
Plan-Directed Architectural Change For Autonomous
Systems

Daniel Sykes, William Heaven, Jeff Magee, Jeff Kramer
Department of Computing
Imperial College London

{das05, wjh00, j.magee, j.kramer}@imperial.ac.uk

ABSTRACT
Autonomous systems operate in an unpredictable world, where
communication with those people responsible for its soft-
ware architecture may be infrequent or undesirable. If such
a system is to continue reliable operation it must be able to
derive and initiate adaptations to new circumstances on its
own behalf. Much of the previous work on dynamic recon-
figurations supposes that the programmer is able to express
the possible adaptations before the system is deployed, or
at least is able to add new adaptation strategies after de-
ployment. We consider the challenges in providing an au-
tonomous system with the capability to direct its own adap-
tation, and describe an initial implementation where change
in the software architecture of an autonomous system is en-
acted as a result of executing a reactive plan.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures

General Terms
Management, Design, Reliability

Keywords
Self-adaptive, self-healing, software architecture, dynamic
reconfiguration, autonomous systems

1. INTRODUCTION
If the goal of highly reliable autonomous systems is to be
realised, then the software used to control such systems
must itself be reliable and highly adaptable. Furthermore
it should be able to cope with failures in its components.

In this context, we consider adaptation as a modification—
at runtime—of the configuration of the software components
which make up the system. However we do not preclude
other forms of adaptation, such as changing component pa-
rameters, or changes at the language level. Architectural
change has the advantage of permitting widespread, if not

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Sixth International Workshop on Specification and Verifica-
tion of Component-Based Systems (SAVCBS 2007), September
3-4, 2007, Cavtat near Dubrovnik, Croatia.
Copyright 2007 ACM ISBN 978-1-59593-721-6/07/0009 ...$5.00.

total, change, while keeping the consistency and safety is-
sues present at lower levels to a minimum. Thus we are
concerned with medium to large-scale adaptations. Much
previous work has focused on systems where each configura-
tion is a self-contained and often predefined entity, or where
repair strategies describe how to change between configura-
tions. However, in an autonomous context, it is not feasible
to consider every possible scenario beforehand, and in ef-
fect pre-program the system to cope with all circumstances
which may require an architectural change.

In order to effect this arbitrary change, there must be mech-
anisms in place to enable the autonomous system to de-
rive a new configuration. This requires some notion of a
goal which drives the selection process. This may take the
form of a functional goal whereby components are selected
on the basis of what operations they perform. Alterna-
tively, the goal may be implicit in constraints on the con-
figuration, which may describe architectural, functional, or
performance-related restrictions.

In our initial work in this area, we have developed a system
which permits arbitrary dynamic reconfiguration by exploit-
ing the presence of a reactive plan which determines the
system’s behaviour. Reactive plans are generated with a
planning tool from high-level goals given by the user. The
behaviour of the system is defined by the set of condition-
action rules given in the plan. These rules indicate what
components will be required to execute the plan.

In Section 2 we discuss some existing work in the area of
dynamic component configuration before giving an example
that motivates our approach in Section 3. Our approach
is then outlined in more detail in Section 4. The paper
concludes with a discussion and mention of interesting future
work in Section 5.

2. RELATED WORK
Many previous authors have described approaches which as-
sume adaptation can be specified and analysed before the
system is deployed. Unfortunately, this is not always the
case with autonomous systems.

Zhang, Cheng et al. [15] apply formal techniques to show
how the safety of a transition from one steady-state program
(which may be thought of as an architecture) to another can
be guaranteed. They assume that the adaptive transitions
are specified by the designer which requires a worst case of

15

Motors

Transmitter Location
Service1

Fetch
Controller

Sensors

Gripper

Figure 1: An initial component configuration for the
“fetch” task

N2 transitions for N configurations.

Garlan and Schmerl [5] achieve dynamic change by describ-
ing an architectural style [4] for a system and a repair strat-
egy. The repair strategy is a script which modifies the
architecture in response to changes in the monitored sys-
tem properties breaking their associated constraints. Con-
straints may be on the architecture of the system (as in
the usual notion of style) or on the performance of the sys-
tem. This is a closed-adaptive [10] system since the repairs
are specified before deployment. Moreover, this system does
not allow architectural change to result from a change in the
system’s goals.

