predicate is not satisfiable for \max the result is the smallest number
with the type of the expression in the body; for floating point numbers, negative infinity
is used. Similarly, when the range predicate is not satisfiable for \min, the result is the
largest number with the type of the expression in the body. [[[Or should this be undefined
- DRCY]]

12.4.24.3 Numerical Quantifier

The numerical quantifier, \num_of, returns the number of values for its variables for which
the range and the expression in its body are true. The body must have type boolean, and
the entire quantified expression has type long. The meaning of this quantifier is defined by
the following equation (see p. 57 of [Cohen90]).

(\num_of T x; R(x); P(x)) == (\sum T x; R(x) && P(x); 1L)

12.4.24.4 Executability of Quantified Expressions

When are universal or existential quantifiers executable for purposes of runtime assertion
checking? If the type of the quantified variable is boolean, then it is always executable.
Otherwise a spec-quantified-expr is only executable if the form of the expression matches a
pattern that the runtime assertion checker understands. This varies by tool implementation,
but you can expect that the runtime assertion checker understands patterns where the range
predicate gives a finite range for an ordinal primitive value type (such as int) or where the
range predicate requires the quantified variable to be drawn from some set. Examples
include the following. [[[Make these examples be real examples in the samples directory]]]

(\forall int x; 0 <= x && x < somelimit; ...)
(\forall Object x; someSet.has(x); ...)

You should get warnings from the jmlc tool when assertions are not executable, but you
have to use the -w2 flag to see them.

If a spec-quantified-expr, QF, is executable, then a tool executing it should only evaluate
any range expression in QQF once per execution of QF. Since the value of such a range
expression cannot change, this evaluation strategy will not change the value of QF, but it
will save time to only evaluate the range expression once for each evaluation of QF.

12.4.24.5 Modifiers for Bound Variables

bound-var-modifiers ::= non_null | nullable
Logical variables can be bound in

e quantified expressions (see Section 12.4.24 [Quantified Expressions|, page 101),

e set comprehension expressions (see Section 12.5 [Set Comprehensions], page 104),

e forall clauses of method contracts (see Section 9.9.1.1 [Forall Variable Declarations],
page 75), or

e old clauses of method contracts (see Section 9.9.1.2 [Old Variable Declarations],
page 75).

Note that in JML, non_null and nullable are not reserved words, hence such identifiers
can be used as type names. In order to quantify over the elements of a type named non_null
or nullable is necessary to provide an explicit nullity modifier. For example,

Chapter 12: Predicates and Specification Expressions 104

(\forall non_null non_null nn; ...)

where the first non_null is one of the bound-var-modifiers and the second is the type
non_null.

12.4.24.6 Quantifying over Reference Types

The range of values for a quantified variable that is declared to be of a reference type:

e Does not include null unless the bound variable is declared nullable (see Section G.2.1
[Non-null by Default], page 169).

e May include references to objects that are not constructed by the program; one should
use a range predicate to eliminate such cases if they are not desired.

12.5 Set Comprehensions

The syntax of a set-comprehension expression is as follows.
set-comprehension ::= { [bound-var-modifiers | type-spec
quantified-var-declarator ‘|’
postfix-expr && predicate }

The set comprehension notation can be used to succinctly define sets. The meaning of
a new-expr (see Section 12.3 [Expressions|, page 90) with a set-comprehension suffix, such
asnew ST { T z | s.has(z) && P(zx) } is to form a subset, of type ST, of the set s, which
contains just those elements x that are both in s and for which P (z) is true.

For example, the following is the JMLObjectSet that is the subset of non-null Integer
objects found in the set myIntSet whose values are between 0 and 10, inclusive.

new JMLObjectSet {Integer i | myIntSet.has(i) &&
i != null && 0 <= i.intValue() && i.intValue() <= 10 }

The syntax of JML limits set comprehensions so that the postfix-expr following the
vertical bar (|) is always a method invocation with the bound variable declared in the
quantified-var-declarator as its parameter; the method may be either the has method of
an org.jmlspecs.models.JMLObjectSet or org. jmlspecs.models.JMLValueSet, or the
contains method of a java.util.Collection. This restriction is used to avoid Russell’s
paradox [Whitehead-Russell25]. The bound variable, whose scope is the set-comprehension,
may not conflict with existing local variables, but may hide static and instance fields. The
bound variable type is used to restrict the objects that become part of the resulting set;
if the set called in the postfix-expr contains objects that are not assignable to the bound
variable, they are not contained in the resulting set comprehension. Thus, the following two
set comprehension expressions (given an existing Collection s) result in identical sets:

new JMLObjectSet {Integer i | s.contains(i) && O < i.intValue() }
new JMLObjectSet {0Object i | s.contains(i) &% i instanceof Integer &&
0 < ((Integer) i).intValue() 1}

In practice, one starts either from some relevant set at hand or from the sets
found in JMLObjectSet and JMLValueSet containing the objects of primitive types.
The type of a set comprehension is the type named following new, which must be
JMLObjectSet or JMLValueSet. The bound variable type must be compatible with the
set comprehension type; in particular, the bound variable type must be a subtype of
org.jmlspecs.models.JMLType if the set comprehension type is JMLValueSet.

Chapter 12: Predicates and Specification Expressions 105

12.6 JML Operators

In this section we describe the various new operators that JML adds to Java expressions.
The following can all be used in spec-expressions.

12.6.1 Subtype operator

The relational operator <: compares two reference types and returns true when the type on
the left is a subtype of the type on the right [Leino-Nelson-Saxe00]. Although the notation
might suggest otherwise, this operator is also reflexive; a type will compare as <: with itself.
In an expression of the form E1 <: E2, both FI and E2 must have type \TYPE; since in
JML \TYPE is the same as java.lang.Class the expression FI <: E2 means the same
thing as the expression E2.isAssignableFrom(FE7). As a result, primitive types are not
subtypes of java.lang.0bject, nor of each other, though they are of themselves; so, for
example, Integer.TYPE <: Integer.TYPE is true.

12.6.2 Equivalence and Inequivalence Operators

The operators <==> and <=!=> work only on boolean-subexpressions and have the same
meaning as == and !=, respectively. However, they have very low precedence, and so are
useful at the top-level of a spec-expression. Unlike == and !=, the operators <==> and <=!=>
are also associative and symmetric.

The notation <==> can be read “if and only if”. It has the same meaning for Boolean
values as ==, but has a lower precedence. Therefore, the expression “\result <==> size
== 0” means the same thing as “\result == (size == 0)”.

The notation <=!=> can be read “is not equivalent to”. It has the same meaning for
Boolean values as !=, but has a lower precedence. Therefore, the expression “\result
<=1=> gize == 0” means the same thing as “\result != (size == 0)".

The expressions on either side of these operators must be of type boolean, and the type
of the result is also boolean.

12.6.3 Forward and Reverse Implication Operators

The operators ==> and <== work only on boolean-subexpressions. They compute forward
and reverse implications, respectively.

For example, the formula raining ==> getsWet is true if either raining is false or
getsWet is true. The formula getsWet <== raining means the same thing. The ==> oper-
ator associates to the right, but the <== operator associates to the left. The expressions on
either side of these operators must be of type boolean, and the type of the result is also
boolean.

These two operators are evaluated in short-circuit fashion, left to right. Thus, in a ==
b, if a is false, then the expression is true and b is not evaluated. Similarly, in a <==b, if a
is true, the expression is true and b is not evaluated. In other words, a ==> b is equivalent
to 'a || b and a <== b is equivalent to a || !b.

Because of this short-circuit evaluation, a ==> b is not quite equivalent to b <== a. For
example, x !'=null ==> x.a > 0 will be true if x is null, but x.a>0 <== x != null would
be undefined (or throw a NullPointerException) if x is null.

Chapter 12: Predicates and Specification Expressions 106

12.6.4 Lockset Ordering

JML uses <# and <#= to test order of locks. (The previously-used operators < and <= were
deprecated because their use conflicts with the Java comparisons defined for those operators
when autoboxing is available.)

Using synchronized statements, Java programs can establish monitor locks to permit
only one thread at a time to execute given sections of code. Any object can be used as
a lock. In order for ESC/Java [Leino-Nelson-Saxe00] to reason about the possibility of
deadlocks among threads, a partial order must be statically declared on lock objects, with
"larger" objects being objects whose locks should be acquired later. ESC/Java suggests the
use of axiom-clauses to declare this partial order.

The <# and <#= operators test this partial order in assertions. When used in this way,
the subexpressions to either side of <# or <#= must be reference types, and the result is of
type boolean.

12.7 Store Refs

The syntax related to the store-ref production is used in several places, in particular in
assignable clauses (see Section 9.9.9 [Assignable Clauses|, page 83).

store-ref-list ::= store-ref-keyword | store-ref [, store-ref | ...
store-ref ::= store-ref-expression

| informal-description
store-ref-expression ::= store-ref-name [store-ref-name-suffix | .. .
store-ref-name ::= ident | super | this
store-ref-name-suffix ::= . ident | . this | ‘[’ spec-array-ref-expr ‘1’ | . *
spec-array-ref-expr ::= spec-expression

| spec-expression .. spec-expression

| *

store-ref-keyword ::= \nothing | \everything | \not_specified

A store-ref denotes a set of locations. These sets can be specified using data groups (see
Chapter 10 [Data Groups|, page 87), and if this is done then the set of locations denoted
by a store-ref is the union of all the sets of locations in the specified set of data groups.

The set of locations denoted by a store-ref-list of the form store-ref, | store-ref | ... is
the union of all the sets of locations denoted by each store-ref in the list.

The store-ref \nothing denotes the empty set of locations. The form \everything
denotes the set of all locations in the program. The form \not_specified denotes a
unspecified set of locations, whose usage is determined by a particular tool.

When SR denotes a set of locations contain objects, then SR.f, where f is an ident,
denotes the union of the data groups of each field named f in each object in the denotation
of SR.

The meaning of a store-ref-expression of the form SR.* depends on the denotation of
the stor-ref-name SR. When SR denotes a set of locations of objects, then SR.* denotes
the union of the data groups of all visible instance fields of SR’s (static) type. On the other
hand, if SR names a class or interface, then SR.* denotes the union of the data groups of
all visible static fields of the named class or interface.

Chapter 12: Predicates and Specification Expressions 107

Similarly, when SR denotes a set of locations containing arrays, then SR[*] denotes
the union of all data groups of all elements in all the arrays denoted by SR. Also, when
SR denotes a set of locations containing arrays, then SR[L..H] denotes the union of all
data groups of all elements in the arrays denoted by SR whose indexes are between L
and H inclusive. In the case where SR denotes a set of locations containing arrays, then
SR[J] denotes the union of all data groups of those arrays at the index denoted by the
spec-expression .J.

Chapter 13: Statements and Annotation Statements 108

13 Statements and Annotation Statements

JML also defines a number of annotation statements that may be interspersed with Java
statements in the body of a method, constructor, or initialization block.

The following gives the syntax of statements. These are the standard Java statements,
with the addition of annotations, the hence-by-statement, assert-redundantly-statement,
assume-statement, set-statement, unreachable-statement, debug-statement, and the various
forms of model-prog-statement. See Chapter 15 [Model Programs], page 122, for the syntax
of model-prog-statement, which is only allowed in model programs. [[[Does this include
local class declarations?]]]

compound-statement ::= { statement | statement | ... }
statement ::= compound-statement
| local-declaration ;
| ident : statement
| expression ;
| if (expression)
statement | else statement |
| possibly-annotated-loop
| break [ident | ;
| continue [ident | ;
| return [expression | ;
| switch-statement
| try-block
| throw expression ;
| synchronized (expression) statement
|
|
|

jml-annotation-statement
assert-statement
| jml-annotation-statement
| model-prog-statement // only allowed in model programs
switch-statement ::= switch (expression) {
[switch-body | ... }
switch-body ::= switch-label-seq | statement | . ..
switch-label-seq ::= switch-label [switch-label | . ..
switch-label ::= case expression : | default :
try-block ::= try compound-statement
[handler | . ..
[finally compound-statement |
handler ::= catch (param-declaration) compound-statement

The semantics of the Java statements are as in Java [Arnold-Gosling-Holmes00] [Gosling-
etal00]. More details on the JML-specific features related to statements are described below.

13.1 Local Declaration Statements

The following is the syntax of local declaration statements. See Section 7.1.2 [Field and
Variable Declarations], page 49, for the syntax of variable-decls.

local-declaration ::= local-modifiers variable-decls

Chapter 13: Statements and Annotation Statements 109

13.1.1 Modifiers for Local Declarations

JML allows the modifiers ghost, uninitialized, non_null and nullable in addition
to Java’s final modifier on local variable declarations. See Chapter 18 [Universe Type
System]|, page 133, for the grammar of ownership-modifier.

local-modifiers ::= [local-modifier | . ..
local-modifier ::= ghost | final uninitialized | non_null | nullable
| ownership-modifier // when the Universe type system is on

The JML modifiers are discussed to some extent below. See Section 7.1.2.1 [JML Mod-
ifiers for Fields|, page 49, for more about these modifiers.

When used as a local variable modifier, uninitialized means that the variable should
be considered by the tools to be uninitialized, even if it has an initialization. This allows
the tools to check for uses before a “real” initialization.

A local ghost declaration is a variable declaration with a ghost modifier, entirely con-
tained in an annotation. It introduces a new variable that may be used in subsequent
annotations within the remainder of the block in which the declaration appears. A ghost
variable is not used in program execution as Java variables are, but is used by runtime
assertion checkers or a static checker to reason about the execution of the routine body in
which the ghost variable is used.

e The variable name may not be already declared as a local variable or local ghost variable
or as a formal parameter of the routine in which the declaration appears.

e Each variable declared may have an initializer; the initializer is in the scope of the
newly declared variable. Furthermore, since the initializer is in an annotation (and
thus not executed when runtime assertion checks are turned off), the initializer of a
ghost variable must be a pure expression (i.e., it must be side effect free).

e The modifiers final, uninitialized, non_null and nullable may be used on the
ghost declaration.

In the following, the body of the method ghostLocalExample contains several examples
of local ghost declarations.

package org.jmlspecs.samples. jmlrefman;

public abstract class GhostLocals {
void ghostLocalExample() {
//@ ghost int i = 0;
//@ ghost int zero = 0, j, k = i+3;
//@ ghost float[] a = {1, 2, 3};
//@ ghost QObject o;
//@ final ghost non_null Object nno = new Object();

13.2 Loop Statements

The following is the syntax of loop statements.

Chapter 13: Statements and Annotation Statements 110

possibly-annotated-loop ::=
[loop-invariant | . . .
[variant-function | . . .
[ident : | loop-stmt

loop-stmt ::= while (expression) statement
| do statement while (expression) ;
| for ([for-init | ; [expression | ; [expression-list |)
statement
| for (modifiers type-spec ident : expression)
statement
for-init ::= local-declaration | expression-list

In JML a loop statement can be annotated with one or more loop invariants, and one
or more variant functions. The following class contains an example in the middle of the
method sumArray. This example has a while loop with two loop invariants, which fol-
low the keyword maintaining, and a single variant function, which follows the keyword
decreasing. The invariants and variant function are written above the loop itself. The
first loop invariant describes the range that the variable i can take, and the second relates
i and the value in sum.

package org.jmlspecs.samples. jmlrefman;

/** An example of some simple loops with loop invariants
* and variant functions specified.
*/

public abstract class SumArrayLoop {

/** Return the sum of the argument array. */
/*@ old \bigint sum =
@ (\sum int j; 0 <= j && j < a.length; (\bigint)al[jl);
@ requires Long.MIN_VALUE <= sum && sum <= Long.MAX_VALUE;
@ assignable \nothing;
Q@ ensures \result == sum;
Qx/
public static long sumArray(int [] a) {
long sum = 0;
int i = a.length;

/*@ maintaining -1 <= i && i <= a.length;
@ maintaining sum

Q == (\sum int j;
© i<= 3 && 0 <= j && j < a.length;
Q (\bigint)aljl);

@ decreasing i; @x*/
while (--i >= 0) {
sum += ali];

}

Chapter 13: Statements and Annotation Statements 111

//@ assert i < 0 && -1 <= i &% i <= a.length;

//@ hence_by (1 < 0 && -1 <= i) ==> i == -1;

//@ assert i == -1 && i <= a.length;

//@ assert sum == (\sum int j; O <= j && j < a.length; (\bigint)al[jl);]J}
return sum;

¥

At the end of the loop, the negation of the loop’s test expression and the loop invariants
hold. This is shown by the assertions after the loop.

Loop invariants and variant functions are discussed in more detail below. (Thanks to
K. Rustan M. Leino, Claude Marche, and Steve M. Shaner for discussions on this topic,
including details of the semantics.)

13.2.1 Loop Invariants
A loop can specify one or more loop invariants, using the following syntax.
loop-invariant ::= maintaining-keyword predicate ;
maintaining-keyword ::= maintaining | maintaining redundantly
| loop_invariant | loop_invariant_redundantly

A loop-invariant is used to help prove partial correctness of a loop statement.

The meaning of a loop, which does not contain a use of break that exits the loop itself
(as opposed to some inner loop), such as
//@ maintaining J;
while (B) { S }
is as follows.

while (true) {
//@ assert J;
if ((B)) { break; }
S

+

So that the loop invariant holds at the beginning of each iteration of the loop.

The rule for deducing what is true after the loop can be stated simply if the loop does
not contain any break statements that exit the loop, and if the loop test, B, is both a Java
expression and a JML specification-expression (see Section 12.2 [Specification Expressions],
page 90). (This means that B is side-effect free.) For such loops, the rule is that, after a
loop with condition B and invariant J the negation of the condition, (!B), conjoined with
the invariant, J, holds. This is summarized in the following program schema.

//@ maintaining J;

while (B) { // assuming B has no side effects
S

}

// assert (B) && J;

If the loop contains a break statement that exits the loop itself, then more detailed
reasoning is necessary to establish what will be true after the loop. The intended condition

Chapter 13: Statements and Annotation Statements 112

that should be true after the loop when it is exited via a break statement can be recorded
in the code using an assert statement. For example, if the loop has the form:
//@ maintaining J;
while (true) {
S1
if (C) {
S2
//@ assert @Q;
break;
}
S3
}

then after the loop the asserted condition, g, should hold, assuming there are no other
break statements that exit the loop.

13.2.2 Loop Variant Functions

A loop can also specify one or more variant functions, using the following syntax.

variant-function ::= decreasing-keyword spec-expression ;
decreasing-keyword ::= decreasing | decreasing_redundantly
| decreases | decreases_redundantly

A variant-function is used to help prove termination of a loop statement. It specifies an
expression of type long or int that must be no less than 0 when the loop is executing, and
must decrease by at least one (1) each time around the loop.

The meaning of a loop such as

//@ decreasing F;
while (B) { S }

in which S does not use continue, is as follows.

while (true) {
long vf = E; // assuming vf is a fresh variable name
if (1(B)) { break; }
//@ assert 0 <= vf;
S
//@ assert E < vf;
+

If the loop contains a continue statement, then the loop variant is checked just before
each use of continue. For example, if the loop has the form:

//@ decreasing F;
while (B) { S1 if (C) { S2 continue; } S3 }

then the meaning is as follows.

while (true) {
long vf = E; // assuming vf is a fresh variable name
if ((B)) { break; }
//@ assert 0 <= vf;
S1

Chapter 13: Statements and Annotation Statements 113

if (C) A
S2
//@ assert E < vf;
continue;

}

S3

//@ assert E < vf;

}

13.3 Assert Statements

The syntax of assert and redundant assert statements is as follows.

assert-statement ::= assert expression | : expression | ;
| assert predicate | : expression | ;
assert-redundantly-statement ::= assert_redundantly predicate
[: expression | ;

Note that Java (as of J2SDK 1.4) also has its own assert statement. For this reason
JML distinguishes between assert statements that occur inside and outside annotations.

Outside an annotation, an assert statement is a Java assert statement, whose syntax
follows the first assert-statement production above. Thus in such an assert statement,
the first expression can have side effects (potentially, although it shouldn’t). The second
expression is supposed to have type String, and will be used in a message should the
assertion fail.

Inside an annotation, an assert statement is a JML assert statement, and the second
syntax is used for assert-statement. Thus instead of an expression before the optional colon,
there is a JML predicate. This predicate cannot have side effects, but can use the various
JML extensions to the Java expression syntax (see Section 12.2 [Specification Expressions],
page 90, for details.) As in a Java assert statement, the optional expression that follows
the colon must be a String, which is printed if the assertion fails.

An assert statements tells JML to check that the specified predicate is true at the given
point in the program. The runtime assertion checker checks such assertions during execution
of the program, when control reaches the assert statement. Other tools, such as verification
tools, will try to prove that the assertion always holds at that program point, for every
possible execution.

The assert-redundantly-statement must appear in an annotation. It has the same se-
mantics as the JML form of an assert statement, but is marked as redundant. Thus it would
be used to call attention to some property, but need not be checked.

13.4 JML Annotation Statements

The following gives the syntax of JML annotation statements. These can appear any-
where in normal Java code, but must be enclosed in annotations. See Section 13.3 [Assert
Statements|, page 113, for the syntax of the assert-redundantly-statement. See Chapter 15
[Model Programs|, page 122, for the syntax of additional statements that can only be used
in model programs.

jml-annotation-statement ::= assert-redundantly-statement

Chapter 13: Statements and Annotation Statements 114

assume-statement
hence-by-statement
set-statement
refining-statement
unreachable-statement
debug-statement

13.4.1 Assume Statements

The syntax of an assume statement is as follows. As in a Java assert statement, the optional
expression that follows the colon must be a String, which is printed if the assumption fails.

assume-statement ::= assume-keyword predicate
[: expression | ;
assume-keyword ::= assume | assume_redundantly

In runtime assertion checking, assumptions are checked in the same way that assert
statements are checked (see Section 13.3 [Assert Statements|, page 113).

However, in static analysis tools, the assume statement is used to tell the tool that the
given predicate is assumed to be true, and thus need not be checked.

13.4.2 Set Statements

The syntax of a set statement is as follows. See Section 12.3 [Expressions|, page 90, for the
syntax of assignment-expr.

set-statement ::= set assignment-expr ;

A set statement is the equivalent of an assignment statement but is within an annotation.
It is used to assign a value to a ghost variable or to a ghost field. A set statement serves
to assist the static checker in reasoning about the execution of the routine body in which
it appears. Note that:

e the target of the set statement must be a ghost variable or a ghost field, and

e the right-hand-side of the assignment-expr must be a pure expression (i.e., it must not
have side effects).

Examples:

//@ set i = 0;
//@ set collection.elementType = \type(int);

The reason that right hand side of the assignment-expr must be pure is because set-
statements are not part of the normal Java code, but only occur in annotations. Hence
they must not affect normal Java code execution, but only have side effects on the ghost
field or ghost variable being assigned. This restriction is a conservative way to guarantee
that property.

13.4.3 Refining Statements

The syntax of a refining statement is as follows. See Section 15.6 [Specification Statements],
page 125, for the syntax of spec-statement and generic-spec-statement-case. See Chapter 13
[Statements and Annotation Statements|, page 108, for the syntax of statement.

Chapter 13: Statements and Annotation Statements 115

refining-statement ::= refining spec-statement statement
| refining generic-spec-statement-case statement

A refining statement allows one to annotate a specification with a specification. It has
two parts, a specification and a body. The specification part can be either a spec-statement
(see Section 15.6 [Specification Statements|, page 125), which includes the grammar for a
heavyweight specification case, or a generic-spec-statement-case (see Section 15.6 [Specifi-
cation Statements|, page 125), which includes the grammar for a lightweight specification
case. The body is simply a statement. In particular, the body can be a compound-statement
or a jml-annotation-statement, including a nested refining-statement.

Annotating the body with a specification is a way of collecting all the specification
information about the statement in one place. Giving such an annotation is especially useful
for framing, e.g., writing assignable-clauses. For example, by using a refining statement,
one can write an assignable clause for a loop statement or for the statement in the body of
a loop.

Refining statements are also used in connection with model program specification cases
(see Chapter 15 [Model Programs|, page 122). Within the implementation of a method
with such a model program specification, a refining statement indicates exactly what spec-
statement is implemented by its body, since its specification part would be exactly that spec-
statement. This is helpful for “matching” the implementation against the model program
specification [Shaner-Leavens-Naumann07].

Note that the scope of any declarations made in the specification part of a refining
statement are limited to the specification part, and do not extend into the body. Thus a
refining statement is type correct if each of its subparts is type correct, using the surrounding
context for separately type checking the specification and body.

The meaning of a refining statement of the form refining S B is that the body B must
refine the specification given in S. This means that B has to obey all the specifications
given in S. For example, B may not assume a stronger precondition than that given by
S. (Standard defaults are used for omitted clauses in the specification part of a refining
statement; thus, if there is no requires clause in a spec-statement, then the precondition
defaults to true.) Similarly, B may not assign to locations that are not permitted to be
assigned to by S, and, assuming S’s precondition held, then when B terminates normally it
must establish S’s normal postcondition. See Chapter 9 [Method Specifications|, page 63,
for more about what it means to satisfy such a specification.

When \old () or \pre() are used in the specification part of a refining statement, they
have the same meaning as in a specification statement (see Section 15.6 [Specification State-
ments|, page 125).

In execution, a refining statement of the form refining S B just executes its body B.
For this reason, typically the refining keyword and the specification S would be in JML
annotations, but the body B would be normal Java code (outside of any annotation).

See Chapter 15 [Model Programs|, page 122, for more examples.

13.4.4 Unreachable Statements

The syntax of the unreachable statement is as follows.

unreachable-statement ::— unreachable ;

Chapter 13: Statements and Annotation Statements 116

The unreachable statement is an annotation that asserts that the control flow of a
routine will never reach that point in the program. It is equivalent to the annotation
assert false. If control flow does reach an unreachable statement, a tool that checks
(by reasoning or at runtime) the behavior of the routine should issue an error of some kind.
The following is an example:

if (true) {

} else {
//@ unreachable;
}

13.4.5 Debug Statements

The syntax of the debug statement is as follows. See Section 12.3 [Expressions|, page 90,
for the syntax of expression.

debug-statement ::= debug expression ;

A debug statement is the equivalent of an expression statement but is within an annota-
tion. Thus, features visible only in the JML scope can also appear in the debug statement.
Examples of such features include ghost variables, model methods, spec_public fields, and
JML-specific expression constructs, to name a few.

The main use of the debug statement is to help debugging specifications, e.g., by printing
the value of a JML expression, as shown below.

//@ debug System.err.println(x);

In the above example, the variable x may be a ghost variable. Note that using
System.err automatically flushes output, unlike System.out. This flushing of output is
helpful for debugging.

As shown in the above example, expressions with side-effects are allowed in the debug
statement. These include not only methods with side-effects but also increment (++) and
decrement (--) operators and various forms of assignment expressions (e.g., =, +=, etc.).
Thus, the debug statement can also be used to assign a value to a variable, or mutate the
state of an object.

