Effective Verification of Systems with a Dynamic Number of Components

P. Vařeková, P. Moravec, I. Černá, and B. Zimmerova

Faculty of Informatics
Masaryk University, Brno

SAVCBS’07
Contents

1 Dynamic systems

2 Properties
 - Dynamic system properties in general
 - Properties we are interested in

3 Verification
S - Dynamic system

S_n - Dynamic system with n clients deployed
Dynamic system – Definition
Dynamic system — Definition
Dynamic system — Definition
Dynamic system — Definition
Dynamic system – Definition

- Client t1
- Client t1
- Client t1
- Client t1
- Provider

Effective Verification of Dynamic systems

P. Vařeková, P. Moravec, I. Černá, and B. Zimmerova
We use Component Interaction automata

A hierarchy of component names: (α)

Can be modelled by • Finite transitions systems or • Regular-like expressions
Contents

1 Systems with a Dynamic Number of Components

2 Properties
 • Dynamic system properties in general
 • Properties we are interested in

3 Verification
Properties — Example

"If a client of the system sends a request, then he will receive a response."
"If a client of the system sends a request, then he will receive a response."

∀Sn (n ∈ ℤ₀):
"If client i ∈ {1,...,n} sends a request, then he will receive a response."
"If a client of the system sends a request, then he will receive a response."

\[\forall S_n \ (n \in \mathbb{N}_0) : \]
"If client \(i \in \{1, \ldots, n\} \) sends a request, then he will receive a response."

\[\forall S_n \ (n \in \mathbb{N}_0) : \]
\[\varphi_n = \bigwedge_{i \in \{1, \ldots, n\}} G(\mathcal{P}(i, \text{request}, \alpha) \Rightarrow F \mathcal{P}(\alpha, \text{response}, i)) \]
"If a client of the system sends a request, then he will receive a response."

\[\forall S_n \ (n \in \mathbb{N}_0) : \]
\["If \ client \ i \in \{1, \ldots, n\} \ sends \ a \ request, \ then \ he \ will \ receive \ a \ response." \]

\[\forall S_n \ (n \in \mathbb{N}_0) : \]
\[\varphi_n = \bigwedge_{i \in \{1, \ldots, n\}} G(\mathcal{P}(i, \text{request}, \alpha) \implies F \mathcal{P}(\alpha, \text{response}, i)) \]

\[\forall n \in \mathbb{N}_0 : S_n \models \varphi_n \]
Properties — Introduction

- Property: \(\{ \varphi_i \}_{i \in \mathbb{N}_0} \)

- Property is satisfied \(\iff \forall n \in \mathbb{N}_0 : S_n \models \varphi_n \)

- We use
 - \(\varphi_i \) - temporal logic CI–LTL
 - CI–LTL - an extension of action based LTL
 - \(\mathcal{P}(l) \) - \(l \) is performed as the first action of the path
 - \(\mathcal{E}(l) \) - \(l \) is enabled in the first state of the path
Properties — Main restriction

Restrictions

- no distinctions among clients,

- properties whose violation involves only a finite number of observed components

\[\text{Property}(S, m) \]
- no distinction among clients
- violation involves \(m \) observed components
Example 1/3:

- "If a client of the system sends a request, then he will receive a response."

- path π violates it \Rightarrow a client "send a request and does not receive a response"

- we can observe only this client, to show that this property is violated in π

- we need to observe 1 client.

- $\in \text{Property}(S, 1)$
Example 2/3:

”Two clients can not be able to receive a response at the same time.”

path π violates it \Rightarrow clients j_1 and j_2 ”can receive a response at the same time”

we can observe only clients j_1 and j_2, to show that this property is violated in π

we need to observe 2 clients.

$\in \text{Property}(S, 2)$
Example 3/3:

- "The system does not contain a deadlock."

- path π violates it \Rightarrow all clients and provider reach the state from which they can not continue

- we must observe all clients, to show that this property is violated in π

- we need to observe n clients in S_n.

- $\not\in \text{Property}(S, m)$ for any $m \in \mathbb{N}_0$
If a component **tries to emit** an event on its required interface, the counterpart is **able to absorb** it.

Interface automata, SOFA

System does not contain a **deadlock**.

FOCUS, JavaA, rCOS, SOFA

Situation when communication of components in the group never finished is unreachable.

SOFA

A state in which more than half of clients are in a critical section is unreachable.
Contents

1 Systems with a Dynamic Number of Components

2 Properties
 - Dynamic system properties in general
 - Properties we are interested in

3 Verification
Verification problem

Input: S,
\[\{ \varphi_i \}_{i \in \mathbb{N}_0} \in \text{Property}(S, m) \text{ for some } m \in \mathbb{N}_0 \]

Question: $\forall i \in \mathbb{N}_0 : S_i \models \varphi_i$?

Verification of infinitely many finite state transition systems.

Our solution

find $k \in \mathbb{N}_0$ such that if $S_0 \models \varphi_0$,
$S_1 \models \varphi_1$,
\vdots
$S_k \models \varphi_k$,
then $\forall n \in \mathbb{N}_0 : S_n \models \varphi_n$.

Verification of finitely many finite state transition systems.
Input \(S, \{\varphi_i\}_{i \in \mathbb{N}_0}, m: \{\varphi_i\}_{i \in \mathbb{N}_0} \in \text{Property}(S, m) \).

Intermediate data
- \(X \) - set containing all labels necessary for verification of \(\{\varphi_i\}_{i \in \mathbb{N}_0} \)
- \(|D|_X \in \mathbb{N}_0 \cup \{\infty\} \)

Output
\(k = |D|_X + m \in \mathbb{N}_0 \cup \{\infty\} \)
Verification — Problem

Input

\[S, \]
\[\{ \varphi_i \}_i \in \mathbb{N}_0, \]
\[m: \{ \varphi_i \}_i \in \mathbb{N}_0 \in \text{Property}(S, m). \]

Intermediate data

- \(X \) - set containing all labels necessary for verification of \(\{ \varphi_i \}_i \in \mathbb{N}_0 \)
- \(|D|_X \in \mathbb{N}_0 \cup \{ \infty \} \)

Output

\[k = |D|_X + m \in \mathbb{N}_0 \cup \{ \infty \} \]
Conclusions

- Dynamic systems
- Properties
- Properties whose violation involves finite number of clients
- Verification
Conclusions

Thank you for your attention.