Dashofy et al. [3] use an architectural model and design
critics [14] to determine whether a set of changes (an archi-
tectural “diff”) is safe to apply. They do not directly address
when the changes should be applied, but they do allow for
an extensible set of repair strategies. Again, these strate-
gies are provided by the user and not derived by the system
itself.

Oreizy et al. [11] also use an architectural model to ensure
changes are valid before they are reflected back into the run-
ning implementation. Here descriptions of reconfigurations
are provided various parties such as the application vendor.

3. MOTIVATING EXAMPLE
To demonstrate the limitations of current approaches, we
consider an example where a mobile autonomous system is
deployed and performing a “fetch” operation which requires
that it locate, pick up, and return a known object. The
software architecture for such a system may resemble that
in Figure 1.

The Fetch Controller is responsible for providing operations
such as moving to particular locations (while avoiding ob-
stacles), and picking up the object. The Location Service in
this case informs the system of its location by communicat-
ing with a satellite via the Transmitter.

If at some point during operation, the system’s battery no
longer has enough power to drive the motors, the system
must switch modes in order to use a Beacon component
which transmits the system’s location in the hope that it
will be rescued by another autonomous vehicle, which may
have the ability to refuel it. This configuration is shown in

Transmitter Location
Service1

Beacon

Provided by

satellite

Figure 2: Component configuration following power
failure

Transmitter Location
Service2

Beacon

Provided by

internal map

Figure 3: Component configuration following loss of
satellite connection

Figure 2.

At this point, the connection to the satellite may be lost (if it
moves below the horizon). This prevents the original Loca-
tion Service (1) from being used, and so the system must find
some alternative method for deriving the location. Location
Service (2) provides location information based on local in-
formation, such as comparing short-range sensor readings
to a map of the environment (this may be unreliable). This
results in Figure 3. Note in this configuration there is no
need for a connection between Location Service (2) and the
Transmitter.

One can imagine designing repair strategies for each of these
events in isolation, but as the number of possible changes
increases it becomes increasingly unlikely that the situation
will have been foreseen. Indeed in the worst case nm − 1
repairs must be designed where m is the number of compo-
nents that can change and n is the number of alternatives.

Hence, we would like to avoid pre-programming repair strate-
gies by having the system derive changes itself.

4. APPROACH
We are experimenting with an approach that derives its own
component configurations from reactive plans [8]. In the ini-
tial planning step, a plan is automatically generated from
high-level user goals. This plan describes the behaviour of
the system in terms of actions which lead from an initial
state to a goal state, without explicit reference to architec-
tural concerns. In particular, there is no correspondence be-
tween plan states and configurations. The plan is then sub-
mitted to an architecture manager which determines which
components are necessary to perform the plan, and instanti-
ates the configuration. The plan interpreter iterates through
the rules of the plan to completion, unless a situation is de-
tected which requires reconfiguration or replanning. A brief
introduction to reactive plans and their generation is neces-
sary before discussing the derivation of component configu-
rations.

16

4.1 Generating Reactive Plans
A linear STRIPS-style plan [8] specifies a sequence of actions
that are intended to lead from an initial state to a goal
state. However, such a plan is not well suited to a non-
deterministically changing environment in which a change in
the environment may cause an action to lead to a state other
than that expected at the time the plan was generated. If
this happens, a plan must be regenerated taking into account
the changed environment.

A reactive plan, on the other hand, is a plan that accom-
modates a non-deterministically changing environment by
prescribing an action towards a given goal for each state
from which that goal is reachable. Execution of such a plan
proceeds by determining the current state of the environ-
ment, selecting the action prescribed for that state by the
plan, performing it and then determining the new state etc.
By covering all states from which the goal is reachable, it
does not matter if the new state following an action is the
“expected” state or not. As long as the goal is reachable
from this state, execution of the plan may continue.

In our system, reactive plans are generated using planning-
as-model-checking technology [6]. A domain description is
specified in SMV [13], comprising state predicates and pre-
and postcondition constraints on the actions that may be
performed. This description is submitted to the Model-
Based Planner tool (MBP) [12] along with a specification
of the initial state I and a goal G, typically expressed in
CTL [2].

The output of MBP is a set of condition-action rules such
that each condition corresponds to a state in the environ-
ment from which the goal is achievable and each action is an
action that may be performed in that state. Formally, this
reactive plan is a partial map

P : S → A

where S is the set of states in the state space described by
the predicates of the domain description and A is the set of
actions specified in the domain description. A state s ∈ S is
represented as a set of predicates {P1, P2, . . . , Pn}.