//@ debug x = x + 1;
//@ debug alList.add(y);

However, a model variable cannot be assigned to, nor can its state be mutated by
using the debug statement, as its value is given by a represents clause (see Section 8.4
[Represents Clauses|, page 60).

There is no restriction on the type of expression allowed in the debug statement.

Tools should allow debug statements to be turned on or off easily. Thus programmers
should not count on debug statements being executed. For example, if one needs to assign
to a ghost variable, the proper way to do it is to use a set-statement (see Section 13.4.2
[Set Statements|, page 114), which would execute even if debug statements are not being
executed.

13.4.6 Hence By Statements

The syntax of the hence_by statement is as follows.

Chapter 13: Statements and Annotation Statements 117

hence-by-statement ::= hence-by-keyword predicate ;
hence-by-keyword ::= hence_by | hence_by_redundantly
The hence_by statement is used to record reasoning when writing a proof by intermittent
assertions. It would normally be used between two assert statements (see Section 13.3 [As-
sert Statements|, page 113) or between two assume statements (see Section 13.4.1 [Assume
Statements|, page 114).

[[Needs example.]]]

Chapter 14: Redundancy 118

14 Redundancy

JML has several features that allow the specification of implications [Tan95] and examples
[Leavens97c| [Leavens-Baker99]. They are redundant in the sense that they do not con-
strain an implementation directly. Instead, they are useful for pointing out consequences
to the specification’s readers, for example to draw attention to some consequences of the
specification of a method, or to illustrate it by an example.

In addition to clauses of the form X _redundantly, such as requires_redundantly,
ensures_redundantly, etc., there are two sections of a method specification that are de-
voted to such redundant specifications. These sections of a method specification are de-
scribed by the following grammar.

redundant-spec ::= implications | examples | | examples

The two subsections below explain these features. The description of clauses of the form
X _redundantly is contained in the first section.

14.1 Redundant Implications and Redundantly Clauses

A redudant implication is a way of stating a claim about a specification. By itself it does
not constrain an implication, but can be thought of a stating a theorem to be proven about
a specification. Such redundant implications are useful for drawing the reader’s attention to
some point that might otherwise be overlooked, or that is important for rhetorical purposes
[Leavens-Baker99].

Redundant implications can be specified in two ways in JML. The first is by using clauses
of the form X _redundantly. The second is by use of the implications section of a method
specification, which starts with the keyword implies_that. (See Section 9.2 [Organization
of Method Specifications|, page 63, for the syntax of spec-case-seq.)

implications ::= implies_that spec-case-seq

The implications section of a method specification says that for each visibility level V,
and for each spec-case of visibility V in its spec-case-seq, that spec-case is refined by the
entire non-redundant specification of the method that applies at visibility level V. Thus
every correct implementation of the non-redundant specification must satisfy each of the
spec-cases in the implications section.

For example, suppose that the (desugared) meaning of the non-redundant part of a
method’s specification has the form:

V behavior // non-redundant
requires Pre;
assignable x1, x2;
ensures NormPost ;
signals_only Ex1;
signals (Exception e) ExPost;
and suppose that one of the spec-cases in its implications section has the following
(desugared) meaning:
V behavior // redundant
requires RedPre;
assignable x1, x2;

Chapter 14: Redundancy 119

ensures RedNormPost ;
signals_only Ex1;
signals (Exception e) RedExPost;

Then it must be the case that (by definition of refinement for method specifications
[Leavens-Naumann06]) the following implications hold:

e \old(RedPre) ==> Pre,
e (\old(RedPre) && NormPost) ==> RedNormPost, and
e (\old(RedPre) && ExPost) ==> RedExPost.

These implications are only sensible if the specifications have the same visibility (V), the
same assignable clauses, and the same signals_only clauses. If the assignable clauses
differ, one can adjust by adding elements to the non-redundant parts of the assignable
clause, to widen it, but preserve its meaning by adding restrictions (e.g., using the \only_
assigned predicate), to the postconditions. Similar adjustments can be made to the non-
redundant signals_only clause, by adding exceptions (or supertypes of exceptions) to the
non-redundant signals_only, preserving its meaning by adding restrictions in the signals
clause.

Redundant clauses are a syntactic variant of Tan’s procedure claims [Tan95]. The mean-
ing of a redundant clause, of the form X _redundantly is also defined as making a claim
about implications, but in this case only one simple implication. The claim is that the pred-
icate in the redundant clause follows from the meaning of the non-redundant X clauses.

As an example, consider the following requires clauses.

requires Pre;
requires_redundantly RedPre;

These state the claim that Pre ==> RedPre. That is, in all pre-states, whenever Pre
is true, then RedPre must be true. The same pattern holds for all other clauses and
their redundant counterparts, including ensures clauses, signals clauses (which must first
be standardized to have the same exception [Raghavan-Leavens05]), invariants, etc.

For example, recall that multiple clauses are conjoined, and thus

ensures (1;
ensures (2;
ensures_redundantly Red{Q1;
ensures_redundantly Red(Z2;

is equivalent to
ensures (1 && (Q2;
ensures_redundantly RedQ1 && Red(2;
In this example, the claim stated is that:
(Q1 && Q2) ==> (RedQ1 && RedR2).
If one is using a theorem prover, then these implications can be thought of as theorems
to prove (in the context of the overall class or interface specification).

A runtime assertion checker is free to check the specifications in the implications section,
since they must all hold, as they should be refined by the non-redundant specification. If
a redundant specification case in a method’s implications section is violated, this could
indicate that either: (a) the implications described above do not hold, or that (b) there is

Chapter 14: Redundancy 120

a violation of the specification by the caller (e.g., if the precondition does not hold) or by
the implementation of the method (e.g., if the normal postcondition does not hold).

[[Needs concrete examples.]]]

14.2 Redundant Examples

Examples are, used to point out, to readers or testing tools, particular cases of a method
specification [Leavens97c| [Leavens-Baker99] [Leavens-Baker-Ruby06]. The following gives
the syntax of the examples section of a method specification. This section starts with
the for_example keyword, and includes one or more examples. Each example is much
like a spec-case (see Section 9.2 [Organization of Method Specifications], page 63), but
uses various example keywords instead of behavior keywords, and does not permit model-
program cases.

examples ::= for_example example [also example | . ..
example ::= [[privacy | example]
[spec-var-decls |
[spec-header |
simple-spec-body
| [privacy | exceptional_example
[spec-var-decls]
spec-header
[exceptional-example-body |
| [privacy | exceptional_example
[spec-var-decls]
exceptional-example-body
| [privacy | normal_example
[spec-var-decls |
spec-header
[normal-example-body |
| [privacy | normal_example
[spec-var-decls |
normal-example-body
exceptional-example-body ::= exceptional-spec-case
[exceptional-spec-case | . ..
normal-example-body ::= normal-spec-case
[normal-spec-case | . . .

As in method spec-cases (see Section 9.2 [Organization of Method Specifications],
page 63) there are both heavyweight and lightweight examples. A lightweight example
does not use one of the example keywords. A heavyweight example uses one of the
example keywords. As with spec-cases, only heavyweight examples can have a specified
visibility; lightweight examples all have the same visibility as the method (or constructor)
being specified.

The defaults for omitted clauses in lightweight examples are the same as those for omitted
clauses in lightweight spec-cases. Similarly, heavyweight examples have the same defaults as
heavyweight spec-cases. (See Section 9.6.1 [Semantics of flat behavior specification cases],
page 68, for the defaults for a lightweight and heavyweight specification cases.)

Chapter 14: Redundancy 121

As described in the “Preliminary Design of JML” [Leavens-Baker-Ruby06] (section
2.3.2.1) “the specification in each example should be such that:

e the example’s precondition implies the precondition of the expanded meaning of the
specified behaviors,

e the example’s assignable clause specifies a subset of the locations that are assignable
according to the expanded meaning of the specified behaviors, and

e assuming the example’s assignable clause, the conjunction of:
e the example’s precondition (wrapped by \old()),

e the precondition of the expanded meaning of the specified behaviors (also wrapped
by \old()), and

e the postcondition of the expanded meaning of the specified behaviors
should be equivalent to the example’s postcondition.

Requiring equivalence to the example’s postcondition means that it can serve as a test
oracle for the inputs described by the example’s precondition. If there is only one spec-
ified public normal_behavior” specification case “and if there are no preconditions and
assignable clauses, then the example’s postcondition should the equivalent to the conjunc-
tion of the example’s precondition and the postcondition of the public normal_behavior
specification.”

[[[(Needs concrete examples :-)]]]

Chapter 15: Model Programs 122

15 Model Programs

This chapter discusses JML’s model programs, which are adapted from the refinement
calculus [Back88] [Back-vonWright89a] [Buechi-Weck00] [Morgan94] [Morris87]. Details of
JML’s design and semantics for model program specifications are described in a recent paper
[Shaner-Leavens-Naumann07].

15.1 Ideas Behind Model Programs

The basic idea of a model program is that it is a specification that is written as an abstract
algorithm. Such an abstract algorithm specifies a method in the sense that the method’s
execution should be a refinement of the model program.

JML adopts ideas from Biichi and Weck’s "grey-box approach" to specification [Buechi-
Weck00] [Buechi00]. However, JML structurally restricts the notion of refinement by not
permitting all implementations with behavior that refines the model program, but only
allowing implementations that syntactically match the model program [Shaner-Leavens-
Naumann07]. The current JML notion of matching uses refining-statements (see Sec-
tion 13.4.3 [Refining Statements], page 114), as explained below. This turns out to be
a simple and easy to understand technique for specifying and verifying both higher-order
features and callbacks.

Consider the following example (from a survey on behavioral subtyping by Leavens and
Dhara [Leavens-Dhara00]). In this example, both the methods are specified using model
programs, which are explained below.

package org.jmlspecs.samples.dirobserver;

//@ model import org.jmlspecs.models.JMLString;
//@ model import org.jmlspecs.models.JMLObjectSetEnumerator;

/** Directories that can be both read and written. */
public interface Directory extends RODirectory {

/** Add a mapping from the given string
* to the given file to this directory.
*/

/*@ public model_program {

@ normal_behavior

@ requires !in_notifier && n !'= null && n != "" && £ != null;
@ assignable entries;

@ ensures entries != null

@ && entries.equals(\old(entries.extend(

Q new JMLString(n), £)));
e

@ maintaining !in_notifier && n != null && n != "" && f !'= null
Q && e !'= null;

@ decreasing e.uniteratedElems.size();

@ for (JMLObjectSetEnumerator e = listeners.elements();

@ e.hasMoreElements();) {

Chapter 15: Model Programs 123

Q set in_notifier = true;
@ ((DirObserver)e.nextElement ()) .addNotification(this, n);
Q@ set in_notifier = false;
e }
@}
©ex/
public void addEntry(String n, File f);

/** Remove the entry with the given name from this directory. */
/*@ public model_program {
@ normal_behavior

Q@ requires !in_notifier && n != null && n != "";

@ assignable entries;

@ ensures entries != null

¢ && entries.equals

@ (\old(entries.removeDomainElement (

Q new JMLString(n))));
e

@ maintaining !in_notifier && n !'= null & n != "" && e != null;
@ decreasing e.uniteratedElems.size();

@ for (JMLObjectSetEnumerator e = listeners.elements();

Q e.hasMoreElements();) {

Q set in_notifier = true;

@ ((DirObserver)e.nextElement ()) .removeNotification(this, n);
Q set in_notifier = false;

e }

e}

ox/

public void removeEntry(String n);

}

Both model programs in the above example are formed from a specification statement,
which begins with the keyword normal_behavior in these examples, and a for-loop. The
key event in the for loop bodies is a method call to a method (addNotification or
removeNotification). These calls must occur in a state equivalent to the one reached
in the model program for the implementation to be legal.

The specification statements abstract away part of a correct implementation. The
normal_behavior statements in these examples both have a precondition, a frame axiom,
and a postcondition. These mean that the statements that they abstract away from must
be able to, in any state satisfying the precondition, finish in a state satisfying the post-
condition, while only assigning to the locations (and their dependees) named in the frame
axiom. For example, the first specification statement says that whenever in_notifier is
false, n is not null and not empty, and f is not null, then this part of the method can assign
to entries something that isn’t null and that is equal to the old value of entries extended
with a pair consisting of the string n and the file f.

The model field entries, of type JMLValueToObjectMap, is declared in the supertype
RODirectory [Leavens-Dhara00].

Chapter 15: Model Programs 124

Implementations of model programs must match each specification statement in a model
program with a corresponding refining statement. In the matching refining statement, the
specification part must be textually equal to the specification statement. The body of
the refining statement must thus implement the given specification for that statement (see
Section 13.4.3 [Refining Statements|, page 114).

15.2 Extracting Model Program Specifications

Since refining statements contain both specifications and implementations, it is possible to
extract a model program specification from an implementation with (zero or more) refining
statements. This is done by using the modifier extract on the method [Shaner-Leavens-
Naumann07]. [[[Give example.]]]

15.3 Details of Model Programs

The following gives the syntax of model programs. See Chapter 13 [Statements and Anno-
tation Statements|, page 108, for the parts of the syntax of statements that are unchanged
from Java. The jml-compound-statement and jmli-statement syntax is the same as the
compound-statement and statement syntax, except that model-prog-statements are not
flagged as errors within the jml-compound-statement and jml-statements.

model-program ::= [privacy | | code | model_program
jml-compound-statement

jml-compound-statement ::= compound-statement
jml-statement ::= statement
model-prog-statement ::= nondeterministic-choice

| nondeterministic-if

| spec-statement

| invariant

15.4 Nondeterministic Choice Statement

The syntax of the nondeterministic-choice statement is as follows.

nondeterministic-choice ::= choose alternative-statements
alternative-statements ::= jml-compound-statement
[or jml-compound-statement | . ..

The meaning is that a correct implementation can dynamically execute (e.g., with an if
or switch statement), one of the alternatives. Code may also make a static choice of one
of the alternatives.

15.5 Nondeterministic If Statement

nondeterministic-if ::= choose_if guarded-statements

[else jml-compound-statement |
guarded-statements ::= guarded-statement

[or guarded-statement | . ..
guarded-statement ::= {

assume-statement

jml-statement | jml-statement] ... }

Chapter 15: Model Programs 125

The meaning of a nondeterministic if statement is that a correct implementation may
dynamically choose any of the guarded-statements for which the guard (the first assume-
statement in the guarded-statement) is true. If none of these are true, then it must execute
the jml-compound-statement given following else, but it may not do that if one of the
guards in the guarded statements is true.

15.6 Specification Statements

The grammar for specification statements appears below. It is unusual, compared to spec-
ification statements in refinement calculus, in that it allows one to specify statements that
can signal exceptions, or terminate abruptly. The reasons for this are based on verification
logics for Java [HuismanO1] [Jacobs-Poll01] [Ruby06], which have these possibilities. The
meaning of an abrupt-spec-case is that the normal termination and signaling an exception
are forbidden; that is, the equivalent spec-statement using behavior would have ensures
false; and signals (Exception) false; clauses. Hence in an abrupt-spec-case, JML
does not allow use of an ensures-clause, signals-only-clause, or signals-clause.

spec-statement ::= [privacy | behavior-keyword
generic-spec-statement-case
| [privacy | exceptional-behavior-keyword
exceptional-spec-case
| [privacy | normal-behavior-keyword
normal-spec-case
| [privacy | abrupt-behavior-keyword
abrupt-spec-case
generic-spec-statement-case ::= [spec-var-decls |
generic-spec-statement-body
| [spec-var-decls |
spec-header
[generic-spec-statement-body |
generic-spec-statement-body ::= simple-spec-statement-body
| {| generic-spec-statement-case-seq |}
generic-spec-statement-case-seq ::= generic-spec-statement-case
[also generic-spec-statement-case | . . .
simple-spec-statement-body ::= simple-spec-statement-clause
[simple-spec-statement-clause | . . .
simple-spec-statement-clause ::= diverges-clause
| assignable-clause | accessible-clause
| captures-clause | callable-clause
| when-clause | working-space-clause | duration-clause
| ensures-clause | signals-only-clause | signals-clause
| measured-clause
| continues-clause | breaks-clause | returns-clause
abrupt-behavior-keyword ::= abrupt_behavior | abrupt_behaviour
abrupt-spec-case ::= generic-spec-statement-case

The meaning of a spec-statement is that the code in a correct implementation must
refine the given specification. One way to ensure this is to use a refining-statement in the

Chapter 15: Model Programs 126

implementation that contains the spec-statement in its specification part (see Section 13.4.3
[Refining Statements|, page 114).

The following subsections describe details of each of the new clauses that may appear in
an abrupt-spec-case or a generic-spec-statement-case.

15.6.1 Continues Clause

continues-clause ::= continues-keyword | target-label |

[pred-or-not | ;
continues-keyword ::= continues | continues_redundantly
target-label ::= -> (ident)

The meaning of the continues-clause is that if the statement that implements the speci-
fication statement executes a continue, then it must continue to the given target-label (if
any), and the given predicate (if any) must hold in the state just before the continue is
executed.

A continues-clause should only be used in a generic-spec-statement-case (with the key-
word behavior) or an abrupt-spec-case (with the keyword abrupt_behavior), as in other
kinds of specification cases the default pred-or-not is false. (See Section 9.6.1 [Semantics of
flat behavior specification cases|, page 68, for the defaults for a lightweight and heavyweight
specification cases.)

15.6.2 Breaks Clause

breaks-clause ::= breaks-keyword | target-label]
[pred-or-not | ;
breaks-keyword ::= breaks | breaks_redundantly

The meaning of the breaks-clause is that if the statement that implements the specifica-
tion statement executes a break, then it must break to the given target-label (if any), and
the given predicate (if any) must hold in the state just before the break is executed.

A breaks-clause should only be used in a generic-spec-statement-case (with the keyword
behavior) or an abrupt-spec-case (with the keyword abrupt_behavior), as in other kinds
of specification cases the default pred-or-not is false. (See Section 9.6.1 [Semantics of flat
behavior specification cases|, page 68, for the defaults for a lightweight and heavyweight
specification cases.)

15.6.3 Returns Clause

returns-clause ::= returns-keyword | pred-or-not | ;
returns-keyword ::= returns | returns_redundantly

The meaning of the returns-clause is that if the statement that implements the speci-
fication statement executes a return, then the given predicate (if any) must hold in the
state following evaluation of the return value, but just before the return is executed. The
predicate (if any) in a returns clause may use \result to name the computed return value.

A returns-clause should only be used in a generic-spec-statement-case (with the keyword
behavior) or an abrupt-spec-case (with the keyword abrupt_behavior), as in other kinds
of specification cases the default pred-or-not is false. (See Section 9.6.1 [Semantics of flat
behavior specification cases|, page 68, for the defaults for a lightweight and heavyweight
specification cases.)

Chapter 16: Specification for Subtypes 127

16 Specification for Subtypes

This chapter describes how JML specifies a type so that one can program subtypes from the
specification, without the need to see the code of the supertypes that have been specified.

The problem of specifying enough about superclasses has been discussed by Kiczales
and Lamping [Kiczales-Lamping92] and by Steyaert, et al. [Steyaert-etal96]. This problem
is difficult because of the many ways that subclasses can depend on coding details of a
superclass. For example, a subclass can depend on the calling pattern among a superclass’s
method and the fields that a superclass can access [Kiczales-Lamping92] [Steyaert-etal96].

JML builds on the work of Ruby and Leavens to solve this problem [Ruby-Leavens00]
[Ruby06], which builds on the earlier works described above. The idea is to write specifi-
cations for subclasses in three parts. The first is the usual, public specification, which is
primarily for clients but also useful to subclasses, who need to know what public interface
they must meet. The second is a protected specification, which specifies fields and methods
that are usable by the subclass. The third is the code contract. The code contract has
a different syntax in JML than it did in [Ruby-Leavens00]. In the current JML a code
contract is a heavyweight behavior specification case (see Section 9.5 [Heavyweight Specifi-
cation Cases|, page 67) or as a model program (see Chapter 15 [Model Programs]|, page 122)
that uses the keyword “code.” The code keyword is used just before one of the behavior
keywords or just before the keyword model_program.

While code contracts can be generated automatically by a tool, as imagined by Ruby
and Leavens [Ruby-Leavens00] [Ruby06], they can also be written by users directly. This is
sometimes useful for documenting the implementation of a method. The code contract is
intended to be created automatically, by a tool (which does not, as of this writing, exist).
It has the following syntax.

In code contracts as described in the work of Ruby and Leavens, the main clauses used
are the accessible-clause and the callable-clause. See Section 9.9.10 [Accessible Clauses],
page 83, for the syntax and semantics of the accessible-clause. See Section 9.9.11 [Callable
Clauses], page 84, for the syntax and semantics of the callable-clause.

16.1 Method of Specifying for Subclasses
[[[This should be a synopsis of Clyde Ruby’s dissertation, with an example.||]

16.2 Code Contracts

This section discusses the semantics of “code contracts,” which are specification cases that
use the “code” keyword. (See Section 9.6 [Behavior Specification Cases|, page 67, for the
detailed syntax of such specification cases.)

This feature was inspired by “does” clause of the Alloy Annotation Language [Khurshid-
Marinov-Jackson02].
The modifier code may not be used on an abstract method. It follows that the code

modifier cannot be used to document normal Java methods in interfaces. (In an interface,
code could only be used in the specification of a model method that has a body.)

Tools for JML should warn the user if code is used in a specification case for a construc-
tor, or for a final, static, or private method. It does no harm there, but is not needed.

Chapter 16: Specification for Subtypes 128

The meaning of the code modifier is just that specification cases or model programs
containing them are not inherited. That is, whenever the method is overridden, it does not
inherit code contracts from its supertypes.

In verification of a method call, you can use all non-code specification cases, that are
visible at a call site, for the statically-determined method being called. Such specifications
are inherited by each subtype’s method overrides to preserve behavioral subtyping [Dhara-
Leavens96] [Leavens-Naumann06] [Leavens06b].

In verification of a method call, you can use a code specification case for a method m
given in a class C' only if you can prove that the method being called is method m in class
C. This applies in particular to super calls, which is the main use for such code contracts.
(It would also apply to calls to final methods, calls to methods in final classes, and calls to
private or static methods.)

Chapter 17: Separate Files for Specifications 129

17 Separate Files for Specifications

This chapter explains how to use separate files to hold JML specifications.
The following gives more details about this feature of JML.

17.1 File Name Suffixes

The JML tools recognize three filename suffixes: ‘.java’, ‘.class’, and ‘.jml’. See Sec-
tion 17.2 [Using Separate Files|, page 129, for guidelines on how to use these suffixes.

17.2 Using Separate Files

¢

Typically, JML specifications are written into annotation comments in ‘. java’ files, and

this is certainly the simplest way to use JML and its tools.

However, there are some circumstances in which one may wish to separate the specifica-
tion from the Java code. An important example of this is when you do not own the sources
for the Java code, but wish to specify it. This might happen if you are specifying a class
library or framework that you are using. When you do not have control of the code, it is
best to put the specification in a different file.

To add specifications to such a library or framework, one would use a filename with a
‘. jml’ suffix. The file with such a name would hold the specifications of the correspond-
ing Java compilation unit. For example, if one wants to specify the type LibraryType,
without touching the file ‘LibraryType.java’ then one could write specifications in the
file ‘LibraryType.jml’. This technique also works if you are specifying code for which no
sources are available (a class library in binary form).

Note that the ‘. jml’ file should contain all the (non-inherited) specifications for the types
in the compilation unit; there should be no specifications at all in the ‘. java’ file. Thus, in
our example, there should be no JML specifications at all in the ‘LibraryType.java’ file,
and all the specifications should be found in the ‘LibraryType. jml’ file.

Files with a ‘. jml’ suffix do not have to have implementations, as they only hold speci-
fications. In particular, in such a file one can and must specify non-model methods without
giving a method body.

Another reason for writing specifications in different files is to prevent the specifications
from “cluttering up” the code (i.e., making it hard to see all of the code at once). This is
also possible by using separate files for the specification and the code. The same technique
of using a file with the same base name but with a ‘. jm1’ suffix works in such cases, as the
specifications in the ‘. jml’ file are added to the code in the ‘. java’ file.

17.3 Type Checking Separate Files

There are some restrictions on what can appear in a separate specification file (i.e., in the
‘.jml’ file). Since the Java compilers only see the ‘. java’ files, executable code (that is
not just for use in specifications) can only be placed in the ‘. java’ files. In particular the
following restrictions are enforced by JML.

e When the same method is declared in more than one file, most parts of the method
declaration must be identical in all the files. (Two method declarations are considered

Chapter 17: Separate Files for Specifications 130

to be declaring the same method if they have the same signature, i.e., same name, same
generic type parameters, and static formal parameter types.) However, in addition to
the signature of such a method, the return type, the names of the formal parameters,
the declared exceptions the method may throw, and the non-JML modifiers public,
protected, private, static, and final, must all match exactly in each such pair of
matching declarations.

The model modifier must appear in all declarations of a given method or it must
appear in none of them. It is not permitted to implement a model method with a
non-model method or to specify a non-model method as a model method. Use a pure
spec_public or spec_protected method if you want to use a non-model method in a
(public or protected) specification. Also, there may be no nesting of model declarations:
model classes and model methods may not contain model declarations.

Some of the JML method modifiers do not always have to match in all declarations
of the same method found in separate files. One may add pure, non_null, nullable,
spec_public, or spec_protected to any of the declarations for a method in any file.
Also, it is, of course, not permitted to add spec_protected to a method that has been
declared public or spec_public in the other declaration. One can add non_null or
nullable to any formal parameter in a separate (‘.jml’) file.

The specification of a method declaration in a separate file is the only specification of
that method. Therefore, unless that method is overriding a method in a supertype, it
should not start with the JML keyword also. In such a case, the also is a clue to
the reader that the specification is adding to a possibly inherited specification, either
from the superclass or from an implemented interface. Therefore, it is an error if the
specification of a non-overriding method begins with also, regardless of whether it is
in a separate file. (See Appendix B [Incompatible Changes|, page 143, for how this is
different than earlier versions of JML.)

If a non-model method has a body, then the body can only appear in a ‘. java’ file; an
error message is issued if the body of a non-model method appears in a file with any
other suffix. Furthermore, the body of a model method may only appear in one file;
thus, if there is a ‘. jml’ file, then the body of the model method must appear (if it
appears at all) in the ‘. jm1’ file. Thus each method of each class can have at most one
method body.

When the same field is declared in more than one file, then the signature of each such
declaration must be identical in all the files. (Two field declarations in a given type are
considered to be declaring the same field if they have the same name.) The signature of
such a field, including its type, the non-JML modifiers public, protected, private,
static, and final, must all match exactly in each such pair of matching declarations.

All declarations of a given field must either use the modifier model or not. It is not
permitted to implement a model field with a non-model field or vice versa. Use a
spec_public or spec_protected field if you want to use the same name. The same
restriction also holds for ghost fields.

One may add non_null, nullable, spec_public, or spec_protected to any of the
declarations for a field in a separate file. However, it is of course not permitted to add
spec_protected to a field that has been declared public in another declaration.

Initializers are not allowed for field declarations in separate specification files. A non-

Chapter 17: Separate Files for Specifications 131

model and non-ghost field can have an initializer expression, but this initializer can
only appear in a ‘. java’ file because this is where a compiler expects to find it.

Fields declared using the ghost modifier can have an initializer expression in a separate
specification file, but they may have at most one initializer expression. Thus, if there
is a separate specification file, the initializer for a ghost field must appear there.

Model fields cannot have an initializer expression because there is no storage associated
with such fields. If you want to specify initial values for a model field in a separate file,
then use the initially clause in that file.

e An initializer block or a static initializer block (with code) may only appear in a ‘. java’
file. One can write annotations to specify the effects of such initializers in JML annota-
tions in other files, using the keywords initializer and static_initializer. Such
specifications may only appear in one file, and thus if there is a separate specification
(“.jml’) file, it must appear in that file.

17.4 Default Constructors and Separate Files

In Java, a default constructor is automatically generated for a class when no constructors
are declared in a class. However, in JML, a default constructor is not generated for a class
unless the file suffix is ‘. java’ (where the same constructor is generated as in the Java
language). Consider, for example, the refinement sequence defined by the following two
files: RefineDemo. jml and RefineDemo. java.

// ---- file RefineDemo.jml -----------
package org.jmlspecs.samples. jmlrefman;

public class RefineDemo {
//@ public model int x;

protected int x_;
//@ in x;

//@ protected represents x = x_;

}

// ---- file RefineDemo.java —---------
package org.jmlspecs.samples. jmlrefman;

public class RefineDemo {
protected int x_;
public RefineDemo() { x_ = 0; }
3

In the protected specification declared in ‘RefineDemo. jml’, no constructor is specified.
The reason that JML does not generate a default constructor for such separate specifica-
tion files is that it might conflict with the constructor explicitly declared in the . java’ file.
To see why, consider what would happen if JML were to generate a default constructor
for RefineDemo for the ‘RefineDemo.jml’ file. If JML did that, then this default con-
structor would possibly have a different visibility from any constructor written explicitly

Chapter 17: Separate Files for Specifications 132

in the ‘RefineDemo. java’ file. To avoid such conflicts, JML does not generate a default
constructor unless the file suffix is . java’.

(The visibility modifier of an automatically-generated default constructor depends on
other factors including the visibility of the class. See Section 9.4 [Lightweight Specification
Cases], page 65, for more details.)

Chapter 18: Universe Type System 133

18 Universe Type System

This section describes how the Universe type system [Dietl-Drossopoulou-Mueller07] [Dietl-
Mueller05] [Dietl-Mueller-Schregenberger-08] [Mueller-Poetzsch-HeffterOla] is realized in
JML and the impact it has on JML specifications. The Universe type system is a lightweight
ownership type system that hierarchically structures the object store and confines the pos-
sible effects of expressions.

The syntax for the Universe type system consists of three ownership modifiers.

ownership-modifiers ::= ownership-modifier | ownership-modifier]
ownership-modifier ::= \rep | \peer | \readonly

| reserved-ownership-modifier // with —universesz parse or —universesz full
reserved-ownership-modifier ::= rep | peer | readonly

Depending on the options selected, one can use either form of the modifiers, with or
without the backslash, in annotations. The forms without the backslashes are the only ones
that can be used in Java code, and when they are enabled, they are treated as new reserved
words in both JML annotations and in Java code.

Currently the Universe type checking and the reserved-ownership-modifier syntax are
not enabled by default in JML, but is only available when various options are used in the
tools. It can also be used with different levels of checking. If the ——universesx no option
is used, only the ownership-modifiers \rep, \peer, and \readonly are available.

To enable just parsing of the full syntax, one can use the —~—universesx parse option; in
this case, all of the syntax is parsed, and rep, peer, and readonly are treated as reserved
words. However, with this option, none of the checking described below is done.

To enable checking, but without reserving the keywords rep, peer, and readonly, one
uses the ——universesx check option. With this option, only the ownership-modifiers \rep,
\peer, and \readonly are available. This allows the use of ownership modifiers in specifi-
cations, but not in Java code.

Various other options control the generation of runtime checks and the storage of owner-
ship modifiers in the created class files. See [Dietl-Mueller-Schregenberger08] for a complete
list of the different supported compiler options.

One can also enable checking, all of the syntax, and default options by using the --
universesx full option. An equivalent option is ——universes (synonym -e). This parses
and type checks all the ownership-modifiers, not only in specifications, but also in Java
code.

For a simple reference type, one can use only one ownership-modifier where ownership-
modifiers appears in the grammar. The only case where two ownership-modifiers can be
used is for array types as described below.

Note that in [Dietl-Drossopoulou-Mueller07] the Universe type system is extended to
type genericity as found in Java 5. The JML tools support Generic Universe Types and also
recognize the any modifier as synonym for readonly. As the rest of this report is about non-
generic Java, we refer to [Dietl-Drossopoulou-Mueller07] [Dietl-Mueller-Schregenberger08|
for details.

In the sections below we just use the forms without the backslashes when discussing the
semantics of each form.

Chapter 18: Universe Type System 134

18.1 Basic Concepts of Universes

The Universe type system organizes objects into ownership contexts [Dietl-Mueller05]
[Mueller-Poetzsch-Heffter0la]. Each object has 0 or 1 owner objects. The owner of an
object (or the absence of an owner) is determined by the new expression that creates the
object. Once determined, the owner of an object cannot be changed.

An ownership context is a set of objects with the same owner. There is also a root
ownership context, which is the set of all objects that have no owner. Each object thus
belongs to exactly one ownership context. The contexts form a hierarchy, with the root
ownership context at the top. The owner of an ownership context is not considered to be
part of the context it owns, but rather part of that context’s parent context.

The Universe type system enforces the “owner-as-modifier” property (see section 1 of
[Dietl-Mueller05]). This property says “an object X can be referenced by any other object,
but reference chains that do not pass through X’s owner must not be used to modify X”
(section 1 of [Dietl-Mueller05]). Thus, if one looks at all the references from outside an
ownership context into objects within the context, all of these references must be readonly
references, with the exception of any references from the context’s owner.

This owner-as-modifier property prevents the problem of representation exposure, in
which a reference to X can be used to modify it, without calling one of the methods of X’s
owner [Noble-Vitek-Potter98]. From the perspective of X’s owner, X is part of the owner’s
representation (and thus a field holding X would be declared with the rep keyword), and
passing out a mutable reference to X exposes that representation to the rest of the program.
It is difficult to maintain invariants, for example, when the representation of an object can be
directly modified from outside an object [Mueller02] [Mueller-Poetzsch-Heffter-Leavens06].

18.2 Rep and Peer

The rep and peer annotations are type modifiers (see Section 7.1.2.2 [Type-Specs], page 50)
that specify ownership relative to a receiver object. The receiver object is defined as follows:

e For a field access of the form F.f, the receiver object is the result of the expression FE.

e For a call to an instance method of the form E.m(. ..), the receiver object is the result
of the expression E.

e For all other expressions occurring in the declaration of an instance method or con-
structor (including the specification), or in an instance invariant or instance history
constraint, the receiver object is this.

e For all other expressions in the declaration of a static method, there is no receiver
object. In this case, the ownership modifier specifies ownership relative to the current
ownership context, as explained below.

A rep modifier says that the referenced object is owned by the receiver object. Thus if
myList has a field head of type rep Node, then myList.head is owned by myList, because
myList is the receiver. If n is a local variable of type rep Node in an instance method,
then n is owned by this. (Formal parameters are treated in exactly the same way as local
variables.)

Since the meaning of the rep modifier depends on the existence of a receiver object, it
cannot be used in static declarations where there is no receiver object. Hence, a rep modifier
cannot be used in a static field declaration. It also cannot be used in the declaration of a

Chapter 18: Universe Type System 135

static method or in its specification. Furthermore, it cannot be used in static invariants or
static history constraints.

A peer modifier says that the referenced object has the same owner as the receiver
object. Thus if myNode has a field next of type peer Node, then myNode.next is owned by
the owner of myNode, because myNode is the receiver. If n is a local variable of type peer
Node in an instance method, then n is owned by the owner of this.

The peer modifier can be used in all declarations, even in static declarations. Currently,
a peer modifier in a static field declaration leads to type unsafety and should therefore not be
used. (The tools give a warning in this situation, and a safe semantics is a subject of current
research.) The same remark applies to static invariants and static history constraints.

When used in a static method or its specification, peer refers to the current ownership
context. The current ownership context for a method execution is defined as follows. For
executions of instance methods the current ownership context is the one containing the
this object. For executions of static methods, the current ownership context is determined
by the current ownership context of the caller and the ownership modifier (rep or peer)
used in the call as follows:

e If the call has the form peer T.m(...), then m executes in the same ownership
context as the code making the call (and hence in the current ownership context of the
caller).

e If the call has the form rep T.m¢(...), then m executes in the ownership context
owned by the caller’s this object; hence this form of static method call cannot be used
in static declarations.

For example, if p is a local variable of type peer Node in a static method, then p is in
the current ownership context, because there is no receiver object.

See Section 18.4 [Ownership Modifiers for Array Types|, page 136, for the usage of these
modifiers with array types.

18.3 Readonly

The readonly (or \readonly) modifier does not specify an ownership context. Therefore,
following the owner-as-modifier property, references specified with the readonly modifier
cannot be used to modify the referenced object. (Note that this does not guarantee that
the object referenced cannot change, only that it cannot be changed using this reference.)

A readonly type thus cannot be used as the type of the receiver expression of: a field
update, a call to a non-pure instance method (See Section 7.1.1.3 [Pure Methods and
Constructors|, page 46, for more about pure methods.), or a call to a static method. In
more detail, the cases are:

e A field update in general might change the value of the field and always needs to be
forbidden on a readonly receiver.

e A (strictly) pure instance method call is guaranteed to preserve the owner-as-modifier
property and is therefore allowed on a readonly receiver.

e A non-pure instance method call might change the receiver or objects reachable from
it and needs to be forbidden.

e A static method can create new peer objects and therefore a specific current ownership
context needs to be provided when a static method is called. Only peer and rep

Chapter 18: Universe Type System 136

determine a current ownership context and therefore readonly is forbidden as the
receiver type of a static method call.

18.4 Ownership Modifiers for Array Types

An array of reference types always has two ownership modifiers, the first for the array
object itself and the second for the elements. Both modifiers express ownership relative to
the receiver object and both modifiers can be any of the ownership-modifiers. For example,
the type rep readonly Object[] says that the array object itself is owned by the receiver
object, but the elements are readonly (and hence may belong to an arbitrary ownership
context). A peer rep Object[] type says that the array object has the same owner as the
receiver object and that the array elements are owned by the receiver object.

All array objects in a multidimensional array of a reference type are in the same context,
which is determined by the first ownership modifier. For example, if an instance field, £, has
type rep peer Object[][], then £ and £ [3] are both owned by the receiver and f [3] [1]
has the same owner as the receiver object.

For one-dimensional arrays of primitive types, the second ownership modifier is omitted.
Primitive types are not owned and do not take an ownership modifier. A one-dimensional
array of primitive types is one object that needs to specify ownership information. For
example, the type readonly int[] says that the array object can belong to any context,
but cannot be modified through this reference. A rep int[] references an array object that
is owned by the receiver object and that manages int values.

Multi-dimensional arrays of primitive types have two ownership modifiers, the first for
the array object itself and the second for the one-dimensional array at the “lowest” level.
All array objects in a multidimensional array are in the same context, which is determined
by the first ownership modifier.

For example, if an instance field, g, has type rep peer int[] [][], then:

e g references a rep peer int[] [][] array object that is owned by the receiver and the
array manages rep peer int[] [] references.

o g[3] references a rep peer int[] [] array object that is owned by the receiver and the
array manages peer int[] references.

e g[3][1] references a peer int[] array object that has the same owner as the receiver
and the array manages int values.

e g[3]1[1]1[0] is an int value.

Note how the first modifier changes when going from a two- or more-dimensional array
of a primitive type to a one-dimensional array of a primitive type.

Also note that java.lang.0bject is a supertype of arrays, in particular also of arrays
of primitive type. A peer int[] can be assigned to a peer Object reference. Then a rep
peer Object [][] type behaves consistently with the rep peer int[]1[][] type.

Following the convention in Java, array types support covariant subtyping that needs
runtime checks on write accesses. For example, a peer rep Object[] is a subtype of a peer
readonly Object [] and when an element is inserted it needs to be checked that it is owned
by the receiver object.

Chapter 18: Universe Type System 137

18.5 Default Ownership Modifiers

If the ownership-modifiers are omitted in a type-spec, then a default is used. This default
is normally peer, but there are a few exceptions, described below.

e The ownership modifier of immutable types defaults to readonly. Currently, the set
of immutable types only includes the Java wrapper types for primitive types (e.g.
java.lang.Integer and java.lang.Long), java.lang.String, java.lang.Class,
and java.math.BigInteger.

e The ownership modifiers of local variable declarations are propagated from the initial-
izer expression. If no initializer is present, the other defaults are applied.

e The ownership modifiers of field declarations are propagated from the initializer ex-
pression. If no initializer is present, the other defaults are applied. If a field type was
already used to determine the ownership modifier of some other field, i.e. it was used
in the initializer expression of some other field, then the type cannot be changed any
more and the other defaults are used.

e The default modifier for explicit formal parameters to a pure method (but not for
the receiver, this) is readonly. (Note that this is not the case for pure constructors,
however.)

e The default ownership modifier for a type in the throws clause of a method header, and
in the declaration of a catch clause of a try statement is readonly [Dietl-Mueller04].

e If, for a type that is an array of references, one of the two ownership modifiers is
omitted, then the element type is used to determine the meaning of the ownership
modifier. If the element type is a mutable type, then the specified modifier is taken to
be the element modifier, and the array’s modifier defaults to peer. If the element type
is an immutable type, then the specified modifier is taken to be the array modifier, and
the element modifier defaults to readonly.

For example, the type readonly Object [] is the same as peer readonly Object[]. A
type rep Integer[] is the same as rep readonly Integer[]. Note that if one wants
to specify a rep or readonly array of mutable references, one is thus forced to use two
ownership modifiers; for example, rep readonly Object[].

One-dimensional arrays of primitive types default to peer. For multi-dimensional ar-
rays of primitive types there is no distinction between immutable and mutable types
and a single ownership modifier is always taken to be the element modifier.

e In a cast expression of the form (1) E, where T is a reference type that is not an array
type, the default ownership modifier of 7' is the ownership modifier of the type of E; in
this case, if the type of E is an array type, this is the ownership modifier of the array
object itself, not the ownership modifier of the elements.

In a cast expression of the form (7') £, where T is an array type, the default ownership
modifiers of T" are the same as the ownership modifiers of the type of E.

In a cast expression of the form (7T')F, where T is a primitive value type, there is no
ownership modifier attached to T.

e In an instanceof expression of the form F instanceof T, where T is a reference type
that is not an array type, the default ownership modifier of T is the ownership modifier
of the type of E; in this case, if the type of F is an array type, this is the ownership
modifier of the array object itself, not the ownership modifier of the elements.

Chapter 18: Universe Type System 138

In an instanceof expression of the form E instanceof 7, where T is an array type,
the default ownership modifiers of 7" are the same as the ownership modifiers of the
type of F.

The defaults for casts and instanceof expressions allow one to only test for Java types, if
the ownership modifiers are omitted [Dietl-Mueller05]. See Section 18.7 [Casts and Owner-
ship Types], page 139, for more details on these expressions and their interaction with the
Universe type system.

18.6 Ownership Type Rules

This section explains details of how the Universe type system does type checking.

18.6.1 Ownership Subtyping

Type checking in the Universe type system uses a notion of subtyping that extends Java’s
rules to take ownership-modifiers into account (see section 3 of [Dietl-Mueller05]).

If two types have the same ownership modifiers, then they are subtypes if the underlying
Java types are subtypes. For example, rep Stack is a subtype of rep Object, because
Stack is a subtype of Object.

If S is a reference type, then both peer S and rep S are subtypes of the type readonly
S. Moreover, both peer om S[] and rep om S[] are subtypes of the type readonly om
S[1, where om is any ownership modifier. For instance, peer peer Naturall[] is a subtype
of readonly peer Naturall].

The types peer S and rep S as well as the array types peer om S[] and rep om SI[]
are incomparable—neither is a subtype of the other.

Like Java, the Universe type system has covariant array subtyping: “two array types
with the same ownership modifier are subtypes if their element types are subtypes. ... For
instance, rep peer Object[] is a subtype of rep readonly Object[] because the element
type peer Object is a subtype of the element type readonly Object” (Section 3 of [Dietl-
Mueller05]).

18.6.2 Ownership Typing for Expressions

Most of the typing rules for the Universe type system are unchanged from standard Java
(and JML) rules. For example, to type check an assignment expression, one checks that the
type of the right hand side expression is a subtype of the type of the left hand side.

A small, but important change, is that the type given in a new expression must be a rep
or peer type. The result type of the new expression has the given ownership modifier.

The main difference is that the type of field accesses, method parameters, and method
results is determined by combining the type of the receiver, R, and the type of the field,
the return type of the method, or the type of the formal parameter, F. The Java type is
taken from the type F, and the modifier is determined by the following cases (see Section 3
of [Dietl-Mueller05]):

1. If both R and F are peer types, then the combination is also a peer type. For example,
if myList has type peer List and the field head has type peer Node, then myList.head
has type peer Node.

Chapter 18: Universe Type System 139

2. If the receiver is this and F' is a rep type, then the combination is a rep type. For
example, if a Set class has an instance field elems of type rep List, then in its instance
methods, this.elems has type rep List.

3. If Ris a rep type and F is a peer type, then the combination is a rep type. For
example, (this.elems).head has type rep Node, because the receiver this.elems
has type rep List, and the type of field head is peer Node.

4. Otherwise, the combination is a readonly type. For example, if e has type readonly
List, then e.head has type readonly Node.

One can also illustrate these rules using method calls. For example, consider a method
lastNode with the following signature.

public peer Node lastNode()

In this example, if elems has type rep List, then a call such as elems.lastNode() has
type rep Node (by case 3).

As another example, consider a method addNode with the following signature.
public void addNode(peer Node n)

Still assuming that elems has type rep List, a call such as elems.addNode (p), requires
that p has type rep Node (also by case 3), because the argument, p, has to have the same
owner as the receiver of call, elems, namely this.

The rules are analogous for arrays. For example, suppose that an instance field a has type
rep readonly Object[]. Then the expression this.a has the same type, rep readonly
Object[] (by case 2). Similarly, if r has a readonly type, then r.a would have type
readonly readonly Object[] (by case 4).

Finally, consider a static method that returns a peer object, such as the following, in a
class Cache.

public static peer int[] getInstance()
A call such as peer Cache.getInstance() has type peer int[] (by case 1).

18.7 Casts and Ownership Types

Since readonly types are supertypes of the corresponding rep and peer types, it is possible
to do a downcast. Such a downcast will succeed when the object is in the context specified
by the peer or rep type. For example, suppose ro has type readonly List. Then the cast
(rep List) ro will succeed only if the object referenced by ro is owned by this. The cast
(peer List) ro will succeed only if the object referenced by ro is owned by the owner of
this.

Instanceof expressions of the form F instanceof T yield true when the value of E is
not null and the corresponding cast would succeed. For example, suppose ro has type
readonly List. Then ro instanceof rep List yields true only if ro references an object
that is owned by this.

Both casts and instanceof expressions have runtime overhead, in general. (Furthermore,
as in Java, array updates also generate runtime checks.)

See [Dietl-Drossopoulou-Mueller07] [Dietl-Mueller-Schregenberger(08] for a complete list
of the Universe type system rules and the different supported compiler options.

Chapter 19: Safe Math Extensions 140

19 Safe Math Extensions

The types \bigint and \real are designed to support arbitrary precision arithmetic for
integers and floating point numbers. Both types act as primitive value types in JML, with
the usual infix arithmetic and logical operations [Chalin04].

However, note that for purposes of Java reflection these types are not actually imple-
mented as primitives. So, since JML equates \TYPE and java.lang.Class, the expression
\type (\TYPE) .isPrimitive () will return false.

19.1 \bigint

The type \bigint models arbitrary precision integers [Chalin04]. This type is considered
by JML to act like a primitive value type, and supports all of the infix arithmetic and logical
operators, like int or long. However, note that arithmetic does not wrap around, this for
all values i of type \bigint, i < i+1.

Note also that == means value equality for \bigint values, not object identity (even
though these values are necessarily represented by objects in a runtime assertion checker).
Hence, for example, i+1 == i+2-1 will be true. Similarly '= means value inequality, and
does not compare object identities.

[[[Needs more discussion and examples.]]]

19.2 \real

The type \real models arbitrary precision floating point numbers [Chalin04]. This type is
considered by JML to act like a primitive value type, and supports all of the infix arithmetic
and logical operators, like float or double. However, note that arithmetic does not have
precision limitations.

Note also that == means value equality for \real values, not object identity (even though
these values are necessarily represented by objects in a runtime assertion checker). Hence,
for example, i+1 == i+2-1 will be true. Similarly != means value inequality, and does not
compare object identities.

[[[Needs more discussion and examples. Is there also a NaN for this type? Are we
supposing that it can represent all reals?]]]

Appendix A: Deprecated and Replaced Syntax 141

Appendix A Deprecated and Replaced Syntax

The subsections below briefly describe the deprecated and replaced features of JML. A
feature is deprecated if it is supported in the current release, but slated to be removed from
a subsequent release. Such features should not be used.

A feature that was formerly deprecated is replaced if it has been removed from JML in
favor of some other feature or features. While we do not describe all replaced syntax in
this appendix, we do mention a few of the more interesting or important features that were
replaced, especially those discussed in earlier papers on JML.

A.1 Deprecated Syntax

The following syntax is deprecated. Note that it might be supported with a deprecation
warning by some tools (e.g., JML2) but not by newer tools.

A.1.1 Deprecated Annotation Markers
The following lexical syntax for annotation markers is deprecated.

annotation-marker ::=

//+elel ...
| /x+@[@Q] ...
| //-e[@] ...
| /x-@[@] ...

A.1.2 Deprecated Represents Clause Syntax
The following syntax for a functional represents-clause is deprecated.
represents-clause ::= represents-keyword store-ref-expression <- spec-expression ;

Instead of using the <-, one should use = in such a represents-clause. See Section 8.4
[Represents Clauses], page 60, for the supported syntax.

A.1.3 Deprecated Monitors For Clause Syntax
The following syntax for the monitors-for-clause is deprecated.

monitors-for-clause ::= monitors_for ident
<- spec-expression-list ;

Instead of using the <-, one should use = in such a monitors-for-clause. See Section 8.9
[Monitors For Clause|, page 62, for the supported syntax.

A.1.4 Deprecated File Name Suffixes

The set of file name suffixes supported by JML tools is being simplified. In the fu-
ture, especially in new tools the suffixes The suffixes ‘.refines-java’, ‘.refines-spec’,
‘.refines-jml’, ‘.spec’, ‘. java-refined’, ‘.spec-refined’, and ‘. jml-refined’ are no
longer supported. Instead, one should write specifications into files with the suffixes ‘. java’
and ‘.jml’. See Section 17.1 [File Name Suffixes|, page 129, for details on the use of file
names with JML tools.

Appendix A: Deprecated and Replaced Syntax 142

A.1.5 Deprecated Refine Prefix

The following syntax involving the refine-prefix is deprecated.
compilation-unit ::= | package-declaration |
refine-prefix
[import-declaration | . . .
[top-level-declaration | . . .

refine-prefix ::= refine-keyword string-literal ;
refine-keyword ::= refine | refines

Instead of using the refine-prefix in a compilation unit, modern JML tools just use a
.jml file that contains any specifications not in the .java file. See Chapter 17 [Separate
Files for Specifications|, page 129, for details.

A.2 Replaced Syntax

The +-style of JML annotations, that is, JML annotations beginning with //+@ or /*+@,
is being replaced by the annotation-key feature described in See Section 4.4 [Annotation
Markers], page 27.

As a note for readers of older papers, the keyword subclassing_contract was replaced
with code_contract, which is now removed. Instead, one should use a heavyweight speci-
fication case with the keyword code just before the behavior keyword, and a precondition
of \same.

Similarly, the depends clause has been replaced by the mechanism of data groups and
the in and maps clauses of variable declarations.

Appendix B: Incompatible Changes 143

Appendix B Incompatible Changes

In older versions of JML and older tools, method specifications that were placed in separate
files (see Chapter 17 [Separate Files for Specifications|, page 129) had to start with the
JML keyword also. However, with the present verison of JML, method specifications in
separate files only start with also if the method being specified is an overriding method,
as is normal in the rest of JML.

Appendix C: Grammar Summary 144

Appendix C Grammar Summary

The following is a summary of the context-free grammar for JML. See Chapter 3 [Syntax
Notation|, page 25, for the notation used. In the first section below, grammatical produc-
tions are to be understood lexically. That is, no white space (see Section 4.1 [White Space],
page 26) may intervene between the characters of a token.

C.1 Lexical Conventions

microsyntax ::= lexeme | lexeme | . ..
lexeme ::= white-space | lexical-pragma | comment
| annotation-marker | doc-comment | token
token ::= ident | keyword | special-symbol
| java-literal | informal-description
white-space ::= non-nl-white-space | end-of-line
non-nl-white-space ::= a blank, tab, or formfeed character
end-of-line ::= newline | carriage-return
| carriage-return newline
newline ::= a newline character
carriage-return ::= a carriage return character
lexical-pragma ::= nowarn-pragma
nowarn-pragma ::= nowarn | spaces | [nowarn-label-list | ;
spaces ::= non-nl-white-space | non-nl-white-space | . ..
nowarn-label-list ::= nowarn-label [spaces |
[, [spaces | nowarn-label [spaces | | ...
nowarn-label ::= letter | letter | ...
comment ::= C-style-comment | C++-style-comment
C-style-comment ::= /* [C-style-body | C-style-end
C-style-body ::= non-at-plus-minus-star | non-stars-slash | . ..
| + non-letter [non-stars-slash | . . .
| - non-letter [non-stars-slash | . ..
| stars-non-slash | non-stars-slash | . ..
non-letter ::= any character except _, a through z, or A through Z
non-stars-slash ::= non-star
| stars-non-slash
stars-non-slash ::= * [* | ... non-star-slash
non-at-plus-minus-star ::= any character except @, +, —, or *
non-star ::= any character except *
non-slash ::= any character except /
non-star-slash ::= any character except * or /
C-style-end == [* | ... */
C++-style-comment ::= // | +] end-of-line
| // non-at-plus-minus-end-of-line [non-end-of-line | . .. end-of-line
| //+ non-letter-end-of-line | non-end-of-line | . .. end-of-line
| //- non-letter-end-of-line | non-end-of-line | ... end-of-line

Appendix C: Grammar Summary 145

non-letter-end-of-line ::= any character except _, a through z, A through Z, a new-
line, or a carriage return
non-end-of-line ::= any character except a newline or carriage return
non-at-plus-minus-end-of-line ::= any character except @, +,—, newline, or carriage return
non-at-end-of-line ::= any character except @, newline, or carriage return
annotation-marker ::=

| /* [annotation-key |... @ [ignored-at-in-annotation | . . .

| [ignored-at-in-annotation | ... @+*/

| [ignored-at-in-annotation | ... */
annotation-key ::= positive-key | negative-key
positive-key ::= + ident
negative-key ::= - ident
ignored-at-in-annotation ::= @
doc-comment ::= /** [* | ... doc-comment-body [*] ... */
doc-comment-ignored ::= doc-comment
doc-comment-body ::= [description | . ..