If a reactive plan P is considered alongside the domain de-
scription from which it was generated, it can be represented
as a labelled transition system

PLTS = {I, SP , SG, T}
where I is the initial state submitted to the planning tool,
SP is the domain of P , SG ⊆ SP is the set of states that
satisfy G, and T ⊆ SP × A × SP is a transition relation
with transitions labelled with actions in A. T is constructed
from P and the domain description so that for all states s
in the domain of P there is a state s′ such that (s, a, s′) ∈ T
if and only if a = P (s). In other words, the transition
relation simply picks up the information about what state an
action may lead to—which is missing from the information
provided by a reactive plan alone—from the postcondition
specifications of actions in the domain description.

As a small example, Figure 4 shows a reactive plan for the
given domain description. LTS A represents a domain de-
scription with start state in the top left corner and goal state

A B

Figure 4: Example plan (B) generated from a do-
main description (A).

...
VAR
object1_location : {loc1, loc2};
rover1_location : {loc1, loc2};
rover1_has : {object1, 0};
rover1_no_power : boolean;
...
INIT
object1_location=loc1 &
rover1_location=loc2 &
rover1_no_power=0 &
rover1_has=0
...
action: {

rover1_replenish_battery,
rover1_move_to_loc1,
rover1_move_to_loc2,
rover1_pickup,
rover1_drop,

};
...
ASSIGN next(rover1_location) :=
case
(action = rover1_move_to_loc1) : loc1;
(action = rover1_move_to_loc2) : loc2;
1 : rover1_location;
esac;
...
ASSIGN next(rover1_has) :=
case
(action = rover1_pickup)

& rover1_location=object1_location : object1;
(action = rover1_drop) : 0;
1 : rover1_has;
esac;
...
-- etc

Figure 5: Example domain description fragment in-
put to MBP.

17

-- case 1 (satisfies goal)
(case (and (= object1_location loc2))

(done))
...
-- case i
(case (and

(= object1_location loc1)
(= rover1_location loc1)
(= rover1_has object1)
(= rover1_no_power 0))

(action rover1_move_to_loc2))
...
-- case j
(case (and

(= object1_location loc1)
(= rover1_location loc1)
(= rover1_has item1)
(= rover1_no_power 1)

(action rover1_replenish_battery))
...
-- case k
(case (and

(= object1_location loc1)
(= rover1_location loc1)
(= rover1_has 0)
(= object1_no_power 0))

(action object2_pickup))
...
-- etc

Figure 6: Example reactive plan fragment output by
MBP.

in black. LTS B represents a reactive plan which includes
all states from which the goal is reachable. Where there are
multiple paths to the goal, the shortest is selected. Paths
which do not lead to the goal are pruned.

An example domain description, as submitted to MBP, is
partially shown in Figure 5. The syntax here is that for
the SMV model checker (the back end to MBP). However,
the relevant elements of this example are on the whole self-
explanatory. The section headed VAR list the predicates
used to describe the state space. For instance, predicates
include object1 location, which specifies whether object1 is
in loc1 or loc2. It should be noted that the locations in
a domain description are symbolic and are mapped to real
locations when the system executes. The section headed
INIT defines an initial state. Next, the domain description
lists the performable actions. Actions are specified through
SMV ASSIGN blocks, which describe the transitions be-
tween states that the system can make. Each block take the
form of a case statement. To the left of the colon in each
case is the precondition (for technical reasons, actions are
treated as part of the precondition) and to the right is the
corresponding postcondition. For instance, in the first case
of the block describing how the predicate rover1 location can
evolve, the postcondition for the action rover1 move to loc1
is rover1 location=loc1.

This domain description is submitted to MBP along with
a goal. Consider, for example, the specified objective for a
rover rover1 to fetch an object object1 from location loc1
and bring it to loc2. This objective can be captured by a
goal stating that in some future state the location of object1

S2S1

S1’ S2’

Figure 7: Refinement of an action between states S1
and S2 by a subplan.

is loc2. In CTL we capture this as follows:

EFobject1 location=loc2

(where EF may be read “there exists some future state such
that ..”). Submitting the domain description shown in Fig-
ure 5 together with this goal to MBP, we get the plan par-
tially shown in Figure 6. Each case of the plan describes a
state from which the goal is reachable and maps that state
to an action from the domain description.

As with all model-checking technology, the size of the state
space—here determined by the number of predicates in the
domain description—becomes a problem in all but the most
trivial cases. To address this issue, we organise our domain
description into a hierarchy of partial descriptions, generat-
ing subplans for each. In this way, each subplan addresses
only a part of the overall goal and need only be generated
from a partial description of the domain, reducing the num-
ber of predicates–and thus size of state space—in each plan
generation.

A detailed description of this process is beyond the scope of
this paper. However, the core idea is that some of the actions
specified in the domain description are “primitive actions”
and others are “compound actions”. Primitive actions can
be performed directly by the system, i.e., it is assumed that
they are directly implemented by some component. Com-
pound actions, on the other hand, are abstractions of more
complex tasks that require planning. As such, when a plan
is being executed and a compound action is encountered,
a subplan is generated on the fly for the compound action.
The plan is generated with the current state as initial state,
postcondition of the compound action as the goal, and a
reduced domain description relevant to the performance of
the compound action.

Formally, the LTS representing the subplan generated for
a compound action is a refinement of the transition repre-
senting that action in the original plan. This relationship
is depicted in Figure 7, where the transition between states
S1 and S2 at the top is refined by the LTS below. The set

18

LTS1

LTS2

LTS3

A1

A2

LTS4

A3

Plan Tree

Figure 8: An example plan hierarchy

of predicates describing S1’ (resp. S2’) implies the set of
predicates describing S1 (resp. S2). The dotted arrow and
box depict this refinement relationship and will continue to
do so in the sequel.

When executing a hierarchical plan of this kind, the system
will request the generation of a subplan when a compound
action is encountered, execute this subplan, and then jump
back to and continue executing the original plan. As such,
plan execution can be thought of as resembling depth first
traversal of a tree. This is illustrated in Figure 8, which
shows an example subtree in the planning hierarchy. It is
assumed that the LTS containing actions A1 and A2 is itself
a refinement of some transition above it in the plan tree.
Here, it can be seen that action A1 has at least two possi-
ble refinements, LTS1 and LTS2. Though both are shown
here, during execution the planning tool will pick only one
alternative at a time and execution will jump to whatever
subplan is first chosen. Only if this subplan fails will a re-
quest for an alternative be issued by the system. In this
case, traversal of the tree would backtrack and execution
will jump to LTS2, which in turn contains an action A3
which is refined by LTS4. Again, the dotted lines and boxes
depict refinement relationships.

It is possible for execution of a reactive plan to go into a
cycle and never reach a goal state. If execution falls into
a cycle, we trigger a timeout and have the system request

C1

A1

A2

A3

A4

C2

C4

C5C6

C3

Figure 9: Example component configuration deter-
mined by actions of a plan

a different plan. The new plan will typically be generated
without the action that caused the cycle, since it is likely
that the environment has changed in such a way that the
actual effect of this action is no longer accurately modelled
by the current domain description.

The new plan will be generated from the point in the hier-
archy that the previous plan had been, i.e., unless the plans
are at the root of the hierarchy, both new and old plans
should be alternative refinements of the same transition in
a common parent plan. If no new plan can be generated
with the current domain description then the system must
backtrack and request a new plan from a node further up
the tree.

4.2 Deriving Component Configurations
Since reactive plans are composed of condition-action rules,
we are able to use the actions of the plan to derive the func-
tional requirements of the system’s architecture. For exam-
ple, the presence of a move operation in the plan clearly
indicates that the configuration must include a component
which provides a suitable implementation of this action. We
assume that the component responsible for the architectural
change (which we call the architecture manager) is aware of
the components which provide implementations of actions.
For the purposes of deriving component configurations, we
do not regard the manager as part of the architecture. Ac-
tions may be associated with particular interface types, and
the manager selects components which implement the rele-
vant interface. The mapping from actions to interfaces need
not be fixed, and could be extended as new components be-
come available.

Given the set of components required for their functionality,
the manager can then construct a complete configuration by
considering the required interfaces of those components. For
example, the component implementing the move operation
may require motor and sensor controllers, or a component
which provides mapping information. These must also be
instantiated and connected to the relevant ports of the ac-
tion component. In the case where a component is already
instantiated, it should be reused. Figure 9 shows a reactive
plan and a corresponding architecture. Actions A1 and A3
may be implemented by C1 and actions A2 and A4 may be
implemented by C2. The remaining components are found
by considering the requirements of C1 and C2.