[tagged-paragraph | . ..
[jml-specs | [description]
description ::= doc-non-empty-textline
tagged-paragraph ::= paragraph-tag [doc-non-nl-ws | . ..
[doc-atsign | ... [description | . ..
jml-specs ::= jml-tag [method-specification | end-jml-tag
[jml-tag [method-specification | end-jml-tag | ...

paragraph-tag ::= @author | @deprecated | @exception

| @param | @return | @see

| @serial | @serialdata | @serialfield

| @since | @throws | @version

| @ letter [letter | . ..
doc-atsign ::= @

-

doc-nl-ws ::= end-of-line

[doc-non-nl-ws | ... [*[*] ... [doc-non-nl-ws | ...]
doc-non-nl-ws ::= non-nl-white-space
doc-non-empty-textline ::= non-at-end-of-line | non-end-of-line | . ..

jml-tag ::= <jml> | <JML> | <esc> | <ESC>
end-jml-tag ::= </jml> | </JML> | </esc> | </ESC>
ident ::= letter [letter-or-digit | . ..

letter ::== _, $, a through z, or A through Z
digit:=0111213141516171819
letter-or-digit ::= letter | digit

keyword ::= java-reserved-word
| jml-predicate-keyword | jml-keyword
java-reserved-word ::= abstract | assert

| boolean | break | byte

| case | catch | char

| class | const | continue
| default | do | double

| else | extends | false

Appendix C: Grammar Summary 146

| final | finally | float
| for | goto | if
| implements | import | instanceof
| int | interface | long
| native | new | null
| package | private | protected
| public | return | short
| static | strictfp | super
| switch | synchronized | this
| throw | throws | transient
| true | try | void
| volatile | while
| java-universe-reserved // When the Universe option is on
java-universe-reserved ::= peer | pure
| readonly | rep
jml-predicate-keyword ::= \TYPE
| \bigint | \bigint_math | \duration
| \elemtype | \everything | \exists
| \forall | \fresh
| \into | \invariant_for | \is_initialized
| \java_math | \1blneg | \1blpos
| \lockset | \max | \min
| \nonnullelements | \not_assigned
| \not_modified | \not_specified
| \nothing | \nowarn | \nowarn_op
| \num_of | \old | \only_accessed
| \only_assigned | \only_called
| \only_captured | \pre
| \product | \reach | \real
| \result | \same | \safe_math
| \space | \such_that | \sum
| \typeof | \type | \warn_op
| \warn | \working_space
| jml-universe-pkeyword
Jjml-universe-pkeyword ::= \peer | \readonly | \rep
jml-keyword ::= abrupt_behavior | abrupt_behaviour
| accessible | accessible_redundantly
also | assert_redundantly
assignable | assignable_redundantly
assume | assume_redundantly | axiom
behavior | behaviour
breaks | breaks_redundantly
callable | callable_redundantly
captures | captures_redundantly
choose | choose_if
code | code_bigint_math
code_java_math | code_safe_math

Appendix C: Grammar Summary

constraint | constraint_redundantly
constructor | continues | continues_redundantly
decreases | decreases_redundantly
decreasing | decreasing_redundantly
diverges | diverges_redundantly

duration | duration_redundantly

ensures | ensures_redundantly | example
exceptional_behavior | exceptional_behaviour
exceptional_example

exsures | exsures_redundantly | extract
field | forall

for_example | ghost

helper | hence_by | hence_by_redundantly
implies_that | in | in_redundantly
initializer | initially | instance

invariant | invariant_redundantly
loop_invariant | loop_invariant_redundantly
maintaining | maintaining_ redundantly

maps | maps_redundantly

measured_by | measured_by_redundantly
method | model | model_program

modifiable | modifiable_redundantly
modifies | modifies_redundantly

monitored | monitors_for | non_null
normal_behavior | normal_behaviour
normal_example | nowarn

nullable | nullable_by_default

old | or

post | post_redundantly

pre | pre_redundantly

pure | readable

refining

represents | represents_redundantly

requires | requires_redundantly

returns | returns_redundantly

set | signals | signals_only
signals_only_redundantly | signals_redundantly
spec_bigint_math | spec_java_math
spec_protected | spec_public | spec_safe_math
static_initializer | uninitialized | unreachable
when | when_redundantly

working_space | working_space_redundantly
writable

| jml-universe-keyword
jml-universe-keyword ::= peer | readonly | rep
special-symbol ::= java-special-symbol | jml-special-symbol
Jjava-special-symbol ::= java-separator | java-operator

147

Appendix C: Grammar Summary 148

Jjava-separator = C |) | {1 X1 C 11151 ,1.1@
java-operator n==| <[> | V|~ | 7| :
l==l<=]>]1=]&& | ‘|I"]++] -
L+l =%l /1&l 17 1%h<<]I>>]>>>
[+= 1 -=|*=|/=1l&=|‘|I=" | "= | =
| <<= | >>= | >>>=
jml-special-symbol ::= ==> | <== | <==> | <=1=>
[=> <=1 <l .o 1LY
| <# | <#=
java-literal ::= integer-literal

| floating-point-literal | boolean-literal
| character-literal | string-literal | null-literal

integer-literal ::= decimal-integer-literal
| hex-integer-literal | octal-integer-literal
decimal-integer-literal ::= non-zero-digit | digits | | integer-type-suffix |

digits ::= digit [digit | ...
digit ::= 0 | non-zero-digit
non-zero-digit == 11213 141516171819
integer-type-suffix :=1 | L
hex-integer-literal ::= hex-numeral [integer-type-suffix]
hex-numeral ::= 0x hex-digit | hex-digit | . ..

| OX hex-digit [hex-digit | ...
hex-digit :=digit | a | blcldlelf

|AIBICIDIEIF
octal-integer-literal ::= octal-numeral [integer-type-suffix]
octal-numeral ::= 0 octal-digit [octal-digit | . ..
octal-digit :=0 1112131451617
floating-point-literal ::= digits . [digits |

[exponent-part | [float-type-suffix |

| . digits [exponent-part | | float-type-suffix |

| digits exponent-part | float-type-suffix |

| digits | exponent-part | float-type-suffix

exponent-part ::= exponent-indicator signed-integer
exponent-indicator ::= e | E
signed-integer ::= [sign | digits
sign =+ | -
float-type-suffix :=f | F | d | D
boolean-literal ::= true | false
character-literal ::= ’ single-character ’> | ’> escape-sequence ’
single-character ::= any character except ’, \, carriage return, or newline
escape-sequence ::= \b // backspace

|\t // tab

| \n // newline

| \r // carriage return

I\’ // single quote

I \" // double quote

I \\ // backslash

Appendix C: Grammar Summary 149

| octal-escape
| unicode-escape
octal-escape ::= \ octal-digit [octal-digit |
| \ zero-to-three octal-digit octal-digit
zero-to-three := 0 | 1] 2 | 3
unicode-escape ::= \u hex-digit hex-digit hex-digit hex-digit

string-literal ::= " [string-character | ... "
string-character ::= escape-sequence
| any character except ", \, carriage return, or newline
null-literal ::= null
informal-description ::= (* non-stars-close | non-stars-close | ... *)
non-stars-close ::= non-star
| stars-non-close
stars-non-close ::= * [* | ... non-star-close
non-star-close ::= any character except) or *

C.2 Compilation Units

compilation-unit ::= | package-declaration |
[import-declaration | . . .
[top-level-declaration | . . .

top-level-declaration ::= type-declaration

package-declaration ::= | java-annotations | package name ;
name = ident [. ident] ...

import-declaration ::= [model | import [static | name-star ;
name-star ::= ident [. ident | ... [. * |

C.3 Type Declarations

type-declaration ::= class-declaration
| interface-declaration
(N
class-declaration ::= | doc-comment | modifiers class ident
[class-extends-clause | | implements-clause |
class-block
class-block ::={ [field] ... }
interface-declaration ::= [doc-comment | modifiers interface ident
[interface-extends |
class-block

class-extends-clause ::= | extends name |
implements-clause ::= implements name-list
name-list ::= name [, name | ...
interface-extends ::= extends name-list
modifiers ::= | modifier | . ..

modifier ::= public | protected | private

| abstract | static |

Appendix C: Grammar Summary 150

| final | synchronized

| transient | volatile

| native | strictfp

| const // reserved but not used in Java

| java-annotation

| jml-modifier
jml-modifier ::= spec_public | spec_protected

| model | ghost | pure

| instance | helper

| uninitialized
| spec_java_math | spec_safe_math | spec_bigint_math
| code_java_math | code_safe_math | code_bigint_math
| non_null | nullable | nullable_by_default
|

extract

java-annotations ::= java-annotation | java-annotation | . . .
java-annotation ::= @ name ([element-value-pairs | ...)

| @ name

| @ name (element-values)
element-value-pairs ::= element-value | , element-value |
element-value-pair ::= ident = element-value
element-value ::= conditional-expr

| annotation

| element-value-array-initializer
element-value-array-initializer ::= ‘{’ element-values | ‘}’
element-values ::= element-value | , element-value | ... [,]

C.4 Class and Interface Member Declarations

field ::= member-decl
| jml-declaration
| class-initializer-decl
(N
member-decl ::= method-decl
| variable-definition
| class-declaration
| interface-declaration
method-decl ::= [doc-comment | . . .
method-specification
modifiers [method-or-constructor-keyword |
[type-spec | method-head
method-body
| [doc-comment | ...
modifiers [method-or-constructor-keyword]
[type-spec | method-head
[method-specification |
method-body

Appendix C: Grammar Summary 151

method-or-constructor-keyword ::= method | constructor
method-head ::= ident formals [dims | [throws-clause |
method-body ::= compound-statement | ;
throws-clause ::= throws name [, name | ...
formals ::= (| param-declaration-list |)
param-declaration-list ::= param-declaration
[, param-declaration | . ..
param-declaration ::= [param-modifier | ... type-spec ident [dims |
param-modifier ::= final | non_null | nullable
variable-definition ::= [doc-comment | . .. modifiers variable-decls
variable-decls ::= | field | type-spec variable-declarators ;
[jml-data-group-clause | . ..
variable-declarators ::= variable-declarator
[, variable-declarator | . ..
variable-declarator ::= ident | dims | | = initializer]
initializer ::= expression | array-initializer
array-initializer ::= { [initializer-list | }
initializer-list ::= initializer | , initializer | ... [,]
type-spec ::= | ownership-modifiers | type | dims]
| \TYPE | dims |
type ::= reference-type | built-in-type
reference-type ::= name
dims == ‘7 ‘"D]...
class-initializer-decl ::= | method-specification |
[static | compound-statement
| method-specification static_initializer
| method-specification initializer

C.5 Type Specifications

jml-declaration ::= modifiers invariant
| modifiers history-constraint
| modifiers represents-clause
| modifiers initially-clause
| modifiers monitors-for-clause
| modifiers readable-if-clause
| modifiers writable-if-clause
| axiom-clause

invariant ::= invariant-keyword predicate ;
invariant-keyword ::= invariant | invariant_redundantly
history-constraint ::= constraint-keyword predicate

[for constrained-list | ;
constraint-keyword ::= constraint | constraint_redundantly
constrained-list ::= method-name-list | \everything
method-name-list ::= method-name [, method-name | . ..

method-name ::= method-ref | (| param-disambig-list |) | | method-ref-start . *

Appendix C: Grammar Summary 152

method-ref ::= method-ref-start [. method-ref-rest | . ..
| new reference-type
method-ref-start ::= super | this | ident
method-ref-rest ::= this | ident
param-disambig-list ::= param-disambig [, param-disambig | ...
param-disambig ::= type-spec [ident | dims | |
represents-clause ::= represents-keyword store-ref-expression = spec-expression ;
| represents-keyword store-ref-expression \such_that predicate ;
represents-keyword ::= represents | represents_redundantly
initially-clause ::= initially predicate ;
axiom-clause ::= axiom predicate ;
readable-if-clause ::= readable ident if predicate ;
writable-if-clause ::= writable ident if predicate ;
monitors-for-clause ::= monitors_for ident

C.6 Method Specifications

method-specification ::= specification | extending-specification
extending-specification ::= also specification
specification ::= spec-case-seq | redundant-spec]
| redundant-spec
spec-case-seq ::= spec-case | also spec-case | ...
spec-case ::= lightweight-spec-case | heavyweight-spec-case
| model-program
privacy ::= public | protected | private
lightweight-spec-case ::= generic-spec-case
generic-spec-case ::= | spec-var-decls |
spec-header
[generic-spec-body]
| [spec-var-decls |
generic-spec-body
generic-spec-body ::= simple-spec-body
| {| generic-spec-case-seq |}
generic-spec-case-seq 1= generic-spec-case
[also generic-spec-case | . ..
spec-header ::= requires-clause | requires-clause | . . .
simple-spec-body ::= simple-spec-body-clause
[simple-spec-body-clause | . . .
simple-spec-body-clause ::= diverges-clause
| assignable-clause | accessible-clause
| captures-clause | callable-clause
| when-clause | working-space-clause
| duration-clause | ensures-clause
| signals-only-clause | signals-clause
| measured-clause
heavyweight-spec-case ::= behavior-spec-case

Appendix C: Grammar Summary 153

| exceptional-behavior-spec-case

| normal-behavior-spec-case
behavior-spec-case ::= | privacy | [code | behavior-keyword

generic-spec-case
behavior-keyword ::= behavior | behaviour
normal-behavior-spec-case ::= | privacy | [code | normal-behavior-keyword
normal-spec-case
normal-behavior-keyword ::= normal_behavior | normal_behaviour
normal-spec-case ::= generic-spec-case
exceptional-behavior-spec-case ::= [privacy | [code | exceptional-behavior-keyword
exceptional-spec-case

exceptional-behavior-keyword ::= exceptional_behavior | exceptional_behaviour
exceptional-spec-case ::= generic-spec-case
spec-var-decls ::= forall-var-decls [old-var-decls |

| old-var-decls
forall-var-decls ::= forall-var-declarator [forall-var-declarator | . . .
forall-var-declarator ::= forall | bound-var-modifiers | type-spec quantified-var-declarator ;Jj
old-var-decls ::= old-var-declarator | old-var-declarator | . . .
old-var-declarator ::= o1d [bound-var-modifiers | type-spec spec-variable-declarators ;
requires-clause ::= requires-keyword pred-or-not ;

| requires-keyword \same ;
requires-keyword ::= requires | pre

| requires_redundantly | pre_redundantly
pred-or-not ::= predicate | \not_specified
ensures-clause ::= ensures-keyword pred-or-not ;
ensures-keyword ::= ensures | post

| ensures_redundantly | post_redundantly
signals-clause ::= signals-keyword (reference-type [ident |)

[pred-or-not | ;

signals-keyword ::= signals | signals_redundantly

| exsures | exsures_redundantly
signals-only-clause ::= signals-only-keyword reference-type [, reference-type | ... ;

| signals-only-keyword \nothing ;
signals-only-keyword ::= signals_only | signals_only_redundantly
diverges-clause ::= diverges-keyword pred-or-not ;
diverges-keyword ::= diverges | diverges_redundantly
when-clause ::= when-keyword pred-or-not ;
when-keyword ::= when | when_redundantly
assignable-clause ::= assignable-keyword store-ref-list ;
assignable-keyword ::= assignable | assignable_redundantly

| modifiable | modifiable_redundantly

| modifies | modifies_redundantly

accessible-clause ::= accessible-keyword store-ref-list ;
accessible-keyword ::= accessible | accessible_redundantly
callable-clause ::= callable-keyword callable-methods-list ;

callable-keyword ::= callable | callable_redundantly
callable-methods-list ::= method-name-list | store-ref-keyword

Appendix C: Grammar Summary 154

measured-clause ::= measured-by-keyword \not_specified ;

| measured-by-keyword spec-expression [if predicate | ;
measured-by-keyword ::= measured_by | measured_by_redundantly
captures-clause ::= captures-keyword store-ref-list ;
captures-keyword ::= captures | captures_redundantly
working-space-clause ::= working-space-keyword \not_specified ;

| working-space-keyword spec-expression [if predicate | ;
working-space-keyword ::= working_space | working_space_redundantly
duration-clause ::= duration-keyword \not_specified ;

| duration-keyword spec-expression [if predicate | ;
duration-keyword ::= duration | duration_redundantly

C.7 Data Groups

jml-data-group-clause ::= in-group-clause | maps-into-clause
in-group-clause ::= in-keyword group-list ;
in-keyword ::= in | in_redundantly
group-list ::= group-name [, group-name | . ..
group-name ::= [group-name-prefix | ident
group-name-prefix ::= super . | this .
maps-into-clause ::= maps-keyword member-field-ref \into group-list ;
maps-keyword ::= maps | maps_redundantly
member-field-ref ::= ident . maps-member-ref-expr
| maps-array-ref-expr [. maps-member-ref-expr |

maps-member-ref-expr ::= ident | *
maps-array-ref-expr ::= ident maps-spec-array-dim

[maps-spec-array-dim | . . .
maps-spec-array-dim ::= ‘[’ spec-array-ref-expr ‘]’

C.8 Specification Inheritance

C.9 Predicates and Specification Expressions

predicate ::= spec-expression
spec-expression-list ::= spec-expression
[, spec-expression | . ..

Spec-expression ::= expression
expression-list ::= expression | , expression | . ..
expression ::= assignment-expr
assignment-expr ::= conditional-expr

[assignment-op assignment-expr |
assignment-op == = | += | —= | x=| /=] J=| >>=

| >>>= [<<= | &= | ‘|=" | °=

conditional-expr ::= equivalence-expr

Appendix C: Grammar Summary 155

[7 conditional-expr : conditional-expr]

equivalence-expr ::= implies-expr

[equivalence-op implies-expr | . . .
equivalence-op ::= <==> | <=1=>
implies-expr ::= logical-or-expr

[==> implies-non-backward-expr |
| logical-or-expr <== logical-or-expr
[<== logical-or-expr | ...
implies-non-backward-expr ::= logical-or-expr
[==> implies-non-backward-expr |
logical-or-expr ::= logical-and-expr [‘| | logical-and-expr | . ..
logical-and-expr ::= inclusive-or-expr | && inclusive-or-expr | . ..
inclusive-or-expr ::= exclusive-or-expr [‘|’ exclusive-or-expr | . . .
exclusive-or-expr ::= and-expr | ~ and-expr | . ..
and-expr ::= equality-expr [& equality-expr | . ..
equality-expr ::= relational-expr [== relational-expr] . ..
| relational-expr [!'= relational-expr]| . ..
relational-expr ::= shift-expr < shift-expr
| shift-expr > shift-expr
| shift-expr <= shift-expr
| shift-expr >= shift-expr
| shift-expr <: shift-expr
| shift-expr | instanceof type-spec |
shift-expr ::= additive-expr [shift-op additive-expr | ...
shift-op ::= << | >> | >>>

additive-expr ::= mult-expr [additive-op mult-expr | . ..
additive-op =+ | -

mult-expr ::= unary-expr | mult-op unary-expr | ...
mult-op :i=* | / | %

unary-expr ::= (type-spec) unary-expr

| ++ unary-expr

| —— unary-expr

| + unary-expr

| - unary-expr

| unary-expr-not-plus-minus
unary-expr-not-plus-minus ::= ~ unary-expr

| ' unary-expr

| (built-in-type) unary-expr

| (reference-type) unary-expr-not-plus-minus

| postfix-expr

postfix-expr ::= primary-expr [primary-suffix | ... [++]
| primary-expr [primary-suffix | ... [==]
| built-in-type [‘[’ 1’] class
primary-suffix ::= . ident
| . this
| . class

| . new-expr

Appendix C: Grammar Summary 156

| . super ([expression-list])
| ([expression-list |)
| ‘[’ expression ‘]’
[[T]....class
primary-expr ::= ident | new-expr
| constant | super | true
| false | this | null
| (expression)
| jml-primary
built-in-type ::= void | boolean | byte
| char | short | int
| long | float | double

constant ::= java-literal
new-expr ::= new type new-suffix
new-suffix ::= ([expression-list |) | class-block |

| array-decl | array-initializer |
| set-comprehension

array-decl ::= dim-exprs | dims]
dim-exprs ::= ‘[’ expression ‘]’ [‘[’ expression ‘1’| ...
array-initializer ::= { [initializer | , initializer | ... [,]]}
initializer ::= expression

| array-initializer
jml-primary ::= result-expression

| old-expression

| not-assigned-expression
| not-modified-expression
| only-accessed-expression
| only-assigned-expression
| only-called-expression

| only-captured-expression
| fresh-expression

| reach-expression

| duration-expression

| space-expression

| working-space-expression
| nonnullelements-expression
| informal-description

| typeof-expression

| elemtype-expression

| type-expression

| lockset-expression

| max-expression

| is-initialized-expression

| invariant-for-expression
| Iblneg-expression

| Iblpos-expression

| spec-quantified-expr

Appendix C: Grammar Summary 157

result-expression ::= \result
old-expression ::= \old (spec-expression [, ident |)
| \pre (spec-expression)
not-assigned-expression ::= \not_assigned (store-ref-list)
not-modified-expression ::= \not_modified (store-ref-list)
only-accessed-expression ::= \only_accessed (store-ref-list)
only-assigned-expression ::= \only_assigned (store-ref-list)
only-called-expression ::= \only_called (method-name-list)
only-captured-expression ::= \only_captured (store-ref-list)
fresh-expression ::= \fresh (spec-expression-list)
reach-expression ::= \reach (spec-expression)
duration-expression ::= \duration (expression)
space-expression ::= \space (spec-expression)
working-space-expression ::= \working_space (expression)
nonnullelements-expression ::= \nonnullelements (spec-expression)
typeof-expression ::= \typeof (spec-expression)
elemtype-expression ::= \elemtype (spec-expression)
type-expression ::= \type (type)
lockset-expression ::= \lockset
max-expression ::= \max (spec-expression)
is-initialized-expression ::= \is_initialized (reference-type)
invariant-for-expression ::= \invariant_for (spec-expression)
Iblneg-expression ::= (\1lblneg ident spec-expression)
Iblpos-expression ::= (\1blpos ident spec-expression)
spec-quantified-expr ::= (quantifier quantified-var-decls ;
[[predicate | ; |
spec-expression)
quantifier ::= \forall | \exists
| \max | \min
| \num_of | \product | \sum
quantified-var-decls ::= [bound-var-modifiers | type-spec quantified-var-declarator
[, quantified-var-declarator | . ..
quantified-var-declarator ::= ident [dims |
spec-variable-declarators ::= spec-variable-declarator
[, spec-variable-declarator | . ..
spec-variable-declarator ::= ident | dims |
[= spec-initializer]
spec-array-initializer ::= { [spec-initializer
[, spec-initializer | ... [,]]}
spec-initializer ::= spec-expression
| spec-array-initializer
bound-var-modifiers ::= non_null | nullable
set-comprehension ::= { [bound-var-modifiers | type-spec
quantified-var-declarator ‘|’
postfix-expr && predicate }
store-ref-list ::= store-ref-keyword | store-ref [, store-ref | ...
store-ref ::= store-ref-expression

Appendix C: Grammar Summary 158

| informal-description

store-ref-expression ::= store-ref-name [store-ref-name-suffix | . ..
store-ref-name ::= ident | super | this
store-ref-name-suffix ::= . ident | . this | ‘[’ spec-array-ref-expr ‘1’ | . *
spec-array-ref-expr ::= spec-expression

| spec-expression .. spec-expression

| *

store-ref-keyword ::= \nothing | \everything | \not_specified
C.10 Statements and Annotation Statements

compound-statement ::= { statement | statement | ... }
statement ::= compound-statement
| local-declaration ;
| ident : statement
| expression ;
| if (expression)
statement | else statement |
| possibly-annotated-loop
| break [ident | ;
| continue [ident | ;
| return [expression | ;
| switch-statement
| try-block
| throw expression ;
| synchronized (expression) statement
(I
| jml-annotation-statement
| assert-statement
| jml-annotation-statement
| model-prog-statement // only allowed in model programs
switch-statement ::= switch (expression) {
[switch-body | ...}
switch-body ::= switch-label-seq | statement | . ..
switch-label-seq ::= switch-label [switch-label | . ..
switch-label ::= case expression : | default :
try-block ::= try compound-statement
[handler | . ..
[finally compound-statement |
handler ::= catch (param-declaration) compound-statement
local-declaration ::= local-modifiers variable-decls
local-modifiers ::= [local-modifier | . ..
local-modifier ::= ghost | final uninitialized | non_null | nullable
| ownership-modifier // when the Universe type system is on
possibly-annotated-loop ::=
[loop-invariant | . ..

Appendix C: Grammar Summary 159

[variant-function | . . .
[ident : | loop-stmt

loop-stmt ::= while (expression) statement

| do statement while (expression) ;

| for ([for-init | ; [expression | ; [expression-list |)

Statement
| for (modifiers type-spec ident : expression)
Statement

for-init ::= local-declaration | expression-list
loop-invariant ::= maintaining-keyword predicate ;
maintaining-keyword ::= maintaining | maintaining_redundantly

| loop_invariant | loop_invariant_redundantly
variant-function ::= decreasing-keyword spec-expression ;
decreasing-keyword ::= decreasing | decreasing_redundantly

| decreases | decreases_redundantly
assert-statement ::= assert expression | : expression | ;

| assert predicate | : expression | ;
assert-redundantly-statement ::= assert_redundantly predicate

[: expression | ;

jml-annotation-statement ::= assert-redundantly-statement

| assume-statement

| hence-by-statement

| set-statement

| refining-statement

| unreachable-statement

| debug-statement
assume-statement ::= assume-keyword predicate

[: expression | ;

assume-keyword ::= assume | assume_redundantly
set-statement ::= set assignment-expr ;
refining-statement ::= refining spec-statement statement

| refining generic-spec-statement-case statement
unreachable-statement ::= unreachable ;
debug-statement ::= debug expression ;
hence-by-statement ::= hence-by-keyword predicate ;
hence-by-keyword ::= hence_by | hence_by_redundantly

C.11 Redundancy

redundant-spec ::= implications | examples | | examples
implications ::= implies_that spec-case-seq

examples ::= for_example example | also example | . ..
example ::= [[privacy | example]

[spec-var-decls]
[spec-header]
simple-spec-body

Appendix C: Grammar Summary 160

| [privacy | exceptional_example
[spec-var-decls]
spec-header
[exceptional-example-body |
| [privacy | exceptional_example
[spec-var-decls]
exceptional-example-body
| [privacy | normal_example
[spec-var-decls |
spec-header
[normal-example-body |
| [privacy | normal_example
[spec-var-decls |
normal-example-body
exceptional-example-body ::= exceptional-spec-case
[exceptional-spec-case | . ..
normal-example-body ::= normal-spec-case
[normal-spec-case | . . .