It may be the case that multiple components provide the
same functionality, but have differing non-functional proper-
ties. For example, some implementations may require more
CPU attention or provide unreliable results. We hope to
develop a mechanism whereby the “best” alternative can be

19

Figure 10: Overview of dynamic changes driven
by automatic generation of plans. The two sub-
plans represent alternative refinements of an action
in the original LTS. Different component configura-
tions are derived from each alternative.

selected in a given situation.

There is a trade-off to be made in terms of the number of
actions a particular component can perform against how of-
ten the architecture needs to change. Clearly this depends
on particular component implementations and the level of
abstraction the plan designer has built into the plans. In
our early implementation, components were selected and
changed at every step in the plan on the assumption that
a component implements only one action. However, this is
clearly detrimental to efficiency. Hence, we are moving to-
ward a system whereby a particular plan can be scanned
before starting, to construct a configuration that contains
components which will implement all the required actions.
This is a more natural approach since the architecture is ex-
pected to be able to perform the task without changing in
the absence of problems.

The exception to this principle is that the architecture may
be required to change when a particular abstract action is
decomposed into a subplan, since the (concrete) actions con-
tained in the subplan were not known when the parent plan
was generated. Furthermore, an abstract action may be de-
composed into different subplans in different circumstances.
This leads us to the diagram in Figure 10 wherein each plan
and subplan has an associated architecture. The top-level
plan contains an action which has two possible refinements,
resulting in two potential configurations.

We do not employ a verification mechanism for configura-
tions because we regard them as correct in the sense that
they must at least provide sufficient functionality to perform
the actions of the current plan. Furthermore it is reasonable
to assume that the mapping between concrete actions in the
plan and their implementations is correct. In other words,

the two following constraints are relevant:

∀a ∈ plan.∃i ∈ arch.(a ∈ i) ∧ ∃c ∈ arch.prov(c, i)

∀c, i ∈ arch.req(c, i) −→ ∃c2 ∈ arch.prov(c2, i)

Where arch denotes the set of components and interfaces in
the current configuration, plan denotes the current plan (re-
duced to a set of actions) and prov(c, i) and req(c, i) denote
that component c provides (respectively requires) interface
i. An interface i is regarded as containing a set of (names
of) actions a. The first constraint states that for all actions,
there should be a component for the corresponding inter-
face, and the second constraint is simply that all component
requirements are satisfied. We do not (at this point) em-
ploy further structural, compatibility, or performance con-
straints.

The mechanisms described so far account for the first con-
figuration change required in the example of Section 3. The
Fetch Controller provides the functionality needed for ac-
tions in the fetch plan (Figure 6), and the other components
in the initial configuration are requirements of the Fetch
Controller. The plan checks the rover1 no power predi-
cate which causes a rover1 replenish battery action. When
this action is encountered, a subplan is generated which en-
ables a rescue beacon which cycles, transmitting the cur-
rent location, until the battery is refuelled. As discussed
in the previous section, this subplan is a refinement of the
rover1 replenish battery action. In this case, the Beacon
component is selected because it provides that functional-
ity, and the Location Service (1) and the Transmitter are
retained as dependencies of the Beacon, giving Figure 2.

The second case requires the system to cope with entirely
unexpected faults. Our approach is to allow the manager
to request replanning without using the actions associated
with the component that has failed (detected by some suit-
able mechanism). Of course, planning comes at some cost, so
there is a trade-off to be made between that and allowing the
manager to perform low-level changes independently, such as
substituting a component which implements the same inter-
faces for the one which failed. It is this latter case which is
most appropriate to arrive at Figure 3. The Beacon merely
cares about getting location information, and if an alterna-
tive implementation is available, it should be used without
replanning.

Our implementation of this approach is built upon the Back-
bone system [9] which allows us to construct arbitrary con-
figurations of components, which are implemented as Java
classes. A number of problem domains have been described
and executed on a set of Koala robots running a JVM.

5. DISCUSSION AND FUTURE WORK
We have described an initial scheme which addresses the
problem of arbitrary dynamic reconfiguration. Reconfigura-
tion is driven by a plan which dictates what functionality
the current configuration must provide. Component selec-
tion works within the limitations of the current environment
which may prevent certain components from being used.

Currently, non-functional and structural constraints on the
architecture are not supported. For example, one can imag-

20

ine a situation where the autonomous system must avoid us-
ing components which result in the hardware drawing large
amount of power, or where components must be distributed
in a particular manner to meet some load balancing con-
straint.

It remains to be seen whether such constraints can be com-
bined with the reactive plan which at present only prescribes
the system’s behaviour; the architecture is a consequence of
that.

Indeed, another approach would be to employ an explicit
architecture plan [1], or include reconfiguration operations
within the behavioural plan. One disadvantage of following
this path is that the state space for planning becomes larger,
with the concomitant reduction in performance.

Other issues we seek to address are those regarding the
safety of the adaptation procedure. Clearly if some com-
ponents are to be replaced, then their dependants must not
initiate communications with them for the duration of the
change. This is the notion of quiescence [7]. It is especially
important for an autonomous system to be able to keep the
unaffected parts of the architecture running while reconfig-
uration is taking place. For the same reasons, components
may require special shut down procedures before they are
removed from the architecture. For example, any motor
control system must ensure those motors are halted before
control is released.

6. ACKNOWLEDGEMENTS
The work reported in this paper was funded by the Systems
Engineering for Autonomous Systems (SEAS) Defence Tech-
nology Centre established by the UK Ministry of Defence.

7. REFERENCES
[1] N. Arshad, D. Heimbigner, and A. L. Wolf.

Deployment and dynamic reconfiguration planning for
distributed software systems. Software Quality
Journal, 2003.

[2] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. The MIT Press, 1999.

[3] E. M. Dashofy, A. van der Hoek, and R. N. Taylor.
Towards architecture-based self-healing systems. In
WOSS ’02: Proceedings of the first workshop on
Self-healing systems, pages 21–26, New York, NY,
USA, 2002. ACM Press.

[4] D. Garlan, R. Allen, and J. Ockerbloom. Exploiting
style in architectural design environments. In
SIGSOFT ’94: Proceedings of the 2nd ACM
SIGSOFT symposium on Foundations of software
engineering, pages 175–188, New York, NY, USA,
1994. ACM Press.

[5] D. Garlan and B. Schmerl. Model-based adaptation
for self-healing systems. In WOSS ’02: Proceedings of
the first workshop on Self-healing systems, pages
27–32, New York, NY, USA, 2002. ACM Press.

[6] F. Giunchiglia and P. Traverso. Planning as Model
Checking. 5th European Conference on Planning, 1999.

[7] J. Kramer and J. Magee. The evolving philosophers
problem: Dynamic change management. IEEE Trans.
Softw. Eng., 16(11):1293–1306, 1990.

[8] Malik Ghallib, Dana Nau, Paolo Traverso. Automated
Planning: Theory and Practice. Morgan Kaufman,
2005.

[9] A. McVeigh, J. Kramer, and J. Magee. Using
resemblance to support component reuse and
evolution. In SAVCBS ’06: Proceedings of the 2006
conference on Specification and verification of
component-based systems, pages 49–56, New York,
NY, USA, 2006. ACM Press.

[10] P. Oreizy, M. M. Gorlick, R. N. Taylor,
D. Heimbigner, G. Johnson, N. Medvidovic,
A. Quilici, D. S. Rosenblum, and A. L. Wolf. An
architecture-based approach to self-adaptive software.
IEEE Intelligent Systems, 14(3):54–62, 1999.

[11] P. Oreizy, N. Medvidovic, and R. Taylor.
Architecture-based runtime software evolution. In
Proceedings of the 1998 (20th) International
Conference on Software Engineering, pages 177–186,
1998.

[12] P. Bertoli, A. Cimatti, M. Pistore, M. Roveri, P.
Traverso. MBP: A Model-Based Planner. Proc. of
IJCAI’01 Workshop on Planning Under Uncertainty
and Incomplete Information, 2001.

[13] P. Bertoli, A. Cimatti, M. Pistore, M. Roveri, P.
Traverso. NuSMV 2: An Open Source Tool for
Symbolic Model Checking. Proc. of International
Conference on Computer-Aided Verification, 2002.

[14] J. E. Robbins, D. M. Hilbert, and D. F. Redmiles.
Using critics to analyze evolving architectures. In
Joint proceedings of the second international software
architecture workshop (ISAW-2) and international
workshop on multiple perspectives in software
development (Viewpoints ’96) on SIGSOFT ’96
workshops, pages 90–93, New York, NY, USA, 1996.
ACM Press.

[15] J. Zhang and B. Cheng. Modular model checking of
dynamically adaptive programs. Technical report,
Michigan State University, 2006.

21