C.12 Model Programs

model-program ::= [privacy | | code | model_program
jml-compound-statement
jml-compound-statement ::= compound-statement
jml-statement ::= statement
model-prog-statement ::= nondeterministic-choice
| nondeterministic-if
| spec-statement
| invariant
nondeterministic-choice ::= choose alternative-statements
alternative-statements ::= jml-compound-statement
[or jml-compound-statement | . . .
nondeterministic-if ::= choose_if guarded-statements
[else jml-compound-statement]
guarded-statements ::= guarded-statement
[or guarded-statement | . . .
guarded-statement ::= {
assume-statement
jml-statement [jml-statement] ... }
spec-statement ::= [privacy | behavior-keyword
generic-spec-statement-case
| [privacy | exceptional-behavior-keyword
exceptional-spec-case
| [privacy | normal-behavior-keyword
normal-spec-case
| [privacy | abrupt-behavior-keyword

Appendix C: Grammar Summary 161

abrupt-spec-case
generic-spec-statement-case ::= | spec-var-decls]
generic-spec-statement-body
| [spec-var-decls |
spec-header
[generic-spec-statement-body |
generic-spec-statement-body ::= simple-spec-statement-body
| {| generic-spec-statement-case-seq |}
generic-spec-statement-case-seq ::= generic-spec-statement-case
[also generic-spec-statement-case | . . .
simple-spec-statement-body ::= simple-spec-statement-clause
[simple-spec-statement-clause | . . .
simple-spec-statement-clause ::= diverges-clause
| assignable-clause | accessible-clause
| captures-clause | callable-clause
| when-clause | working-space-clause | duration-clause
| ensures-clause | signals-only-clause | signals-clause
| measured-clause
| continues-clause | breaks-clause | returns-clause

abrupt-behavior-keyword ::= abrupt_behavior | abrupt_behaviour
abrupt-spec-case ::= generic-spec-statement-case
continues-clause ::= continues-keyword | target-label |

[pred-or-not | ;
continues-keyword ::= continues | continues_redundantly
target-label ::= -> (ident)
breaks-clause ::= breaks-keyword | target-label |

[pred-or-not | ;
breaks-keyword ::= breaks | breaks_redundantly
returns-clause ::= returns-keyword | pred-or-not | ;
returns-keyword ::= returns | returns_redundantly

C.13 Specification for Subtypes

C.14 Separate Files for Specifications

C.15 Universe Type System

ownership-modifiers ::= ownership-modifier | ownership-modifier]
ownership-modifier ::= \rep | \peer | \readonly

| reserved-ownership-modifier // with —universesz parse or —universesz full
reserved-ownership-modifier ::= rep | peer | readonly

Appendix C: Grammar Summary 162

C.16 Safe Math Extensions

annotation-marker ::=

| /x+@[@] ...

| //-e @] ...

| /x-@[@] ...
represents-clause ::= represents-keyword store-ref-expression <- spec-expression ;
monitors-for-clause ::= monitors_for ident
compilation-unit ::= [package-declaration |

refine-prefix

[import-declaration | . ..

[top-level-declaration | . . .
refine-prefix ::= refine-keyword string-literal ;
refine-keyword ::= refine | refines

Appendix D: Modifier Summary

Appendix D Modifier Summary

163

This table summarizes which Java and JML modifiers may be used in various grammatical

contexts.

Grammatical construct

All modifiers

Class declaration

Interface declaration

Nested Class declaration

Nested interface declaration

Local Class (and local model
class) declaration

Type specification (e.g.
invariant)

Java modifiers

public protected
private abstract
static final
synchronized
transient volatile
native strictfp

public final
abstract strictfp

public strictfp

public protected
private static final
abstract strictfp

public protected
private static
strictfp

final abstract
strictfp

public protected
private static

JML modifiers

spec_public spec_
protected model
ghost pure instance
helper non_null
nullable nullable_
by_default monitored
uninitialized

pure model
nullable_by_default
spec_public
spec_protected

pure model
nullable_by_default
spec_public
spec_protected

spec_public spec_
protected model
pure

spec_public spec_
protected model
pure

pure model

instance

Appendix D: Modifier Summary

Field declaration

Ghost Field declaration

Model Field declaration

Method declaration in a class

Method declaration in an
interface

Constructor declaration

Model method (in a class or
interface)

Model constructor

Java initialization block

JML initializer and
static_initializer annotation

public protected
private final
volatile transient
static

public protected
private static final

public protected
private static

public protected
private abstract
final static
synchronized native
strictfp

public abstract

public protected
private

public protected
private abstract
static final
synchronized
strictfp

public protected
private

static

164

spec_public spec_
protected non_null
nullable instance
monitored

non_null nullable
instance monitored

non_null nullable
instance

spec_public spec_
protected pure
non_null nullable
helper extract

spec_public spec_
protected pure
non_null nullable
helper

spec_public spec_
protected helper pure
extract

pure non_null
nullable helper
extract

pure helper extract

Appendix D: Modifier Summary 165

Formal parameter final non_null nullable

Local variable and local ghost final ghost non_

variable declaration null nullable
uninitialized

Note that within interfaces, fields are implicitly public, static and final [Gosling-etal00].
In an interface, ghost and model fields are implicitly public and static, though they may be
declared as instance fields, which makes them not static.

Also within an interface, methods may not be static and are implicitly abstract. Model
methods in interfaces, however, are not implicitly abstract and may be declared static.

Appendix E: Type Checking Summary 166

Appendix E Type Checking Summary

[[Hope to generate this automatically]]]

Appendix F: Verification Logic Summary 167

Appendix F Verification Logic Summary

[[Hope to generate this automatically]]]

Appendix G: Differences 168

Appendix G Differences

The subsections below detail the differences between the JML Common Tools release of
JML and other tools and between JML and Java itself.

G.1 Differences Between JML and Other Tools

ESC/Java [Leino-Nelson-Saxe00] and JML share a common syntax; this is even more true of
ESC/Java2 and JML. The initial efforts to merge syntaxes were due to the efforts of Raymie
Stata. After a long process, the syntax of ESC/Java and JML were both changed and JML
was nearly a superset of ESC/Java when work on ESC/Java stopped with ESC/Java 1.2.4.
Following the open-source release of ESC/Java, Kiniry and Cok began work on ESC/Java2,
which is now very compatible with JML’s syntax [Kiniry-Cok04]. Users can thus use both
tools with little or no changes to their files.

Similarly the Daikon tool [Ernst-etal01] also uses a variant of JML’s syntax, as do several
other tools [Burdy-etal03]. While efforts are ongoing to avoid differences, some differences
are unavoidable, as research is ongoing (and people have other things to do).

We discuss the differences between the JML language described in this manual and the
variants used in these other tools below.

G.1.1 Differences Between JML and ESC/Java2

This section discusses the current state of affairs of ESC/Java2 compatibility with JML’s
syntax.

The following differences remain between ESC/Java2 and JML.

e ESC/Java2 is tolerant (with a suppressible warning) of missing semicolons at the ends
of annotations, in many circumstances.

e ESC/Java2 does not enforce the visibility modifiers.

e ESC/Java2 strictly requires whole syntactic constructs within a single annotation com-
ment; JML tools are more lenient.

e JML and ESC/Java2 differ in the search order for refinement files in the classpath.
e JML and ESC/Java2 differ in where helper annotations are permitted.
e JML does not support model classes (at least in runtime assertion checking).

e ESC/Java2 reads but ignores model programs.

The following differences between ESC/Java2 and JML are designed to remain differ-
ences. While the plan is for ESC/Java2 to parse all of JML’s syntax, there are times when
one needs to write annotations for one of these tool that are not understood by the other.
Thus these differences are intended to allow users of both tools to write such annotations.

e JML supports annotation forms //+@ and /*+@ ... @+*/, so that annotations that JML
understands but ESC/Java doesn’t can be written.

e ESC/Java2 supports annotation forms //-@ and /*-@ ... @-*/, so that annotations
that ESC/Java2 understands but JML doesn’t can be written.

Appendix G: Differences 169

G.2 Differences Between JML and Java

This section describes differences between JML and Java without JML. Currently the major
differences are the way that JML treats null.

G.2.1 Non-null by Default

As described earlier (see Section 2.8 [Null is Not the Default], page 16), JML does not, by
default, allow null to be a value in a field, formal parameter, method or a bound variable
(see Section 12.4.24.5 [Modifiers for Bound Variables], page 103). To allow null as a value,
one has to use the nullable modifier on the declaration, or the nullable_by_default
modifier on the type where the declaration occurs See Section 6.2.13 [Nullity Modifiers],
page 44, for more details.

Appendix H: What’s Missing 170

Appendix H What’s Missing

What is missing from this reference manual?

The following constructs are not discussed at all:

abrupt_behavior

e breaks and breaks_redundantly

e choose and choose_if

e continues and continues_redundantly
e example and exceptional_example

e implies_that

e hence_by and hence_by_redundantly

e model_program

e returns and returns_redundantly

Other stuff not to forget - DRCok
e \not_specified
e \nothing
e \everything
e nowarn annotation
e methods and constructors without bodies in java files
e methods and constructors with bodies in specification files

e methods and constructors in annotation expressions - purity - modifies clauses - various
checking

e anonymous and block-level classes
e field, method, constructor keywords

e exceptions in annotation expressions

Bibliography 171

Bibliography

[America87]
Pierre America. Inheritance and Subtyping in a Parallel Object-Oriented Lan-
guage. In Jean Bezivin and others (eds.), ECOOP ’87, European Conference
on Object-Oriented Programming, Paris, France. Lecture Notes in Computer
Science, Vol. 276 (Springer-Verlag, NY), pages 234-242.

[Arnold-Gosling-Holmes00]
Ken Arnold, James Gosling, and David Holmes. The Java Programming Lan-
guage Third Edition. The Java Series. Addison-Wesley, Reading, MA, 2000.

[ANSI95] Working Paper for Draft Proposed International Standard for Information Sys-
tems — Programming Language C++. CBEMA, 1250 Eye Street NW, Suite
200, Washington DC 20005, April 28, 1995. (Obtained by anonymous ftp to
research.att.com, directory dist/c++std/WP.)

[Back88] R. J. R. Back. A calculus of refinements for program derivations. Acta Infor-
matica, 25(6):593-624, August 1988.

[Back-vonWright89al
R. J. R. Back and J. von Wright. Refinement Calculus, Part I: Sequential
Nondeterministic Programs. In J. W. de Bakker, et al, (eds.), Stepwise Refine-
ment of Distributed Systems, Models, Formalisms, Correctness, REX Work-
shop, Mook, The Netherlands, May/June 1989, pages 42-66. Volume 430 of
Lecture Notes Computer Science, Spring-Verlag, 1989.

[Back-vonWright98]
Ralph-Johan Back and Joakim von Wright. Refinement Calculus: A Systematic
Introduction. Springer-Verlag, 1998.

[Borgida-etal95]
Alex Borgida, John Mylopoulos, and Raymond Reiter. On the Frame Prob-
lem in Procedure Specifications. IEEE Transactions on Software Engineering,
21(10):785-798, October 1995.

[Boyland00]
John Boyland. Alias burying: Unique variables without destructive reads.
Software—Practice and Experience, 31(6):533-553, May 2001.

[Buechi-Weck00]
Martin Biichi and Wolfgang Weck. The Greybox Approach: When Blackbox
Specifications Hide Too Much. Technical Report 297, Turku Centre for Com-
puter Science, August 1999.
‘http://www.tucs.abo.fi/publications/techreports/TR297 .html’.

[Buechi00] Martin Biichi. Safe Language Mechanisms for Modularization and Concur-
rency. Ph.D. Thesis, Turku Center for Computer Science, May 2000. TUCS
Dissertations No. 28.

[Burdy-etal03]
Lilian Burdy, Yoonsik Cheon, David Cok, Michael Ernst, Joe Kiniry, Gary
T. Leavens, K. Rustan M. Leino, and Erik Poll. An overview of JML tools

Bibliography 172

[Chalin04]

[Chalin07]

and applications. Dept. of Computer Science, University of Nijmegen, TR
NIII-R0309, 2003.
‘http://www.eecs.ucf.edu/"leavens/JML/01ldReleases/jml-white-paper.pdf’ ||

Patrice Chalin. JML Support for Primitive Arbitrary Precision Numeric Types:
Definition and Semantics. Journal of Object Technology, 3(6):57-79, June 2004.
Available from

‘http://www.jot.fm/issues/issue_2004_06/articled’

Patrice Chalin. A Sound Assertion Semantics for the Dependable Systems
Evolution Verifying Compiler. Proceedings of the International Conference on
Software Engineering (ICSE), Minneapolis, MN, USA, 2007.

[Chalin-Rioux05]

Patrice Chalin and Frederic Rioux. Non-null References by Default in the
Java Modeling Language. In Proceedings of the Workshop on the Specification
and Verification of Component-Based Systems (SAVCBS’05), Lisbon, Portugal.
September, 2005. An updated version is available as Department of Computer
Science, Concordia University, ENCS-CSE TR 2005-004, December 2005, which
is available from the URL
‘http://www.cs.concordia.ca/“chalin/papers/TR-2005-004-r3.2.pdf’ .

[Cheon-Leavens02]

Yoonsik Cheon and Gary T. Leavens. A Simple and Practical Approach to
Unit Testing: The JML and JUnit Way. In ECOOP 2002 — Object-Oriented
Programming, 16th European Conference, Malaga, Spain, pages 231-255.
Springer-Verlag, June 2002. Also Department of Computer Science, lowa
State University, TR #01-12a, November 2001, revised March 2002, which is
available from the URL
‘ftp://ftp.cs.iastate.edu/pub/techreports/TRO1-12/TR.pdf’ .

[Cheon-Leavens02b]

Yoonsik Cheon and Gary T. Leavens. A Runtime Assertion Checker for the
Java Modeling Language (JML). In Hamid R. Arabnia and Youngsong Mun
(eds.), Proceedings of the International Conference on Software Engineering
Research and Practice (SERP '02), Las Vegas, Nevada, USA, pages 322-328.
CSREA Press, June 2002. Also Department of Computer Science, lowa State
University, TR #02-05, March 2002, which is available from the URL
‘ftp://ftp.cs.iastate.edu/pub/techreports/TR02-05/TR.pdf’ .

[Cheon-etal05]

[Cheon03]

Yoonsik Cheon, Gary T. Leavens, Murali Sitaraman, and Stephen Edwards.
Model Variables: Cleanly Supporting Abstraction in Design By Contract.
Software—Practice and Experience, 35(6):583-599, May 2005. Also
Department of Computer Science, lowa State University, TR 03-10, March
2003.

‘ftp://ftp.cs.iastate.edu/pub/techreports/TR03-10/TR.pdf’ .

Yoonsik Cheon. A Runtime Assertion Checker for the Java Modeling Language.
Department of Computer Science, lowa State University, TR 03-09, April, 2003.
‘ftp://ftp.cs.iastate.edu/pub/techreports/TR03-09/TR.pdf’

Bibliography 173

[Cohen90] Edward Cohen. Programming in the 1990s: An Introduction to the Calculation
of Programs. Springer-Verlag, New York, N.Y., 1990.

[Corbett-etal00]
James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shawn Laubach, Corina
S. Pasareanu, Robby, and Hongjun Zheng. Bandera: Extracting Finite-State
Models from Java Source Code. In S. Brookes and M. Main and A. Melton
and M. Mislove (eds.), Proceedings of the 22nd International Conference on
Software Engineering, pp. 439-448, ACM Press, 2000.

[Dhara-Leavens96]
Krishna Kishore Dhara and Gary T. Leavens. Forcing Behavioral Subtyping
Through Specification Inheritance. In Proceedings 18th International Confer-
ence on Software Engineering, Berlin, Germany, pages 258-267. IEEE 1996.
An extended version is Department of Computer Science, lowa State Univer-
sity, TR #95-20b, December 1995, which is available from the URL
‘ftp://ftp.cs.iastate.edu/pub/techreports/TR95-20/TR.ps.Z’.

[Dietl-Drossopoulou-Mueller07]
Werner Dietl, Sophia Drossopoulou and Peter Miiller. Generic Universe Types.
In E. Ernst, editor, European Conference on Object-Oriented Programming
(ECOOP) pages 28-53, 2007. Available from
‘http://sct.inf.ethz.ch/publications/getpdf.php?bibname=0wn&id=Diet1DrossopoulouMt

[Dietl-Mueller04]
Werner Dietl and Peter Miiller. Exceptions in ownership type systems. In
E. Poll, editor, Formal Techniques for Java-like Programs pages 49-54, 2004.
Available from
‘http://sct.inf.ethz.ch/publications/getpdf.php?bibname=0wn&id=Diet1Mueller04.pdf’

[Dietl-Mueller05]
Werner Dietl and Peter Miiller. Universes: Lightweight Ownership for JML.
Journal of Object Technology, 4(8):5-32, October 2005. Available from
‘http://www.jot.fm/issues/issue_2005_10/articlel.pdf’.

[Dietl-Mueller-Schregenberger08|
Werner Dietl, Peter Miiller and Daniel Schregenberger. Universe Type System
— Quick-Reference. Available from
‘http://sct.inf.ethz.ch/research/universes/tools/juts-quickref.pdf JJ

[Dijkstra76]
Edsger W. Dijkstra. A Discipline of Programming (Prentice-Hall, Englewood
Cliffs, N.J., 1976).

[Edwards-etal94]
Stephen H. Edwards, Wayne D. Heym, Timothy J. Long, Murali Sitaraman,
and Bruce W. Weide. Part II: Specifying Components in RESOLVE. ACM
SIGSOF'T Software Engineering Notes, 19(4):29-39, October 1994.

[Ernst-etal01]
Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. Dy-
namically discovering likely program invariants to support program evolution.
IEEE Transactions on Software Engineering, 27(2):1-25, February 2001.

Bibliography 174

[Fitzgerald-Larsen98]
John Fitzgerald and Peter Gorm Larsen. Modelling Systems: Practical Tools
and Techniques in Software Development. Cambridge University Press, Cam-
bridge, UK, 1998.

[Gosling-etal00]
James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language
Specification Second Edition. The Java Series. Addison-Wesley, Boston, MA,
2000.

[Gosling-etal05]
James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language
Specification Third Edition. The Java Series. Addison-Wesley, Boston, MA,
2005.

[Gries-Schneider95]
David Gries and Fred B. Schneider. Avoiding the Undefined by Underspecifi-
cation. In Jan van Leeuwen, editor, Computer Science Today: Recent Trends

and Developments, volume 1000 of Lecture Notes in Computer Science, pages
366—373. Springer-Verlag, New York, N.Y., 1995.

[Guttag-Horning-Wing85b|
John V. Guttag and James J. Horning and Jeannette M. Wing. The Larch
Family of Specification Languages. IEEE Software, 2(5):24-36, September 1985.

[Guttag-Horning93|
John V. Guttag and James J. Horning with S.J. Garland, K.D. Jones, A. Modet
and J.M. Wing. Larch: Languages and Tools for Formal Specification (Springer-
Verlag, NY, 1993).

[Hall90] Anthony Hall. Seven Myths of Formal Methods. IEEE Software, 7(5):11-19,
September 1990.

[Hayes93] 1. Hayes (ed.), Specification Case Studies, second edition (Prentice-Hall, Engle-
wood Cliffs, N.J., 1990).

[Hesselink92]
Wim H. Hesselink. Programs, Recursion, and Unbounded Choice (Cambridge
University Press, Cambridge, UK, 1992).

[Hoare69] C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Comm.
ACM, 12(10):576-583, October 1969.

[Hoare72a]
C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica,
1(4):271-281, 1972.

[Huisman01]
Marieke Huisman. Reasoning about JAVA programs in higher order logic with
PVS and Isabelle. IPA dissertation series, 2001-03. Ph.D. dissertation, Univer-
sity of Nijmegen, 2001.

[ISO96] International Standards Organization. Information Technology - Programming

Languages, Their Environments and System Software Interfaces - Vienna Devel-

Bibliography 175

opment Method - Specification Language - Part 1: Base language. International
Standard ISO/IEC 13817-1, December, 1996.

[Khurshid-Marinov-Jackson02]
Sarfraz Khurshid and Darko Marinov and Daniel Jackson. An Analyzable An-
notation Language. In Proceedings of OOPSLA 02 Conference on Object-
Oriented Programming, Languages, Systems, and Applications. (ACM SIG-
PLAN Notices, 37(11):231-245, October 2002).

[Jacobs-etal98]
Bart Jacobs, Joachim van den Berg, Marieke Huisman, Martijn van Berkum,
Ulrich Hensel, and Hendrik Tews. Reasoning about Java Classes (Preliminary
Report) In OOPSLA ’98 Proceedings (ACM SIGPLAN Notices, 33(10):329-490,
October 1998).

[Jones90] Cliff B. Jones. Systematic Software Development Using VDM. International Se-
ries in Computer Science. Prentice Hall, Englewood Cliffs, N.J., second edition,
1990.

[Jones95e] C.B. Jones, Partial functions and logics: A warning. Information Processing
Letters, 54(2):65-67, 1995.

[Kiczales-Lamping92]
Gregor Kiczales and John Lamping. Issues in the Design and Documentation
of Class Libraries. In Andreas Paepcke (ed.), OOPSLA ’92 Proceedings (ACM
SIGPLAN Notices, 27(10):435-451, October 1992).

[Kiniry-Cok04]

Joseph R. Kiniry and David R. Cok. ESC/Java2: Uniting ESC/Java and JML:
Progress and issues in building and using ESC/Java2 and a report on a case
study involving the use of ESC/Java2 to verify portions of an Internet voting
tally system. In Marieke Huisman (ed.), CASSIS 2004 - Construction and
Analysis of Safe, Secure and Interoperable Smart devices, Marseille, France,
2004, Proceedings, volume 3362 of Lecture Notes in Computer Science, pages
108-128. Springer-Verlag, 2004.

[Krone-Ogden-Sitaraman03]
Joan Krone, William F. Ogden, Murali Sitaraman. Modular Verification
of Performance Constraints. Technical Report RSRG-03-04, Department
of Computer Science, Clemson University, May, 2003. Available from
‘http://www.cs.clemson.edu/ "resolve/reports/RSRG-03-04.pdf’

[Lamport89]
Leslie Lamport. A Simple Approach to Specifying Concurrent Systems. CACM,
32(1):32-45, January 1989.

[LeavensLarchFAQ)]
Gary T. Leavens. Larch frequently asked questions. Version 1.110. Available
in ‘http://www.eecs.ucf.edu/ " leavens/larch-faq.html’, May 2000.

[Leavens-Baker99]
Gary T. Leavens and Albert L. Baker. Enhancing the pre- and postcondition
technique for more expressive specifications. In Jeannette M. Wing, Jim Wood-

Bibliography 176

cock, and Jim Davies, editors, FM’99 — Formal Methods: World Congress on
Formal Methods in the Development of Computing Systems, Toulouse, France,
September 1999, Proceedings, volume 1709 of Lecture Notes in Computer Sci-
ence, pages 1087-1106. Springer-Verlag, 1999.

[Leavens-Baker-Ruby99]
Gary T. Leavens, Albert L. Baker, and Clyde Ruby. JML: a Notation for
Detailed Design. In Haim Kilov, Bernhard Rumpe, and Tan Simmonds (editors),
Behavioral Specifications for Businesses and Systems, chapter 12, pages 175-
188.

[Leavens-Baker-Ruby06]
Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary Design of
JML: A Behavioral Interface Specification Language for Java. ACM SIGSOFT
Software Engineering Notes, 31(3):1-38, March 2006.
‘http://doi.acm.org/10.1145/1127878.1127884". Also lowa State Univer-
sity, Department of Computer Science, TR #98-06-rev29, January 2006, which
is available from the URL
‘ftp://ftp.cs.iastate.edu/pub/techreports/TR98-06/TR.pdf’ .

[Leavens-Cheon06]
Gary T. Leavens and Yoonsik Cheon. Design by Contract with JML. December,
2006, which is available from the URL
‘http://www.jmlspecs.org/jmldbc.pdf’.

[Leavens-Dhara00]
Gary T. Leavens and Krishna Kishore Dhara. Concepts of Behavioral Subtyp-
ing and a Sketch of Their Extension to Component-Based Systems. In Gary T.
Leavens and Murali Sitaraman (eds.), Foundations of Component-Based Sys-
tems, Cambridge University Press, 2000, pp. 113-135.
‘http://www.eecs.ucf.edu/ leavens/FoCBS-book/06-leavens-dhara.pdf’

[Leavens-etal05]
G. T. Leavens, Y. Cheon, C. Clifton, C. Ruby, and D. R. Cok. How the design
of JML accommodates both runtime assertion checking and formal verification
Science of Computer Programming, 55(1-3):185-208, 2005.

[Leavens-Mueller07]
Gary T. Leavens and Peter Miiller. Information Hiding and Vis-
ibility in Interface Specifications. In International Conference
on Software Engineering (ICSE), pages 385-395, IEEE, 2007.
‘http://dx.doi.org/10.1109/ICSE. 2007 .44’

[Leavens-Naumann06]
Gary T. Leavens and David A. Naumann. Behavioral Subtyping, Specification
Inheritance, and Modular Reasoning. Department of Computer Science, TR
\#06-20b, July 2006, revised August, September 2006. Available from the
URL
‘ftp://ftp.cs.iastate.edu/pub/techreports/TR90-09/TR.pdf’.

Bibliography 177

[Leavens-Weihl90]
Gary T. Leavens and William E. Weihl. Reasoning about Object-oriented Pro-
grams that use Subtypes (extended abstract). In N. Meyrowitz (ed.), OOPSLA
ECOOP 90 Proceedings (ACM SIGPLAN Notices, 25(10):212-223, October
1990).

[Leavens-Weihl95]
Gary T. Leavens and William E. Weihl. Specification and Verification of
Object-Oriented Programs Using Supertype Abstraction. Acta Informatica,
32(8):705-778, November 1995.

[Leavens-Wing98]
Gary T. Leavens and Jeannette M. Wing. Protective interface specifications.
Formal Aspects of Computing, 10(1):590-75, January 1998.

[Leavens90]
Gary T. Leavens. Modular Verification of Object-Oriented Programs with Sub-
types. Department of Computer Science, Iowa State University (Ames, Iowa,
50011), TR 90-09, July 1990. Available from the URL
‘ftp://ftp.cs.iastate.edu/pub/techreports/TR90-09/TR.ps.Z’.

[Leavens91]
Gary T. Leavens. Modular Specification and Verification of Object-Oriented
Programs. IEEE Software, 8(4):72-80, July 1991.

[Leavens96b]

Gary T. Leavens. An Overview of Larch/C++: Behavioral Specifications for
C++ Modules. In Haim Kilov and William Harvey (editors), Specification of
Behavioral Semantics in Object-Oriented Information Modeling (Kluwer Aca-
demic Publishers, 1996), Chapter 8, pages 121-142. An extended version is
Department of Computer Science, lowa State University, TR #96-01c, July
1996, which is available from the URL
‘ftp://ftp.cs.iastate.edu/pub/techreports/TR96-01/TR.ps.Z’".

[Leavens97c]
Gary T. Leavens. Larch/C++ Reference Manual. Version 5.14. Available in
‘http://www.eecs.ucf.edu/ leavens/larchc++.html’, October 1997.

[Leavens06b]

Gary T. Leavens. JML’s Rich, Inherited Specifications for Behavioral Subtypes.
In Zhiming Liu and He Jifeng (eds), Proceedings, International Conference on
Formal Engineering Methods (ICFEM’06), Macao, China, pages 2-36. Volume
4260 of Lecture Notes in Computer Science, Springer-Verlag, 2006. Also De-
partment of Computer Science, lowa State University, TR \#06-22, August
2006.

‘ftp://ftp.cs.iastate.edu/pub/techreports/TR06-22/TR.pdf’

[Ledgard80)]
Henry. F. Ledgard. A Human Engineered Variant of BNF. ACM SIGPLAN
Notices, 15(10):57-62, October 1980.

Bibliography 178

[Leino-Nelson-Saxe00]
K. Rustan M. Leino, Greg Nelson, and James B. Saxe. ESC/Java User’s Man-
ual. Technical Note 2000-02, Systems Research Center, October, 2000.

[Leino-etal00]
K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe, and Raymie
Stata. Extended Static Checking. Web page at
‘http://research.compaq.com/SRC/esc/Esc.html’.

[Leino95] K. Rustan M. Leino. Towards Reliable Modular Programs. PhD thesis, Cali-
fornia Institute of Technology, January 1995. Awvailable from the URL
‘ftp://ftp.cs.caltech.edu/tr/cs-tr-95-03.ps.Z".

[Leino95b] K. Rustan M. Leino. A myth in the modular specification of programs. KRML
63, November 1995. Obtained from the author (rustan@pa.dec.com).

[Leino98] K. Rustan M. Leino. Data groups: Specifying the modification of extended
state. OOPSLA ’98 Conference Proceedings. (ACM SIGPLAN Notices,
33(10):144-153, October 1998).

[Lerner91] Richard Allen Lerner. Specifying Objects of Concurrent Systems. School of
Computer Science, Carnegie Mellon University, CMU-CS-91-131, May 1991.
Available from the URL
‘ftp://ftp.cs.cmu.edu/afs/cs.cmu.edu/project/larch/ftp/thesis.ps.Z’ |}

[Liskov-Guttag86]
Barbara Liskov and John Guttag. Abstraction and Specification in Program
Development (MIT Press, Cambridge, Mass., 1986).

[Liskov-Wing93b]
Barbara Liskov and Jeannette M. Wing. Specifications and their use in defin-
ing subtypes. In Andreas Paepcke, editor, OOPSLA ’93 Proceedings. (ACM
SIGPLAN Notices 28(10):16-28, October, 1993.)

[Liskov-Wing94|
Barbara Liskov and Jeannette M. Wing. A Behavioral Notion of Subtyping.
ACM Transactions on Programming Languages and Systems, 16(6):1811-1841,
November 1994.

[Meyer92al
Bertrand Meyer. Applying “design by contract”. Computer, 25(10):40-51,
October 1992.

[Meyer92b]
Bertrand Meyer. FEiffel: The Language. Object-Oriented Series. Prentice Hall,
New York, N.Y., 1992.

[Meyer97] Bertrand Meyer. Object-oriented Software Construction. Prentice Hall, New
York, N.Y., second edition, 1997.

[Morgan-Vickers94]
Carroll Morgan and Trevor Vickers. On the refinement calculus. Springer-
Verlag, New York, N.Y., 1994.

Bibliography 179

[Morgan94]
Carroll Morgan. Programming from Specifications, second edition (Prentice-
Hall, 1994).

[Morris87] Joseph™M. Morris. A theoretical basis for stepwise refinement and the program-
ming calculus. Science of Computer Programming, 9(3):287-306, December
1987.

[Mueller-Poetzsch-Heffter00]
Peter Miiller and Arnd Poetzsch-Heffter. Modular Specification and Verification
Techniques for Object-Oriented Software Components. In Gary T. Leavens and
Murali Sitaraman (eds.), Foundations of Component-Based Systems, pages 137-
159. Cambridge University Press, 2000.

[Mueller-Poetzsch-Heffter00a]
Peter Miiller and Arnd Poetzsch-Heffter. A Type System for Controlling Rep-
resentation Exposure in Java. In S. Drossopoulou, et al. (eds.), Formal Tech-
niques for Java Programs, 2000. Technical Report 269, Fernuniversitat Hagen,
Available from
‘http://www.informatik.fernuni-hagen.de/pib5/publications.html’

[Mueller-Poetzsch-Heffter01a]
Peter Miiller and Arnd Poetzsch-Heffter. Universes: A Type System for Alias
and Dependency Control. Technical Report 279, Fernuniversitdt Hagen, 2001.
Available from
‘http://www.informatik.fernuni-hagen.de/pi5/publications.html’

[Mueller-Poetzsch-Heffter-Leavens03]
Peter Miiller, Arnd Poetzsch-Heffter, and Gary T. Leavens. Modular Specifica-
tion of Frame Properties in JML. Concurrency and Computation: Practice and
Experience, 15(2):117-154, February 2003. Also Technical Report TR #02-02,
Department of Computer Science, lowa State University, Ames, Iowa, 50011,
February 2002. Available from
‘ftp://ftp.cs.iastate.edu/pub/techreports/TR02-02/TR.pdf’

[Mueller-Poetzsch-Heffter-Leavens06]
Peter Miiller, Arnd Poetzsch-Heffter, and Gary T. Leavens. Modular Invariants
for Layered Object Structures. Science of Computer Programming, 62(3):253-
286, October 2006.
‘http://dx.doi.org/10.1016/j.scico.2006.03.001" Also Technical Report
424, ETH Ziirich, October 2003, revised March 2004, March 2005. Available
from
‘ftp://ftp.inf.ethz.ch/pub/publications/tech-reports/4xx/424.pdf’

[Mueller02]
Peter Miiller. Modular Specification and Verification of Object-Oriented Pro-
grams. Volume 2262 of Lecture Notes in Computer Science, Springer-Verlag,
2002.

[Nelson89] Greg Nelson. A Generalization of Dijkstra’s Calculus. ACM Transactions on
Programming Languages and Systems, 11(4):517-561, October 1989.

Bibliography 180

[Noble-Vitek-Potter9s]
James Noble, Jan Vitek, and John Potter. Flexible Alias Protection. In Eric Jul
(ed.), ECOOP 98 — Object-Oriented Programming, 12th European Conference,
Brussels, Belgium, pages volume 1445 of Lecture Notes in Computer Science,
pages 158-185. Springer-Verlag, New York, N.Y., 1998.

[Parnas72] D. L. Parnas. On the Criteria to be Used in Decomposing Systems into Modules.
Comm. ACM, 15(12):1053-1058, December 1972.

[Poetzsch-Heffter97]
Arnd Poetzsch-Heffter. Specification and Verification of Object-Oriented
Programs. Habilitationsschrift, Technische Universitaet Muenchen, 1997.
Available from the URL
‘http://wwweickel.informatik.tu-muenchen.de/persons/poetzsch/habil.ps.gz’ ||

[Jacobs-Poll01]
Bart Jacobs and Eric Poll. A Logic for the Java Modeling Language JML. In
Fundamental Approaches to Software Engineering (FASE’2001), Genova, Italy,
2001. Volume 2029 of Lecture Notes in Computer Science, Springer-Verlag,
2001. ‘http://www.cs.kun.nl/"erikpoll/publications/jmllogic.html’

[Raghavan-Leavens05]
Arun D. Raghavan and Gary T. Leavens. Desugaring JML Method Specifica-
tions. Technical Report #00-03a, Department of Computer Science, lowa State
University, Ames, lowa, 50011, April, 2000, revised May 2005. Available in
‘ftp://ftp.cs.iastate.edu/pub/techreports/TR00-03/TR.ps.gz’.

[Rioux-Chalin07]
F. Rioux and P. Chalin. Effective and Efficient Runtime Assertion Checking
for JML Through Strong Validity. Proceedings of the 9th Workshop on Formal
Techniques for Java-like Programs (FTfJP’07), Berlin, Germany, 2007.

[Rodriguez-etal05]
Edwin Rodriguez, Matthew B. Dwyer, Cormac Flanagan, John Hatcliff, Gary
T. Leavens, Robby. Extending JML for Modular Specification and Verification
of Multi-Threaded Programs. In Andrew P. Black (ed.), ECOOP 2005 — Object-
Oriented Programming 19th European Conference, Glasgow, UK, pages 551-
576. Volume 3586 of Lecture Notes in Computer Science, Springer Verlag, July
2005.

[Rosenblum95]
David S. Rosenblum. A practical approach to programming with assertions.
IEEE Transactions on Software Engineering, 21(1):19-31, January 1995.

[Ruby-Leavens00]

Clyde Ruby and Gary T. Leavens. Safely Creating Correct Subclasses with-
out Seeing Superclass Code. In OOPSLA 2000 Conference on Object-Oriented
Programming, Systems, Languages, and Applications, Minneapolis, Minnesota.
(ACM SIGPLAN Notices, 35(10):208-228, October, 2000.) Also Technical Re-
port #00-05d, Department of Computer Science, lowa State University, Ames,
Towa, 50011. April 2000, revised April, June, July 2000. Available in
‘ftp://ftp.cs.iastate.edu/pub/techreports/TRO0-05/TR.ps.gz .

Bibliography 181

[Ruby06]

Clyde Dwain Ruby. Modular subclass verification: safely creating correct sub-
classes without superclass code. Ph.D. Thesis, Department of Computer Sci-
ence, lowa State University. Also Technical Report #06-34, December 2006.
Available from the URL
‘ftp://ftp.cs.iastate.edu/pub/techreports/TR06-34/TR.pdf .

[Salcianu-Rinard05]

Alexandru Salcianu and Martin Rinard. Purity and Side Effect Analysis for
Java Programs. In Proceedings of the 6th International Conference on Veri-
fication, Model Checking and Abstract Interpretation. Paris, France January
2005. Available in
‘http://www.mit.edu/"salcianu/publications/vmcaiO5-purity.pdf’

[Shaner-Leavens-Naumann07]

[Spivey92]

Steve M. Shaner, Gary T. Leavens, and David A. Naumann. Modular Ver-
ification of Higher-Order Methods with Mandatory Calls Specified by Model
Programs Department of Computer Science, lowa State University, TR #07-
04a, March 2007, revised April 2007, which is available from the URL
‘ftp://ftp.cs.iastate.edu/pub/techreports/TRO7-04/TR.pdf’ .

J. Michael Spivey. The Z Notation: A Reference Manual, second edition,
(Prentice-Hall, Englewood Cliffs, N.J., 1992).

[Steyaert-etal96]

[Tan95]

[Watt91]

[Wills92b]

[Wing83]

[Wing87]

[Wing90a]

Patrick Steyaert, Carine Lucas, Kim Mens, and Theo D’Hondt. Issues in the
Design and Documentation of Class Libraries. In OOPSLA ’96 Proceedings.
(ACM SIGPLAN Notices, 31(10):268-285, October, 1996.)

Yang Meng Tan. Formal Specification Techniques for Engineering Modular
C Programs. International Series in Software Engineering (Kluwer Academic
Publishers, Boston, 1995). Also published as Formal Specification Techniques
for Promoting Software Modularity, Enhancing Documentation, and Testing
Specifications. Technical Report TR-619, MIT Lab. for Comp. Sci., June
1994.

David A. Watt. Programming Language Syntax and Semantics. Prentice Hall,
International Series in Computer Science, New York, 1991.

Alan Wills. Specification in Fresco. In Susan Stepney and Rosalind Barden
and David Cooper (eds.), Object Orientation in Z, chapter 11, pages 127-135.
Springer-Verlag, Workshops in Computing Series, Cambridge CB2 1LQ, UK,
1992.

Jeannette Marie Wing. A Two-Tiered Approach to Specifying Programs Tech-
nical Report TR-299, Mass. Institute of Technology, Laboratory for Computer
Science, 1983.

Jeannette M. Wing. Writing Larch Interface Language Specifications. ACM
Transactions on Programming Languages and Systems, 9(1):1-24, January
1987.

Jeannette M. Wing. A Specifier’s Introduction to Formal Methods. Computer,
23(9):8-24, September 1990.

Index

Index

!

L 32, 91
L 32, 91
n

L PR 33
B 29
%

e e 32, 91
e e 32, 91
&

B 32, 91
B e 16, 32, 91, 104
S 32, 91
9

L P 33

(.. 32,41, 46, 57, 78, 91, 93, 94, 95, 96, 97, 98, 99,
100, 101, 108, 109, 126

).. 32, 34, 41, 46, 57, 78, 91, 93, 94, 95, 96, 97, 98,
99, 100, 101, 108, 109, 126

k

. 27, 28, 29, 32, 34, 36, 88, 91, 106
) 34
K 3, 27, 28
K 32, 91
+

o 27, 32, 33, 91
b 32, 91
e 32, 91

182

.. 25,32, 37, 41, 45, 46, 49, 57, 79, 83, 87, 90, 91,
93, 101, 106

e 27, 32, 33, 91
R 32,91
T 32,91
S 32, 126
Alistsuffix ... 25
—seqsuffix ... 25
............... 32, 33, 36, 57, 87, 88, 91, 104, 106
.. 32, 106
.. 25
fojaval. ... 129
‘.java-refined’................ 141
CImLT 129
‘ojml-refined’ il 141
‘.refines-java'............... .. 141
‘.refines—jml’ 141
‘.refines-spec’........... ...l 141
CSPEC 141
‘.spec-refined’........... 141
Lo 27, 32,91
JH 27
JERK 28
JHRHQ 27, 141
J*¥+IDENTQot 27
J¥=Q . 141
J*=IDENTQcooiiiiniiiiiiaaan... 27
T 3,27
[/ 3
e 25
[27
[/H@ . 141
[/=0 . 141
170 3,27
T 32,91
P 32, 91, 108, 109, 113, 114
9

>

s... 4,26, 32, 36, 37, 45, 49, 52, 57, 60, 61, 62, 75,

76, 77, 78, 79, 81, 82, 83, 84, 85, 87, 88, 101,

Index

108, 109, 111, 112, 113, 114, 115, 116, 126,

141, 142

;, in quantifiers. 101
<

e 32,91
B 32, 106
SH= 32, 106
o 32, 141
RIESC> i 29
UESC> 29
</Jml> .. 29
/TML> . 29
D 32, 91, 105
e 32,91
DG PP 32,91
o 32,91
<=I=> . 32, 91, 105
K= 16, 32, 91, 105
Ko 32, 91, 105
KESC> it 29
RESC> .. 29
<IMI> .o 29
KIML> Lo 29
e 32, 41, 49, 60, 91, 101
S USEd e 62
e 32,91
i 16, 32, 91, 105
>

> 32,91
> 32,91
> 32,91
>D>E 32,91
> 32,91
b 32,91
?

O 32,91
Q

Qe 27, 29, 32, 41
Qk/ oo 3,27
@b/ 27
@, ignored at beginning of annotation line...... 28
QO . .. 32
Qauthor.......... ...t 29
Q@deprecated 29
Q@exception 29
Qparam.uiiiiii 29
Oreturn............ ... 29

183
QS . o vttt 29
@serial....... ... 29
@serialdata 29
@serialfield......... 29
OSINCEe . . ot 29
QthYows 29
QVEerSion.t 29
P 32, 50, 88, 91, 106
P 25
T 32, 50, 88, 91, 106
L 32, 91
T 32, 91
PPt 29
4
R PP 25
Lo 32, 37, 41, 49, 91, 104, 108, 124
R 32, 65, 125
Yoo 32, 37, 41, 49, 91, 104, 108, 124
N 33
N 33
N 33
\, convention for expression keywords 5
NN 33
\D 33
\bigint 30, 140
\bigint_math 30
\Ndurationooiiiiiniina.. 30, 98
\elemtypecoooviiiiiiiiiii... 30, 99
\everything 30, 57, 83, 84, 85, 106
\NexistsS. ..o 30, 101, 102
Nforall.........ovviiuniinnnnennn.. 30, 101, 102
Nfresh ..ot 30, 97
\fresh, and constructor specifications......... 97

\NIntO .o 30, 88

Index

\invariant_for......................... 30, 101
\is_initialized........................ 30, 100
\java_math 30
\IDINEE . v v e e 30, 101
A\IDLIPOS « vt 30, 101
NlockSet . oovv e 30, 100
\Maxcoovvvvnni. 5, 30, 100, 101, 102
\min............oiiii 30, 101, 102
A <P 33
\nonnullelements 30, 99
\not_assigned........................ 30, 94
\not_modified................... ... 30, 95
\not_specified........... 30, 66, 76, 84, 85, 106
\not_specified, for requires clauses 76
\not_specified, meaning of 66
\nothing................... 5, 30, 79, 83, 84, 106
NDOWATTL. « o\ vttt e e e e e e 30
\DOWATTL_OP .« v vt e e e e e 30
\num_of 30, 101, 103
NOLd oo 9, 30, 93
\old, in duration-clause 86
\old, in working-space-clause................. 85
\only_accessed..........couuveiunnneon.. 30, 95
\only_assigned.......................... 30, 96
\only_called.........cvvuuvuiunnennnn.n. 30, 96
\only_captured.......................... 30, 97
\PEeT - ittt 30, 133, 135
\PLE oot 30, 93, 94
\product.....covvi 30, 101, 102
1 33
\reach . ..ottt 30, 97
\readonly................ouiaaa. . 30, 133, 135
Nreal ..ot 30, 140
NT@D - e 30, 133, 134
\reSult . .ovv e 5, 30, 93
\result, in duration-clause................... 86
\result, in working-space-clause.............. 85
\safe_math 30
\SAME . .ot 30, 76
\same, semantics of 76
\same, used in a requires clause............... 76
\Space ...ttt 30, 98
\such_thato ... 30, 60
N 30, 101, 102
N e 33
NEYPE « v v et e e 30, 100
NTYPE ..o 30, 50
\typeof ..o 30, 99
A 33
AN -+ 30
NWATIL_OP e« et tte et et e e e 30
\working_space................c.c.ooooo... 30, 98

L e 32, 91, 104
e 32, 91
L e 32, 65, 125

184
Ll e 16, 32, 91
P 32,91
0
0 29, 33
O et 33
OX 33
1
1 29, 33
2
D 29, 33
3
B 29, 33
4
o 29, 33
5%
B 29, 33
6
B 29, 33
7
AP 29, 33
8
B 29, 33
9
O 29, 33
A
B 33
e 33
BmZ e 29
A-Z 29
abrupt-behavior-keyword, defined 125
abrupt-behavior-keyword, used............. 125
abrupt-spec-case, defined 125

Index

abrupt-spec-case, used 125
abrupt_behavior........................ 30, 125
abrupt_behaviour........................... 30
abstract il 30, 39
abstract algorithm 122
abstract data type..........., 2,8
abstract field 11
abstract fields L 2
abstract value L 8
abstract value, of an ADT 2
access control rules o L 12
access control, for specification cases 64
access control, in JML 12
access control, in lightweight specifications. 13
access path...... 15
accessible....................... 30, 68, 70, 83
accessible clause L 83
accessible clause, omitted..................... 84
accessible-clause, defined 83
accessible-clause, used 65, 125
accessible-keyword, defined 83
accessible-keyword, used...................... 83
accessible_redundantly................. 30, 83
acknowledgments 9
addition, quantified see \sum................. 102
additive-expr, defined 91
additive-expr, used.............. 91
additive-op, defined, 91
additive-op, used 91
AD T . 2
alias control 54
alias control, universe type system for........ 133
aliased location.............................. 15
aliases ... 15
AlSO .. oiii i 30, 63, 65, 120, 125
also, former use in separate files changed. 143
also, in separate files 130
alternative-statements, defined............... 124
alternative-statements, used 124
and-expr, defined 91
and-expr, used. i 91
annotation 27
annotation comments 3
annotation context.............., 12
annotation keys, syntax 27
annotation markers, syntax, 27
annotation, Java.............. 41
annotation, JML......... 27
annotation-key 28
annotation-key, defined....................... 27
annotation-key, used 27
annotation-marker, defined 27
annotation-marker, defined, deprecated 141
annotation-marker, used...................... 26
annotations and tools 28
annotations vs. comments.................... 28

annotations, and documentation comments 28
annotations, splitting across lines 28

185
arbitrary precision arithmetic types.......... 140
Arnold 1
array types, default ownership modifiers for... 137
array types, ownership modifiers for.......... 136
array, element type expression 99
array, specifying elements are non-null......... 99
array-decl, defined 91
array-decl, used............ 91
array-initializer, defined................... 49, 91
array-initializer, used 49, 91
assert ... 30, 113
assert,in JML vs. Java................. ... 113
assert-redundantly-statement, defined 113
assert-redundantly-statement, used........... 113
assert-statement, defined 113
assert-statement, in JML vs. Java............ 113
assert-statement, used....................... 108
assert_redundantly 30, 113
assertion, expressions for usein............... 90
assertions, and exceptions 15
assertions, validity of................... 15
assignable 4, 5, 30, 68, 70, 83
assignable clause 4, 83
assignable clause, omitted 83
assignable clauses, and information hiding 87
assignable clauses, and model fields 83
assignable, in comparing specifications........ 119
assignable-clause, defined 83
assignable-clause, used 125
assignable-keyword, defined 83
assignable-keyword, used 83
assignable_redundantly................. 30, 83
assignbable-clause, used 65
assignment-expr, used 91, 114
assignment-op, defined 91
assignment-op, used 91
ASSUME . . ovot ettt e e e 30, 114
assume-keyword, defined 114
assume-keyword, used 114
assume-statement, defined 114
assume-statement, used 113, 124
assume_redundantly 30, 114
assuming, an invariant 53
augmented pre-state 69
AXIOM .o vt 30, 61
axiom, frame 83
axiom-clause, defined 61
axiom-clause, used 52
B
Do 33
B o 33
Back ... 8, 122
backslash 33
backspace 33
Backus......... ... 25
Baker............... 1, 7,12, 13, 15, 46, 118, 120

Index

Bandera............ 7
behavior 2
behavior, 12, 30, 67, 68
behavior specification cases, syntax and semantics
Of o 67
behavior, British spelling of................... 67
behavior, sequential oo 6
behavior-keyword, defined 67
behavior-keyword, used 67
behavior-keyword, used 125
behavior-spec-case, defined 67
behavior-spec-case, used 67
behavioral interface specification............... 1
behaviourcoiiiiiin... 30, 67
benefits, of JML 6
big integer type....... ... 140
blank 26
BNF notation 25
body of a quantifier......................... 102
body, in quantifier 101
body, of method, in separate files 130
body, of quantifier 5
body, of refining statement 115
boolean 30, 91
boolean-literal, defined 33
boolean-literal, used 33
Borgida......... ... 2
bound variable, in quantifier................. 101
bound variables, modifiers for................ 103
bound-var-modifiers, defined 103
bound-var-modifiers, used 75, 101, 104
Boyland........... 70
break 30, 108
break, loops containing 111
breaks 30, 126
breaks-clause, defined 126
breaks-clause, used.......................... 125
breaks-keyword, defined 126
breaks-keyword, used 126
breaks_redundantly 30, 126
British, spelling of behavior................... 67
Bichi..........ooo i 122
Buechi........ 122
built-in-type, defined 91
built-in-type, used 50, 91
Burdy............... 1,6,7
DYt oo 30, 91

C e e 33
C ot 33
C++-style-comment, defined................... 27
C++-style-comment, used 27
C-Style comment 27
C-style-body, defined 27
C-style-body, used 27

C-style-comment, defined 27

186
C-style-comment, used 27
C-style-end, defined 27
C-style-end, used 27
call, post-state of 69
call, pre-state of 69
callableccvvviiunenn.... 30, 68, 70, 84
callable clause 84
callable clause, omitted....................... 84
callable-clause, defined 84
callable-clause, used 65, 125
callable-keyword, defined 84
callable-keyword, used 84
callable-methods-list, defined 84
callable-methods-list, used 84
callable_redundantly 30, 84
captured 97
Capturesovvviiina. 30, 68, 70, 84
captures clause 84
captures clause, omitted...................... 85
captures-clause, defined 84
captures-clause, used 65, 125
captures-keyword, defined 84
captures-keyword, used 84
captures_redundantly 30, 84
carriage return. 26, 27, 33
carriage-return, defined....................... 26
carriage-return, used 26
CASE Lottt 30, 108
cast expressions, default ownership modifiers for
types in...........oo i 137
casts, and ownership types 139
catch i 30, 108
Chalin 15, 43, 140
changes, incompatible....................... 143
char 30, 91
character-literal, defined...................... 33
character-literal, used 33
Cheon........ooovviiiiiiiiina. .. 1,2,3,7,11
ChooSe . ..o vi i 30, 124
choose_if 30, 124
claim, procedure.............. 119
claims, about a specification................. 118
ClasSS vt 30, 37, 91
class declaration 37
class declarations 37
class initialization predicate 100
class invariant, see instance invariant.......... 56
class, inheritance 37
class, modifiers for declarations of............. 38
class-block, defined 37
class-block, used.......................... 37,91
class-declaration, defined 37
class-declaration, used 37, 45
class-extends-clause, defined 37
class-extends-clause, used..................... 37
class-initializer-decl, defined 50
class-initializer-decl, used 45
Clifton. ... 7

Index

COA oottt 30, 67, 72, 73, 124
code contract......... ... 127
code, modifier, semantics of 127
COAC. .ottt e 127
code_bigint_math................. 30, 38, 39, 43
code_java_math................... 30, 38, 39, 43
code_safe_math................... 30, 38, 39, 43
Cohen............. o i 102, 103
Cok oo 168
comment, defined 27
comment, syntax of 27
comment, used i 26
comments vs. annotations.................... 28
comments, annotations in 3
oo} 1 70
commit point......... L il L 70
compilation unit............ L 35
compilation unit, and public types 35
compilation unit, file name for................ 35
compilation unit, mutual recursion in.......... 35
compilation unit, satisfaction of............... 35
compilation-unit, defined 35
completely omitted specification 66
completeness, of method specifications.......... 5
completeness, of specification 4
compound-statement, defined 108
compound-statement, used 45, 50, 108, 124
concepts, fundamental 11
concrete field 11
concurrency, lack of support in JML............ 6
conditional-expr, defined 91
conditional-expr, used 91
COMST + vttt et 30, 39
constant, defined 91
constant, usedl 91
constrained-list, defined 57
constrained-list, used 57
constraintiiiiiii., 30, 57
Constraint 58
constraint, instance vs. static................. 59
constraint, static vs. instance................. 59
constraint-keyword, defined 57
constraint-keyword, used 57
constraint_redundantly................. 30, 57
constraints, vs. helper..................... ... 42
CoOnStIrUCLOTrot 30, 45
constructor specification...................... 63
constructor specifications, and \fresh......... 97
constructor, and invariants 53
constructor, default, specification of 66
constructor, helper.................... 48
constructor, model 46
constructor, pure 47
context, ownership.......................... 134
continue.............. 30, 108, 112
CONBINUES ..o v v vttt 30, 126
continues-clause, defined 126
continues-clause, used 125

187
continues-keyword, defined 126
continues-keyword, used 126
continues_redundantly................. 30, 126
Corbett 7
current ownership context 135
cycle, virtual machine............. 98
D
P 33
1 33
Daikon............. . 1,7, 168
data group 87
datatype 8
debug......... ... 116
debug-statement, defined 116
debug-statement, used 113
decimal-integer-literal, defined 33
decimal-integer-literal, used................... 33
decreasesiiiiiii 30, 112
decreases_redundantly................. 30, 112
decreasing................, 30, 112
decreasing-keyword, defined 112
decreasing-keyword, used 112
decreasing_redundantly................ 30, 112
default 30, 108
default access. ... 12
default constructor, specification of............ 66
default ownership modifiers for types......... 137
default signals clause, and RuntimeExceptions
.. 80
defaults, for lightweight specification cases. 66
depends, replaced by in and maps............ 142
deprecated syntax 141
description, defined 29
description, used 29
design, documentation of 7
destructor, and invariants 53
deterministic, pure method 48
Dhara 38, 89, 122, 128
Dietl.................. ... 30, 35, 133, 134, 138
Aigit . oo 33
digit, defined.......... 29, 33
digit,used 29, 33
digits, defined o 33
digits,used 33
dim-exprs, defined 91
dim-exprs, used i 91
dims, defined 50
dims, used 45, 46, 49, 50, 57, 91, 101
Directory ...t 122
diverges 30, 68, 69, 81
Diverges......... ..o 82
diverges clause................... 81
diverges clause, omitted 81
diverges-clause, defined....................... 81
diverges-clause, used..................... 65, 125

diverges-keyword, defined.................. ... 81

Index

diverges-keyword, used 81
diverges_redundantly 30, 81
QO 30, 109
doc-atsign, defined 29
doc-atsign, used 29
doc-comment, defined 28
doc-comment, used 26, 28, 37, 45, 49
doc-comment-body, defined................... 29
doc-comment-body, used 28
doc-comment-ignored, defined 28
doc-nl-ws, defined......................... ... 29
doc-non-empty-textline, defined 29
doc-non-empty-textline, used 29
doc-non-nl-ws ,used 29
doc-non-nl-ws, defined 29
doc-non-nl-ws, used 29
documentation comment, lexical grammar within
.. 29
documentation comments 28
documentation comments, and annotations 28
documentation, of design decisions 7
double 30, 91
double quote 33
durationoii... 30, 68, 71, 85
duration, specification of 98
duration-clause, defined 85
duration-clause, used 65, 125
duration-expression, defined 98
duration-expression, used 92
duration-keyword, defined 85
duration-keyword, used....................... 85
duration_redundantly 30, 85
dynamic type of an expression 99

= 33
B o 33
Fiffel ... 1,8
element type, of array, expression 99
element-value, defined 41
element-value, used 41
element-value-array-initializer, defined 41
element-value-array-initializer, used 41
element-value-pair, defined 41
element-value-pair, used 41
elemtype-expression, defined 99
elemtype-expression, used 92
LS . it 30, 108, 124
empty range. 102
end-jml-tag, defined 29
end-jml-tag, used 29
end-of-line, defined 26
end-of-line, used 26, 27, 29
ENSUTES .. oo voeveeeeeeene 4, 30, 68, 70, 77
ensures clause 4
ensures clause, omitted....................... T

ensures-clause, defined 7

188
ensures-clause, used 65, 125
ensures-keyword, defined 77
ensures-keyword, used............ T
ensures_redundantly 30, 77
equality-expr, defined 91
equality-expr,used........... 91
equivalence-expr, defined 91
equivalence-expr, used........................ 91
equivalence-op, defined 91
equivalence-op, used 91
Ernst..... ..o 7
Errors and method semantics................. 69
ESC/Java 1, 7, 14, 28, 100
ESC/Java, differences from JML............. 168
ESC/Java2 14, 28
ESC/Java2, differences from JML............ 168
escape-sequence, defined 33
escape-sequence, used 33
establishing, an invariant 53
example i 30, 120
example, defaults for........................ 120
example, defined 120
example, heavyweight 120
example, lightweight 120
example, used 120
examples, checking.......................... 120
examples, defined 120
examples, meaning. 120
examples, semantics. 120
examples, specification of.................... 120
examples, used 118
exceptional postcondition 77,79
exceptional-behavior-keyword, defined 73
exceptional-behavior-keyword, used 73
exceptional-behavior-keyword, used 125
exceptional-behavior-spec-case, defined 73
exceptional-behavior-spec-case, used........... 67
exceptional-example-body, defined 120
exceptional-example-body, used.............. 120
exceptional-spec-case, defined 73
exceptional-spec-case, used 73, 120, 125
exceptional_behavior................ 12, 30, 73
exceptional_behaviour.................. 30, 73
exceptional_example 30, 120
exceptional_example, used 120
exceptions in assertions 15
exceptions, and method specification semantics
.. 70
exceptions, avoiding in assertion evaluation 16
exceptions, prohibiting 4
exceptions, specifying when they must be thrown
.. 79
exclusive-or-expr, defined 91
exclusive-or-expr, used 91
executability of quantified expressions........ 103
experimental, features of JML 18
explicitly nullable............................ 44
exponent-indicator, defined 33

Index

exponent-indicator, used 33
exponent-part, defined 33
exponent-part, used 33
exposure, of representation 134
EXPIESSION . . o v v vttt 90
expression, boolean-valued.................... 90
expression, defined 91
expression, used 49, 90, 91, 98, 108, 109, 113,
114, 116
expression-list, defined 91
expression-list, used 91, 109
expressions, and exceptions................... 15
expressions, precedence of 90
expressions, semantics in JML 15
@XSUTES .ottt ettt 30, 78
exsures clause, default for 79
exsures clause, omitted................ 79
exsures_redundantly 30, 78
extending-specification, defined 63
extending-specification, used 63
extends il 30, 37
extends, for classes........................... 37
extends, for interfaces........................ 38
extension of interfaces........................ 37
extract.............. ... 30, 39, 124
extract, in method declaration............... 45

P 33
F o 33
false ... 30, 33, 91
features, level O............ 18
features, level 1.............................. 21
features, level 2........ 22
features, level 3...... 24
features, level C 24
features, level X 24
field ..o 30, 49
field access, and ownership typing rules....... 138
field declarations, in separate files............ 130
field initializers............ 130
field, defined 45
field,used 37
file name for a compilation unit............... 35
filename suffixes 129
final. ... 30, 39, 46, 109
final andmodel............... 42
final, modifier in separate file.......... 129, 130
finally ... i 30, 108
Fitzgerald 8
float ..o 30, 91
float-type-suffix, defined 33
float-type-suffix, used 33
floating-point-literal, defined 33
floating-point-literal, used 33
0T 30, 57, 109

for-init, defined 109

189
for-init, used 109
for_example................ 30, 120
forall ..., 30, 68, 69, 75
forall-var-declarator, defined 75
forall-var-declarator, used 75
forall-var-decls, defined 75
forall-var-decls, used 75
formal documentation......................... 6
formal parameters, and ownership typing rules
....................................... 138
formal specification, reasons for using 6
formals, defined.............................. 46
formals,used 45
formfeed 26
frame axiom 2,5, 83
frame axiom, omitted 83
Freitas, Leo o 9
Fresco ... 2
fresh predicate................ 97
fresh, and constructor specifications........... 97
fresh-expression, defined 97
fresh-expression, used 92
functional abstraction........................ 60
fundamental concepts 11
G
generalized quantifier 102
generic-spec-body, defined 65
generic-spec-body, used 65
generic-spec-case, defined 65
generic-spec-case, used 65, 67, 72, 73
generic-spec-case-seq, defined 65
generic-spec-case-seq, used. 65
generic-spec-statement-body, defined 125
generic-spec-statement-body, used 125
generic-spec-statement-case, defined 125
generic-spec-statement-case, used 114, 125
generic-spec-statement-case-seq, defined 125
generic-spec-statement-case-seq, used 125
ghost...........coooii.... 11, 30, 39, 42, 49, 109
ghost and static, in interfaces................. 42
ghost features 11
ghost fields........ 11
ghost fields, and namespace................... 11
ghost fields, in interfaces 42
ghost vs. model 42
ghost, modifier in separate file.......... 130, 131
GhostLocalscoviuiinninnenn.... 109
goals, of JML 1,7
Gosling 1, 12, 15, 32, 33, 35, 37, 38, 40
BOLO .ot 30
grammar notations............ 25
grammar, conventions for lists 25
grammar, start rule. oo o o oL 35
Greene, Robin................ 9
grey-box specification 122
GTIES oot 15

Index

group, data i 87
group-list, defined 87, 88
group-list,used. 87, 88
group-name, defined 87, 88
group-name, used 87, 88
group-name-prefix, defined 87
group-name-prefix, used 87
guarded-statement, defined 124
guarded-statement, used 124
guarded-statements, defined 124
guarded-statements, used 124
guidelines, for writing assertions 16
Guttag. ... 1,5, 7,8

Hall ... 7
handbook, for LSL............................ 8
Handbook, for LSL 8
handler, defined 108
has ... 104
Hayes 2,8
Heavyweight 66
heavyweight example........................ 120
heavyweight specification 4,12
heavyweight specification case 67
heavyweight specification, vs. lightweight 4
heavyweight-spec-case, defined 67
heavyweight-spec-case, used 64
helper..................... 30, 39, 42, 48, 53, 55
helper constructor, and invariants............. 53
helper method, and invariants 53
helper, and invariants 42
helper, and private............. 42
hence-by-keyword, defined 116
hence-by-keyword, used 116
hence-by-statement, defined 116
hence-by-statement, used 113
hence by i 30, 116
hence_by_redundantly.................. 30, 116
hex-digit, defined 33
hex-digit, used................... 33
hex-integer-literal, defined 33
hex-integer-literal, used 33
hex-numeral, defined 33
hex-numeral, used 33
higher-order method specification 122
history constraint 38, 89
history constraints, vs. helper................. 42
history-constraint, defined 57
history-constraint, used 52
Hoare 8, 11
Holmes 1
Horning 1,7, 8
Huisman 7
Hussain, Faraz................................ 9

190

I

ident, defined 29

ident, used ... 26, 36, 37, 41, 45, 46, 49, 57, 61, 62,
78, 87, 88, 91, 93, 101, 104, 106, 108, 109, 126

identifiers 29
if 30, 61, 62, 84, 85, 108
ignored-at-in-annotation, defined 27
ignored-at-in-annotation, used 27
immutable 39
immutable, vs. pure 39
implementation of interfaces.................. 37
implements...............c.ooiiiiiia... 30, 37
implements, for classes 38
implements-clause, defined.................... 37
implements-clause, used 37
implication, redundant 118
implication, see ==>............... 105
implications, defined 118
implications, used........................... 118
implicitly nullable 44
ImplicitOld 81
implies-expr, defined 91
implies-expr, used............. 91
implies-non-backward-expr, defined............ 91
implies-non-backward-expr, used 91
implies_that........................... 30, 118
import ... 30, 36
import declaration........................... 36
import, model 36
import-declaration, defined 36
import-declaration, used...................... 35
T 30, 87
in-group-clause, defined 87
in-group-clause, used 87
in-keyword, defined 87
in-keyword, used........... 87
in_redundantly.......................... 30, 87
inclusive-or-expr, defined 91
inclusive-or-expr, used. 91
incompatible changes 143
InconsistentMethodSpec 73
InconsistentMethodSpec2 74
infinite precision numeric types 140
influences, on JML evolution................... 7
informal descriptions......................... 34
informal-description, defined 34
informal-description, used 26, 92, 106
information hiding, in assignable clauses. 87
inheritance 37
inheritance, multiple 38
inheritance, of JML features............... 38, 89
inheritance, of model methods from interfaces.. 38
inheritance, of specifications............... 38, 89
inherits 37
initialization, specification that a classis 100
initializer L. 30
initializer, defined 49, 91

initializer, separate files.................. 131

Index

initializer, used 49
initializer,used................uiiiiin.. 50
initializer, used 91
initializer-list, defined 49
initializer-list, used.................. 49
initializers, for fields field.................... 130
initializers, separate files 131
initially i 30, 61
initially, clause and separate files.......... 131
initially-clause, defined 61
initially-clause, used 52
instance 15, 30, 39, 42, 50, 56, 59
instance constraint.............. 59
instance features................ 15
instance invariant 53, 56
instance vs. final, in interfaces................ 50
instance vs. static oL 50
instanceof L. 30, 91
instanceof, and ownership types............ 139

instanceof, default ownership modifiers for .. 137
instanceof, default ownership modifiers for types

I 137
int. ..o 30, 91
integer-literal, defined 33
integer-literal, used 33
integer-type-suffix, defined 33
integer-type-suffix, used 33
interface 1
interface..........., 30, 37
interface declaration 37
interface declarations......................... 37
interface specification 1
interface, field 1
interface, method 1
interface, modifiers for declarations of 38
interface, type 1
interface-declaration, defined.................. 37
interface-declaration, used................. 37, 45
interface-extends, defined 37
interface-extends, used 37
interfaces, and default modifier for fields....... 42
interfaces, and ghost fields................. ... 42
interfaces, and model fields 42
IntHeap.ovvuiini i 2
invariant L 30, 52
invariant 53
Invariant i 52
invariant, and helper constructors............. 48
invariant, and helper methods 48
invariant, assuming 53
invariant, defined 52
invariant, enforcement........................ 54
invariant, establishing........................ 53
invariant, for an object........... 101
invariant, instance 53
invariant, instance vs. static.................. 56
invariant, preserving 53

invariant, reasoning about.............. 54

191

invariant, static........... 53
invariant, static vs. instance.................. 56
invariant, used 52, 124
invariant-for-expression, defined.............. 101
invariant-for-expression, used 92
invariant-keyword, defined 52
invariant-keyword, used 52
invariant_redundantly.................. 30, 52
invariants, and modularity................. ... 54
invariants, vs. helper....................... .. 42
is-initialized-expression, defined 100
is-initialized-expression, used 92
isAssignableFrom, method of java.lang.Class

....................................... 105
ISO . o 8
J
Jackson............ 127
Jacobs. 7,9
Java ... 1
Java annotation ool 41
‘java’ filename suffix........... 129
Java modifiers......... o 40
Java reserved words......... L 30
Java virtual machine error, and method semantics

.. 69
Java vs. JML-only names, resolving conflicts... 11
Jjava-annotation, defined 41
Jjava-annotation, used 39, 41
Jjava-annotations, defined 41
Jjava-annotations, used. 36
Jjava-literal, defined 33
java-literal, used.............. 26, 91
Jjava-operator, defined 32
Jjava-operator, used. 32
java-reserved-word, defined 30
java-reserved-word, used...................... 30
Jjava-separator, defined 32
Jjava-separator, used i 32
Jjava-special-symbol, defined 32
Jjava-special-symbol, used 32
Jjava-universe-reserved, defined 30
java.lang.Class, and \TYPE 50
java.lang.Class, vs. \type() 100
JAVadOoC . v 29
JML annotation 27
‘jml’ filename suffix...... ... o oo oL 129
JML keywords, where recognized.............. 30
JML status and plans 7
JML web site...........oo i 1
JML, evolution 7
JML, plans. ... 7
JML, status o 7
Jjml-annotation-statement, defined 113
jml-annotation-statement, used 108
jml-compound-statement, defined 124
jml-compound-statement, used............... 124

Index

Jjml-data-group-clause, defined 87
Jjml-data-group-clause, used 49
jml-declaration, defined 52
jml-declaration, used 45
jml-keyword, defined 30
jml-keyword, used, 30
Jjml-modifier, defined 39
Jjml-modifier, used 39
JML-only vs. Java names, resolving conflicts... 11
Jjml-predicate-keyword, defined 30
jml-predicate-keyword, used 30
jml-primary, defined 92
jml-primary, used........... 91
jml-special-symbol, defined 32
jml-special-symbol, used 32
jml-specs, defined 29
jml-specs, used i 29
jml-statement, defined 124
jml-statement, used 124
jml-tag, defined........... 29
jml-tag,used 29
jml-universe-keyword, defined 30
jml-universe-keyword, used 30
jml-universe-pkeyword, defined............. ... 30
jml-universe-pkeyword, used 30
gmle ..o 7
JMIC . 103
jmlc, warnings for non-executable assertions.. 103
jmldoc.... ... 7
Jones ... 8
JOy o 32, 33

key, negative 28
key, positive.......... .. 28
keys, for conditional annotation, syntax 27
keyword, defined 30
keyword, used 26
keywords.o 29
Khurshid........... ... 127
Kiczales........ ... 127
Kiniry ... o 168

Lo 33
L 33
label expression (negative)................... 101
label expression (positive) 101
Lamping 127
Lamport 1
language level 0 features...................... 18
language level 1 features...................... 21
language level 2 features...................... 22
language level 3 features...................... 24
language level C features..................... 24

language level X features..................... 24

192
language levels 17
language levels, and learning JML............. 17
language levels, and tools.................. ... 18
Larch.... ... 1,8
Larch Shared Language (LSL) 1
Larch style specification language 1
Larch/C++ 8
Larseno i 8
Iblneg-expression, defined.................... 101
Iblneg-expression, used 92
Iblpos-expression, defined 101
Iblpos-expression, used 92
learning JML, and language levels............. 17

Leavens ... 1,4, 7,8, 12, 13, 15, 16, 38, 42, 46, 54,
89, 118, 120, 122, 127, 128, 134

Ledgard...... 25
Leino 1,7,9, 11, 14, 28, 43, 50, 100, 168
letter, defined 29
letter, used 26, 29
letter-or-digit, defined 29
letter-or-digit, used 29
level 0, JML features 17, 18
level 1, JML features 17, 21
level 2, JML features 17, 22
level 3, JML features 17, 24
level C, JML features..................... 17, 24
level X, JML features..................... 17, 24
levels, of language support.................... 17
lexeme, defined 26
lexeme, used 26
lexical conventions........................... 26
lexical-pragma, defined 26
lexical-pragma, used 26
Lightweight 65
lightweight example......................... 120
lightweight specification 12
lightweight specification case.................. 65
lightweight specification, example of 5
lightweight specification, vs. heavyweight 4
lightweight specifications and access control.... 13
lightweight-spec-case, defined 65
lightweight-spec-case, used. 64
Liskov ... 5,8
list vs. sequence, in grammar................. 25
literals 33
local-declaration, defined 108
local-declaration, used 108, 109
local-modifier, defined 109
local-modifier, used 109
local-modifiers, defined 109
local-modifiers, used 108
location 5, 15, 87
locking order 106
locks held by a thread....................... 100
lockset-expression, defined 100
lockset-expression, used 92
logic, three-valued 15
logic, two-valued.............. 15

Index

logical implication, see ==> 105
logical rules, valid in JML 15
logical-and-expr, defined...................... 91
logical-and-expr, used 91
logical-or-expr, defined 91
logical-or-expr, used.......................... 91
1ODE oot 30, 91
LOOP ..o 7
loop, exiting viabreak 111
loop-invariant, defined 111
loop-invariant, used 109
loop-stmt, defined 109
loop_invariant......................... 30, 111
loop_invariant_redundantly............ 30, 111
LS 1
LSL Handbook 8

M

maintaining............... 30, 111
maintaining-keyword, defined 111
maintaining-keyword, used 111
maintaining_redundantly............... 30, 111
MAPS .« o tvee et 30, 88
maps-array-ref-expr, defined 88
maps-array-ref-expr, used..................... 88
maps-into-clause, defined 88
maps-into-clause, used 87, 88
maps-keyword, defined 88
maps-keyword, used..........., 88
maps-member-ref-expr, defined 88
maps-member-ref-expr, used 88
maps-spec-array-dim, defined 88
maps-spec-array-dim, used. 88
maps_redundantly 30, 88
Marinovo.uin 127
matching, of implemetations to model programs
....................................... 123
max of a set of lock objects.................. 100
max-expression, defined 100
max-expression, used 92
maximum, see \maxc...oeuunn.... 102
meaning of expressions in JML 15
measured by clause 84
measured-by-keyword, defined 84
measured-by-keyword, used 84
measured-clause, defined 84
measured-clause, used 65, 125
measured_by L. 30, 68, 84
measured_by_redundantly................ 30, 84
member-decl, defined......................... 45
member-decl, used L. 45
member-field-ref, defined 88
member-field-ref, used 88
method 30, 45
method body, in separate files 130
method call, space used by 98

method calls, and invariants 53

193
method calls, and ownership typing rules..... 138
method declaration, in separate files.......... 130
method refinement 129
method specification 63
method specification semantics, and exceptions
.. 70
method specification, omitted................. 66
method, behavior of........................... 2
method, helper, 48
method, model 46
method, pure................ 46
method-body, defined 45
method-body, used 45
method-decl, defined 45
method-decl, used 45
method-head, defined 45
method-head, used 45
method-name, defined 57
method-name, used 57
method-name-list, defined 57
method-name-list, used 57, 84, 96
method-or-constructor-keyword, defined 45
method-or-constructor-keyword, used.......... 45
method-ref, defined 57
method-ref, used............................. 57
method-ref-rest, defined 57
method-ref-rest, used......................... 57
method-ref-start, defined 57
method-ref-start, used........................ 57
method-specification, defined 63
method-specification, in documentation comments
.. 29
method-specification, used 29, 45, 50
methodology, and JML........................ 6
Meyer..... .o 1,5,8
MICTOSYNtaAX . . oot 26
microsyntax, defined L. 26
minimum, see \min 102
model............. 3, 11, 30, 36, 38, 39, 41, 46, 49
model and final........... 42
model and pure, constructors................. 46
model and pure, methods..................... 46
model and static, in interfaces 42
model classes, vs. pure classes 48
model constructor 46
model features............. 11
model features, and namespace issues 11
model field............... 3,11
model fields 4
model fields, from spec_protected............ 14
model fields, from spec_public............... 14
model fields, in interfaces..................... 42
model fields, of an ADT 3
model import......... ... 11
model import declaration..................... 36
model import, vs. import..................... 36
model method 11, 46
model method, in separate files 130

Index

model methods, vs. pure methods............. 48
model program, ideas behind 122
model program, matching of 123
model program, via extract.................. 45
model type........... 11
model type, vs. pure type used for modeling ... 39
model vs. ghost 41
model, in separate files...................... 130
model, meaning of oL 11
model, modifier in separate file............... 130
model, modifier in separate files.............. 130
model, type declaration modifier 39
model-oriented specification 1
model-prog-statement, defined 124
model-prog-statement, used 108
model-program, defined 124
model-program, used 64
model_program.......................... 30, 124
modifiable............ 30, 83
modifiable clause 83
modifiable clause, omitted 83
modifiable_redundantly................. 30, 83
modifier ordering, suggested 40
modifier, defined 39
modifier, general description of 39
modifier, pure 41
modifier, used 39
modifiers for bound variables 103
modifiers, defined 39
modifiers, for classes 38
modifiers, for interfaces....................... 38
modifiers, for type declarations 38
modifiers, Java 40
modifiers, summary of 163
modifiers, used 37, 45, 49, 52, 109
modifies L 30, 83
modifies clause o 83
modifies clause, omitted 83
modifies_redundantly 30, 83
monitored 30, 39, 43, 50
monitors-for-clause, defined 62, 141
monitors-for-clause, used 52
monitors_for 30, 62, 141
MoOrgan.covvvin e 8, 122
MOTTIS « . ovev e 122
Mueller, 13, 54, 134
Miller................ 9, 30, 35, 42, 133, 134, 138
mult-expr, defined 91
mult-expr, used 91
mult-op, defined 91
mult-op, used. 91
multiline comment, see C-Style comment 27
multiple inheritance................... 38
multiplication, quantified, see \product 102

194

N

name clash, between Java and JML-only names,

resolving......... i 11
name, defined 36
name, used 36, 37, 41, 45, 50
name-list, defined 37
name-list, used 37
name-star, defined 36
name-star, used.......... ... 36
namespace, for ghost fields 11
namespace, for model features 11
native 30, 39
Naumanno.oooiiiiiinnnnn... 122
Naur. ... 25
negative key 28
negative-key, defined 27
negative-key, used 27
Nelson..................... 1, 14, 28, 43, 50, 168
DOW . ottt e et e e 30, 57, 91, 138
new-expr, defined o L 91
NEeW-eXPr, USEdoouiiiiiiinnnnaeee. 91
new-expr, with set comprehension suffix 104
new-suffix, defined 91
new-suffix, used.......... 91
newline 26, 27, 33
newline, defined 26
newline, used i 26
Noble ... 54, 134
non-at-end-of-line, defined 27
non-at-end-of-line, used 29
non-at-plus-minus-end-of-line, defined 27
non-at-plus-minus-end-of-line, used 27
non-at-plus-minus-star, defined 27
non-at-plus-minus-star, used 27
non-end-of-line, defined....................... 27
non-end-of-line, used...................... 27, 29
non-helper methods, semantics of specifications for

.. 68
non-letter, defined 27
non-letter, used 27
non-nl-white-space, defined 26
non-nl-white-space, used 26, 29
non-null elements, of an array 99
non-slash, defined 27
non-slash, used 27
non-star, defined, 27
non-star, used 27, 34
non-star-close, defined........................ 34
non-star-close, used 34
non-star-slash, defined 27
non-star-slash, used 27
non-stars-close, defined 34
non-stars-close, used 34
non-stars-slash, defined....................... 27
non-stars-slash, used 27
non-zero-digit, defined 33
non-zero-digit, used 33

non_null.... 4, 16, 30, 39, 44, 46, 49, 66, 109, 169

Index

non_null, in method declaration.............. 45
non_null, modifier in separate file 130
non_null, parameter modifier................. 46
nondeterministic-choice, defined.............. 124
nondeterministic-choice, used 124
nondeterministic-if, defined 124
nondeterministic-if, used 124
nonnullelements-expression, defined 99
nonnullelements-expression, used 92
nonterminal symbols, notation................ 25
normal postcondition T
normal-behavior-keyword, defined 72
normal-behavior-keyword, used 72, 125
normal-behavior-spec-case, defined 72
normal-behavior-spec-case, used. 67
normal-example-body, defined 120
normal-example-body, used.................. 120
normal-spec-case, defined 72
normal-spec-case, used 72, 120, 125
normal_behavior 4,12, 30, 72, 123
normal_behaviour 30, 72
normal_example......................... 30, 120
normal_example, used....................... 120
not-assigned-expression, defined 94
not-assigned-expression, used 92
not-modified-expression, defined 95
not-modified-expression, used 92
notation, and methodology 6
notations, grammar.......................... 25
notations, syntax oL 25
boTe) -« 26, 30
nowarn-label, defined 26
nowarn-label, used 26
nowarn-label-list, defined 26
nowarn-label-list, used 26
nowarn-pragma, defined 26
nowarn-pragma, used 26
NSF 9
null. ... 30, 33, 91, 104
null-literal, defined 33
null-literal, used 33
nullable............ 16, 30, 39, 44, 104, 109, 169
nullable, explicitly 44
nullable, implicitly 44
nullable, modifier in separate file 130
nullable_by_default 30, 39, 44, 169
numeric types, arbitrary precision............ 140
numerical quantifier, see \num_of 103

O

object invariant, alternative terms for 56
octal-digit, defined 33
octal-digit, used o L 33
octal-escape, defined 33
octal-escape, used. 33
octal-integer-literal, defined 33

octal-integer-literal, used 33

195
octal-numeral, defined........................ 33
octal-numeral, used 33
O1d . 30, 68, 69, 75
Old-exXpressionoouuuuinineinenn... 93
old-expression, defined 93
old-expression, used 92
old-var-declarator, defined 75
old-var-declarator, used 75
old-var-decls, defined 75
old-var-decls, used 75
omitted specification, meaning of.............. 66
only-accessed-expression, defined 95
only-assigned-expression, defined 96
only-called-expression, defined 96
only-captured-expression, defined 97
operationoiiiiii i 8
operator precedence. 90
operator, of LSL 8
operators, added to JML 105
optional elements in syntax................... 25
<3 P 30, 124
overriding method, meaning of omitted
specification for 66
overriding methods, and pure................. 39
(01171 TC) 134
owner-as-modifier property 134
ownership.......... 54
ownership context 134
ownership context, root 134
ownership modifiers for array types 136
ownership modifiers for types, defaults 137
ownership types and type checking........... 138
ownership types, and subtyping.............. 138
ownership-modifier, defined 133
ownership-modifier, used 109, 133
ownership-modifiers, defined 133
ownership-modifiers, used 50
P
package ... 30, 36
package declaration, satisfaction of 36
package declarations 36
package visibility o oL 12
package-declaration, defined 36
package-declaration, used..................... 35
paragraph-tag, defined 29
paragraph-tag, used 29
param-declaration, defined.................... 46
param-declaration, used 46, 108
param-declaration-list, defined 46
param-declaration-list, used 46
param-disambig, defined 57
param-disambig, used 57
param-disambig-list, defined 57
param-disambig-list, used 57
param-modifier, defined 46
param-modifier, used............. 46

Index

Parnas....... 8
PAISING . . oot 7
partial correctness 81
PEET .ottt 30, 133, 134, 135
plans, for JML.o 7
Poetzsch-Heffter 9, 54, 56, 133, 134
Poll.. o 7
portability, and language levels 18
positive key ... 28
positive-key, defined 27
positive-key, used 27
possibly-annotated-loop, defined 109
possibly-annotated-loop, used 108
POSt .o 30, 77
post-state............ i 69
post_redundantly 30, 77
postcondition L. 1,5,8
postcondition, exceptional 2,77, 79
postcondition, normal...................... 2,77
postcondition, vianon_null 45
postfix-expr, defined 91
postfix-expr,used 91, 104
Potter............. 54, 134
PLC . it 30, 76
pre-state........l 69
pre_redundantly......................... 30, 76
precedence, table of 90
precondition 1,2,5,8, 76
precondition, protective 16
pred-or-not, defined 76
pred-or-not, used.............. 76, 77, 78, 81, 126
predicate........ 90
predicate, defined 90
predicate, used.. 52, 57, 60, 61, 62, 84, 85, 101,
104, 111, 113, 114, 116
predicates, and exceptions.................... 15
preserving, an invariant 53
primary-expr, defined 91
primary-expr, used, 91
primary-suffix, defined 91
primary-suffix, used 91
primitive value type............... 11
DLIVACY oo e e ettt e e e 67
privacy modifiers 12
privacy, defined.............., 64
privacy, used 67, 72, 73, 120, 124, 125
PrivacyDemoIllegal......................... 14
PrivacyDemolLegalAndIllegal 13
private............. 7,12, 30, 39, 64
private, and helper........................ ... 42
private, modifier in separate file........ 129, 130
procedure claims. 119
product, see \product....................... 102
programming method, and JML 6
protected 12, 30, 39, 64
protected, modifier in separate file...... 129, 130
protective specifications 16

public.............. 4, 7,12, 30, 39, 64

196

public specification. 4
public type, in a compilation unit............. 35
public, modifier in separate file......... 129, 130
PUTE ... 5, 30, 38, 39, 41, 46, 66
pure and model, constructors................. 46
pure and model, methods..................... 46
pure and void methods....................... 48
pure classes, vs. model classes 48
pure constructor.......... 47
pure interface 48
pure method 46
pure methods, default ownership modifiers for

parameter types of 137
pure methods, vs. model methods............. 48
pure type used for modeling, vs. model type. .. 39
pure, and overriding methods................. 39
pure, implicit verification condition for termination

.. 47
pure, modifier in separate file................ 130
pure, type declaration modifier................ 39
pure, vs. immutable objects......... 39
purity, and determinism...................... 48
purpose, of this reference manual............... 1
Q
quantified addition, see \sum................. 102
quantified maximum, see \max 102
quantified minimum, see \min 102
quantified multiplication, see \product 102
quantified-var-declarator, defined............. 101
quantified-var-declarator, used 75, 101, 104
quantified-var-decls, defined 101
quantified-var-decls, used 101
quantifier ... 5
quantifier body o oo oL 5
quantifier, body 102
quantifier, body of 101
quantifier, defined 101
quantifier, executability of 103
quantifier, generalized 102
quantifier, range predicate in 101
quantifier, used 101
R
Raghavan 89
range predicate 5
range predicate, and executability of quantifiers

....................................... 103
range predicate, in quantifier 101
range predicate, not satisfiable............... 102
Ravelo, Jesus.................o ... 9
reach-expression, defined 97
reach-expression, used 92
reachable objects 97
readable 30, 61
readable-if-clause, defined 61

Index

readable-if-clause, used 52
readonly........................... 30, 133, 135
reasons, for formal documentation.............. 6
recursion, and pure methods.................. 48
redundant clause 119
redundant implication....................... 118
redundant-spec, defined 118
redundant-spec, used 63
redundantly 119
reference semantics 93
reference typeo i 11
reference-type, defined 50
reference-type, used. 50, 57, 78, 79, 91, 100
refine..... 142
refine-keyword, defined 142
refine-keyword, used 142
refine-prefix, defined, deprecated 142
refine-prefix, used 142
RefineDemo.java........................... 131
RefineDemo.jml 131
refinement calculus 8, 122
refinement, of model program specification.... 122
refines...... 142
refining il 30, 114
refining statement 114, 123
refining-statement, defined 114
refining-statement, used 113
reflection in assertions....................... 100
reflection, vs. \bigint and \real............ 140
relational abstraction 60
relational-expr, defined 91
relational-expr, used 91
TOD c ittt 30, 133, 134
repeated elements in syntax 25
replaced syntax............. 141
representation exposure.................. 39, 134
represents 30, 60
represents-clause, defined 60, 141
represents-clause, used 52
represents-keyword, defined 60
represents-keyword, used 60, 141
represents_redundantly................. 30, 60
requires.................... 4, 16, 30, 68, 69, 76
requires clause........... 4
requires clause, omitted 76
requires-clause, defined 76
requires-clause, used 65
requires-keyword, defined 76
requires-keyword, used 76
requires_redundantly 30, 76
resend...........iii i 30
reserved words. L. 29
reserved-ownership-modifier, defined 133
reserved-ownership-modifier, used 133
resources, specification of 98
result-expression, defined 93
result-expression, used 92
TEtUTIot 30, 108

197
return, carriage 27
TEtUINS 30, 126
returns-clause, defined 126
returns-clause, used 125
returns-keyword, defined 126
returns-keyword, used 126
returns_redundantly 30, 126
reverse implication, see <==.................. 105
Rinard....... 47
Rioux...... ..o o 15
Rockwell International Corporation 9
Rodriguez......... L. 70
root ownership context...................... 134
Rosenblum 1
Ruby............. 1,4, 7,12, 13, 15, 46, 120, 127

RuntimeException, and default signals clause .. 80

S

Salcianu 47
same field 130
same method 129
satisfaction of a package declaration........... 36
SaXe ... 1, 14, 28, 43, 50, 168
Schneider 15
semantics of non-helper method specifications.. 68
semantics, of examples 120
separating code and specification............. 129
separating specification and code............. 129
sequence vs. list, in grammar................. 25
sequential behavior 6
SEt L. 30, 114
set comprehension oo L 104
set-comprehension, defined 104
set-comprehension, used 91
set-statement, defined 114
set-statement, used 113
Shaner.............co i, 122
shift-expr, defined 91
shift-expr, used 91
shift-op, defined 91
shift-op,used 91
short ... 30, 91
sign, defined 33
Sign, USedo 33
signals...........c.ooiiiiiiiii. 30, 68, 70
signals 77
signals i 78, 80
signals clause, default for..................... 79
signals clause, omitted 79
signals vs. signals_only 74
signals-clause, defined 78
signals-clause, used 65, 125
signals-keyword, defined 78
signals-keyword, used 78
signals-only-clause, defined 79
signals-only-clause, used..................... 125

signals-only-clauses, multiple 79

Index

signals-only-keyword, defined 79
signals-only-keyword, used.................... 79
signals_only.................. 30, 68, 70, 74, 79
signals_only, default for 79
signals_only, in comparing specifications 119
signals_only_redundantly............... 30, 79
signals_redundantly 30, 78
SignalsClauseoooiinn... 74
signed-integer, defined........................ 33
signed-integer, used 33
simple-spec-body, defined 65
simple-spec-body, used 65, 120
simple-spec-body-clause, defined 65
simple-spec-body-clause, used................. 65
simple-spec-statement-body, defined.......... 125
simple-spec-statement-body, used 125
simple-spec-statement-clause, defined......... 125
simple-spec-statement-clause, used 125
single line comment, see C++-Style comment ... 27
singlequote L 33
single-character, defined 33
single-character, used 33
SPACE -« et e e 26
space, specification of 98
space, taken up by an object.................. 98
space-expression, defined 98
space-expression, used. 92
spaces, defined............................... 26
Spaces, Used 26
spec-array-initializer, defined 101
spec-array-initializer, used 101
spec-array-ref-expr, defined 106
spec-array-ref-expr, used 88, 106
spec-case, defined 64
spec-case, Used 63
spec-case-seq, defined 63
spec-case-seq, used 63, 118
spec-expression, defined 90

spec-expression, used. ... 60, 84, 85, 90, 93, 97, 98,
99, 100, 101, 106, 112, 141

spec-expression-list, defined 90
spec-expression-list, used 62, 97, 141
spec-header, defined.......................... 65
spec-header, used 65, 120, 125
spec-initializer, defined 101
spec-initializer, used 101
spec-quantified-expr, defined 101
spec-quantified-expr, used 92
spec-statement, defined 125
spec-statement, used 114, 124
spec-var-decls, defined 75
spec-var-decls, used 65, 120, 125
spec-variable-declarator, defined 101
spec-variable-declarator, used 101
spec-variable-declarators, defined............. 101
spec-variable-declarators, used 75
spec_bigint_math................. 30, 38, 39, 43

spec_java_math................... 30, 38, 39, 43

198

spec_protected 2, 14, 30, 39, 41
spec_protected, as a model field shorthand ... 14
spec_protected, modifier in separate file..... 130
spec_public.................... 2, 14, 30, 39, 41
spec_public, as a model field shorthand 14
spec_public, modifier in separate file........ 130
spec_safe_math................ ... 30, 38, 39, 43
special symbols........ oo oL 32
special-symbol, defined 32
special-symbol, used 26
specification for subtypes.................... 127
specification statement 123
specification, completely omitted.............. 66
specification, completeness of 4
specification, defined 63
specification, heavyweight 12
specification, in refining statement 115
specification, lightweight 12
specification, of interface behavior.............. 1
specification, used 63
specification-only type 39
specifications for non-helper methods, semantics of
.. 68
specifications inheritance.................. 38, 89
specifying examples................. 120
SPIVEY ettt 2,8
stars-non-close, defined 34
stars-non-close, used 34
stars-non-slash, defined....................... 27
stars-non-slash, used 27
start rule, in JML grammar 35
Stata. ... 9, 168
state, post-state of a call 69
state, pre-state of acall 69
state, visible........ 53
statement, defined 108
statement, refiningo o L 114
statement, used 108, 109, 114, 124
static..................... 15, 30, 39, 50, 56, 59
static constraint L L 59
static features L 15
static invariant L L 53, 56
static, modifier in separate file......... 129, 130
static_initializer......................... 30
static_initializer, separate files 131
static_initializer,used 50
status, of JML......... 7
Steele ... 32, 33
Steyaert 127
store-ref, defined 106
store-ref, used 83, 106
store-ref-expression, defined 106
store-ref-expression, used 60, 106, 141
store-ref-keyword, defined 106
store-ref-keyword, used 84, 106
store-ref-list, defined 106
store-ref-list, used........... 83, 84, 94, 95, 96, 97
store-ref-name, defined 106

Index

store-ref-name, used 106
store-ref-name-suffix, defined 106
store-ref-name-suffix, used 106
strictfp...... 30, 39
string-literal, defined 33
string-literal, used 33, 142
strong validity 15
subclass. ... 37
subclassing_contract, replaced by
code_contract............... 142
SUDLYPE . .o 37
subtype relation 105
subtype, for an interface...................... 38
subtype, of an interface 38
subtypes, specification for 127
subtypingo i 37
subtyping, for arrays, with ownership types... 138
subtyping, for ownership types............... 138
suffixes, of filenames 129
SumATrTrayloop 110
summation, see \sum........................ 102
SUPET .« ottt ie e 30, 57, 87, 91, 106
superclass 37
supertypes, specification of 127
switch..... i 30, 108
switch-body, defined 108
switch-body, used........................... 108
switch-label, defined 108
switch-label, used 108
switch-label-seq, defined 108
switch-label-seq, used 108
switch-statement, defined.................... 108
switch-statement, used 108
synchronized 30, 39, 108
syntax notations.................. 25
syntax options................. 30
syntax, deprecated 141
syntax, replaced 141

tab. .. 26, 33
table of precedence 90
tagged-paragraph, defined 29
tagged-paragraph, used....................... 29
Tan. ... 119
target-label, used 126
terminal symbols, notation 25
termination, of pure methods................. 47
terminology, for invariants.................... 56
this.............. 30, 56, 57, 59, 87, 91, 106, 135
this,andrep.............................. 134
thread, specifying locks held by 100
threads, specification of 6
throw il 30, 108
BRTOWS « .\ttt 30, 45, 80
throws-clause, defined 45
throws-clause, used 45

199
time, specification of 98
time, virtual machine cycle................... 98
token, defined, 26
token, used 26
tokens 29
tool support 7
tools and annotations 28
tools, advice for builders of 18
top-level-declaration, defined.................. 35
top-level-declaration, used 35
total correctness i 81
trait 8
trait function........ L. 8
transient L. 30, 39
true 30, 33, 91
BXY 30, 108
try-block, defined 108
try-block, used L. 108
two-valued logic 15
Bype .o 11
type checking........ 7
type checking, with ownership types.......... 138
type declarations 37
type specs, for declarations 50
type system, Universe....................... 133
type, abstract 8
type, defined L 50
type, modifiers for declarations of 38
type, specifying in a declaration............... 50
type,used 50, 91, 100
type-declaration, defined 37
type-declaration, used 35
type-expression, defined 100
type-expression, used. 92
type-spec, defined 50
type-spec, used. ... 45, 46, 49, 57, 75, 91, 101, 104,

109

typeof expression 99
typeof-expression, defined 99
typeof-expression, used 92
types, comparing 105
types, marking in expressions................ 100
U
unary-expr, defined o 91
Unary-expr, usedooeeeiiiii. 91
unary-expr-not-plus-minus, defined 91
unary-expr-not-plus-minus, used 91
undefinedness, in expression evaluation........ 15
underspecified total functions................. 15
unicode-escape, defined....................... 33
unicode-escape, used 33
uninitialized 30, 39, 43
Universeovvniin i 35
Universe keywords, where recognized 30
universe type system........................ 133

Universe type system 133

Index

Universe type system syntax.................. 30
Universe type system, basic concepts......... 134
universe type system, options for............. 133
unreachable.............. 30, 115
unreachable-statement, defined 115
unreachable-statement, used 113
usefulness, of JML 6
uses, of JML 6
utility, of JML. ... 6

Vv

validity, of assertions......................... 15
validity, strong 15
value, abstract................ 8
vanden Berg........o ool 9
variable-declarator, defined 49
variable-declarator, used...................... 49
variable-declarators, defined 49
variable-declarators, used..................... 49
variable-decls, defined 49
variable-decls, used 49, 108
variable-definition, defined.................... 49
variable-definition, used 45
variant-function, defined..................... 112
variant-function, used 109
VDM .o 8
VDM-SL ..o 8
vertical tab...... 26
Vickers. 8
virtual machine cycle time................. ... 98
visibility 7,12
visibility, in JML, 12
visibility, in lightweight specifications.......... 13
visibility, in method specifications............. 64
visible state 53
visible state, for a type....................... 53
Vitek. ..o 54, 134
vocabulary 1
VOIA oottt 30, 91

void and pure methods....................... 48

200
volatile 30, 39
von Wright 8, 122
%%
Watt ..o 26
web site, for JML 1
Weck ..o 122
when.......... 30, 68, 70, 82
when clause, omitted......................... 82
when-clause, defined 82
when-clause, used 65, 125
when-keyword, defined 82
when-keyword, used.............. 82
when_redundantly 30, 82
while L 30, 109
white space 26
white-space i 35
white-space, defined 26
white-space, used 26
WILLS o 2
Wing ... 1, 8, 16
working space, specification of 98
working-space-clause, defined 85
working-space-clause, used 65, 125
working-space-expression, defined 98
working-space-expression, used................ 92
working-space-keyword, defined 85
working-space-keyword, used 85
working_space.................... 30, 68, 71, 85
working_space_redundantly.............. 30, 85
writable 30, 62
writable-if-clause, defined..................... 62
writable-if-clause, used 52
Z
/3 2,8
zero-to-three, defined......................... 33
zero-to-three, used 33

	Introduction
	Behavioral Interface Specifications
	A First Example
	What is JML Good For?
	Status and Plans for JML
	Historical Precedents
	Acknowledgments

	Fundamental Concepts
	Types can be Classes and Interfaces
	Model and Ghost
	Lightweight and Heavyweight Specifications
	Privacy Modifiers and Visibility
	Instance vs. Static
	Locations and Aliasing
	Expression Evaluation and Undefinedness
	Null is Not the Default
	Language Levels
	Level 0 Features
	Level 1 Features
	Level 2 Features
	Level 3 Features
	Level C Features
	Level X Features

	Syntax Notation
	Lexical Conventions
	White Space
	Lexical Pragmas
	Comments
	Annotation Markers
	Documentation Comments
	Tokens

	Compilation Units
	Package Declarations
	Import Declarations

	Type Declarations
	Class and Interface Declarations
	Subtyping for Type Declarations
	Modifiers for Type Declarations
	Pure Type Declarations
	Model Type Declarations

	Modifiers
	Suggested Modifier Ordering
	Java Annotations
	Spec Public
	Spec Protected
	Pure
	Model
	Ghost
	Instance
	Helper
	Monitored
	Uninitialized
	Math Modifiers
	Nullity Modifiers

	Class and Interface Member Declarations
	Java Member Declarations
	Method and Constructor Declarations
	Formal Parameters
	Model Methods and Constructors
	Pure Methods and Constructors
	Helper Methods and Constructors

	Field and Variable Declarations
	JML Modifiers for Fields
	Type-Specs

	Class Initializer Declarations

	Type Specifications
	Introductory ADT Specification Examples
	Invariants
	Static vs. instance invariants
	Invariants and Exceptions
	Access Modifiers for Invariants
	Invariants and Inheritance

	Constraints
	Static vs. instance constraints
	Access Modifiers for Constraints
	Constraints and Inheritance

	Represents Clauses
	Initially Clauses
	Axioms
	Readable If Clauses
	Writable If Clauses
	Monitors For Clause

	Method Specifications
	Basic Concepts in Method Specification
	Organization of Method Specifications
	Access Control in Specification Cases
	Lightweight Specification Cases
	Heavyweight Specification Cases
	Behavior Specification Cases
	Semantics of flat behavior specification cases
	Semantics of non-helper methods
	Semantics of non-helper constructors
	Semantics of helper methods and constructors
	Semantics of nested behavior specification cases

	Normal Behavior Specification Cases
	Exceptional Behavior Specification Cases
	Pragmatics of Exceptional Behavior Specifications Cases

	Method Specification Clauses
	Specification Variable Declarations
	Forall Variable Declarations
	Old Variable Declarations

	Requires Clauses
	Ensures Clauses
	Signals Clauses
	Signals-Only Clauses
	Parameters in Postconditions
	Diverges Clauses
	When Clauses
	Assignable Clauses
	Accessible Clauses
	Callable Clauses
	Measured By Clauses
	Captures Clauses
	Working Space Clauses
	Duration Clauses

	Data Groups
	Static Data Group Inclusions
	Dynamic Data Group Mappings

	Specification Inheritance
	Predicates and Specification Expressions
	Predicates
	Specification Expressions
	Expressions
	JML Primary Expressions
	{@fam =@ttfam @def rm{tt}@tentt @backslashcurfont }result
	{@fam =@ttfam @def rm{tt}@tentt @backslashcurfont }old and {@fam =@ttfam @def rm{tt}@tentt @backslashcurfont }pre
	{@fam =@ttfam @def rm{tt}@tentt @backslashcurfont }not_assigned
	{@fam =@ttfam @def rm{tt}@tentt @backslashcurfont }not_modified
	{@fam =@ttfam @def rm{tt}@tentt @backslashcurfont }only_accessed
	{@fam =@ttfam @def rm{tt}@tentt @backslashcurfont }only_assigned
	{@fam =@ttfam @def rm{tt}@tentt @backslashcurfont }only_called
	{@fam =@ttfam @def rm{tt}@tentt @backslashcurfont }only_captured
	{@fam =@ttfam @def rm{tt}@tentt @backslashcurfont }fresh
	{@fam =@ttfam @def rm{tt}@tentt @backslashcurfont }reach
	{@fam =@ttfam @def rm{tt}@tentt @backslashcurfont }duration
	{@fam =@ttfam @def rm{tt}@tentt @backslashcurfont }space
	{@fam =@ttfam @def rm{tt}@tentt @backslashcurfont }working_space
	{@fam =@ttfam @def rm{tt}@tentt @backslashcurfont }nonnullelements
	Informal Predicates
	{@fam =@ttfam @def rm{tt}@tentt @backslashcurfont }typeof
	{@fam =@ttfam @def rm{tt}@tentt @backslashcurfont }elemtype
	{@fam =@ttfam @def rm{tt}@tentt @backslashcurfont }type
	{@fam =@ttfam @def rm{tt}@tentt @backslashcurfont }lockset
	{@fam =@ttfam @def rm{tt}@tentt @backslashcurfont }max
	{@fam =@ttfam @def rm{tt}@tentt @backslashcurfont }is_initialized
	{@fam =@ttfam @def rm{tt}@tentt @backslashcurfont }invariant_for
	{@fam =@ttfam @def rm{tt}@tentt @backslashcurfont }lblneg and {@fam =@ttfam @def rm{tt}@tentt @backslashcurfont }lblpos
	Quantified Expressions
	Universal and Existential Quantifiers
	Generalized Quantifiers
	Numerical Quantifier
	Executability of Quantified Expressions
	Modifiers for Bound Variables
	Quantifying over Reference Types

	Set Comprehensions
	JML Operators
	Subtype operator
	Equivalence and Inequivalence Operators
	Forward and Reverse Implication Operators
	Lockset Ordering

	Store Refs

	Statements and Annotation Statements
	Local Declaration Statements
	Modifiers for Local Declarations

	Loop Statements
	Loop Invariants
	Loop Variant Functions

	Assert Statements
	JML Annotation Statements
	Assume Statements
	Set Statements
	Refining Statements
	Unreachable Statements
	Debug Statements
	Hence By Statements

	Redundancy
	Redundant Implications and Redundantly Clauses
	Redundant Examples

	Model Programs
	Ideas Behind Model Programs
	Extracting Model Program Specifications
	Details of Model Programs
	Nondeterministic Choice Statement
	Nondeterministic If Statement
	Specification Statements
	Continues Clause
	Breaks Clause
	Returns Clause

	Specification for Subtypes
	Method of Specifying for Subclasses
	Code Contracts

	Separate Files for Specifications
	File Name Suffixes
	Using Separate Files
	Type Checking Separate Files
	Default Constructors and Separate Files

	Universe Type System
	Basic Concepts of Universes
	Rep and Peer
	Readonly
	Ownership Modifiers for Array Types
	Default Ownership Modifiers
	Ownership Type Rules
	Ownership Subtyping
	Ownership Typing for Expressions

	Casts and Ownership Types

	Safe Math Extensions
	{@fam =@ttfam @def rm{tt}@tentt @backslashcurfont }bigint
	{@fam =@ttfam @def rm{tt}@tentt @backslashcurfont }real

	Deprecated and Replaced Syntax
	Deprecated Syntax
	Deprecated Annotation Markers
	Deprecated Represents Clause Syntax
	Deprecated Monitors For Clause Syntax
	Deprecated File Name Suffixes
	Deprecated Refine Prefix

	Replaced Syntax

	Incompatible Changes
	Grammar Summary
	Lexical Conventions
	Compilation Units
	Type Declarations
	Class and Interface Member Declarations
	Type Specifications
	Method Specifications
	Data Groups
	Specification Inheritance
	Predicates and Specification Expressions
	Statements and Annotation Statements
	Redundancy
	Model Programs
	Specification for Subtypes
	Separate Files for Specifications
	Universe Type System
	Safe Math Extensions

	Modifier Summary
	Type Checking Summary
	Verification Logic Summary
	Differences
	Differences Between JML and Other Tools
	Differences Between JML and ESC/Java2

	Differences Between JML and Java
	Non-null by Default

	What's Missing
	Bibliography
	Index

