Impact of Specification Abstractions on Client Verification

Hampton Smith
School of Computing
Clemson University
100 McAdams Hall
Clemson, SC
hamptos@clemson.edu

Murali Sitaraman
School of Computing
Clemson University
100 McAdams Hall
Clemson, SC
msitara@clemson.edu

ABSTRACT
Push-button automation is an important milestone for verification systems and a likely requirement for mainstream acceptance of the notion of “verified software”. Multiple, logically-equivalent specifications may differ widely from the standpoint of their ability to contribute to verifiable client code. Using the types of problems considered at the VSTTE 2010 competition as motivation, we explore the specification of the same programming concept (lists) using completely different mathematical models. In each case we examine the provability of client code based on that concept. Initial results from an experimental exploration are presented along with some hypotheses for best-practices for specification design.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications;
P.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about Programs—Mechanical Verification

General Terms
Experimentation, Theory, Verification

Keywords
mathematical modeling, mechanical verification, proofs

1. INTRODUCTION
A central problem in the ongoing quest for verified software [10] is the difficulty verifying correctness of software components automatically. There are indeed several success stories of formal verification of non-trivial software (e.g., OS kernel verification [13, 2]) in which proofs are developed interactively with years of manual effort. Systems that allow for mechanical verification have nontrivial annotation overhead per line of code and require manual guidance of the back-end prover to a verification proof (see, for example, [1], [26]; [17]). While some assertions in the form of, for example, loop invariants, are mostly unavoidable, until programmers are able to write code without large overtures to the back-end prover, fully verified software development processes are unlikely to gain widespread acceptance.

Specification abstractions are a key component in any verification system, providing the vocabulary of the specification to the computer just as an idiom like “stack” or “dictionary” provides the vocabulary of a specification to a human programmer. This vocabulary is then used as the basis for all operation specifications, program reasoning, and proofs. However, multiple equivalent abstractions exist for any given data structure and thus the choice of which abstraction to use represents a design decision on the part of the specifier.

We seek to demonstrate that the same design decisions that result in specifications that are readable and understandable to a human being also contribute to client code that is easy to mechanically verify. We contrast this with much of the literature, where these decisions seem to have been made based on what yielded easy-to-prove implementations. While this is perhaps understandable since the focus to date has been on verifying components, it is ultimately the ease of client code verification that is most critical, since verified software will be implemented only once but reused many times.

In a modular verification system, only the specifications (not the implementations) of subcomponents are used in verification of client systems. Given the prominent role of specification in such a modular verification system, the way in which specifications are expressed has a major impact on the provability of client code. Since modularity is maintained, verification effort put into a component need not be repeated: a verified component is verified for all contexts. Because a component need only be verified once but will be used in many client contexts, where it will contribute to the verifiability of that client, the component’s specification must have broad utility. That is: effort spent verifying a component is wasted if the specification of the component is not generally useful as part of a verifiable client. This paper therefore focuses on ways in which specifications contribute (or fail to contribute) to the verifiability of clients.

The choice of specification style will impact proof obligations arising from client code independent of specification language, programming paradigm, or proof logic. While details may change, there is no existing verification system for which component specifications would not impart their particular flavor on resulting proof obligations.
As our specific example, and the target of our preliminary investigation, we have chosen a variant of two of the list-based problems proposed at the VSTTE 2010 competition [23] and we will present our examples using the RESOLVE verification system [20].

Section 2 of the paper discusses background information and contains a summary of the VSTTE 2010 competition problems relevant for this paper. Section 3 presents the basic set up of the experiment. Section 4 discusses the metrics used to quantify ease of provability. Section 5 presents the concrete example and results with discussion. Section 6 differentiates the effect of a component’s specification on client code and the effect of a component’s specification on its ability to be implemented. Section 7 considers related work along with some of the solutions to the problems presented at the competition. Section 8 contains our conclusions and directions for continued research.

2. BACKGROUND

2.1 Technical Background

Formal verification systems follow a well established pipeline. The primary inputs of the system are code in a programming language and relevant specifications in a formal specification language5. Many specification languages exist. Some, like Z [25], are general purpose and applied to many programming languages. Some, like JML [16] are built on top of existing, industrial languages (in this case, Java). Others like Dafny [17], Spark[3], and RESOLVE are integrated. A detailed discussion of the RESOLVE system along with a comparison with several others may be found in [20].

To verify the correctness of the code, a number of proof obligations will need to be met. Obviously, the postcondition of the code that is under verification needs to be proved. In addition, each operation call with a precondition must be checked; invariants must be enforced; and termination must be established. In data abstraction verification, representation invariants must be verified. Each of these proof obligations is transformed into a mathematical assertion called a Verification Condition (VC). A VC takes the form of an implication. In this paper we’ll present them in the following format:

A and B and C

\implies D

This should be read “Given A and B and C, prove D.” Finally, VCs may be discharged either by hand, with the use of a proof assistant such as Coq [18], or by an automated prover like Yices [6]. Automated provers come in two primary flavors: SMT solvers, which operate very efficiently on pre-defined, finite, first-order logics; and algebraic provers, which mimic human proving and are more flexible, but slower. Languages such as RESOLVE that support higher order logics require provers of the latter flavor2.

The prover (whether human or computer) is supported by mathematical theorems organized into theories. There might be a theory of Integers, Sequences, and others, each containing hundreds of individual theorems. If a system is to remain sound, these theorems must themselves be proved, either by automatic means, or by a user-supplied, mechanically checked proof [22].

2.2 Experiment Background

At the VSTTE 2010 conference, a competition was held allowing teams to submit verified solutions to a set of problems. The problems and proposed solutions are available at [23]. Among these are two problems that involved client code using a linked list. Problem 3 involved searching a linked list for an element with a given value, while problem 5 involved implementing an amortized queue built on top of two linked lists. Verification in both these cases requires some mathematical conceptualization of lists.

Our goal in this paper is to consider several different models of the same data abstraction, Cursor_List, which conceptualizes a singly linked list, and analyze how these models—all of which are logically-equivalent—affect the provability of client code, such as that used at the VSTTE 2010 competition.

3. SPECIFICATION ABSTRACTIONS

A specification abstraction (which goes by many other names including conceptual model and formal idiom) is simply a mapping of the programmatic realities of a data structure like a dictionary or a stack to a mathematical abstraction such as a function or a set. The specification of operations is then given in terms of this abstraction. While verification systems differ in the level of rigor afforded to these abstractions and the degree to which these abstractions are separated from programmatic constructs, all modern systems use this technique.

We wanted to explore the choice of abstraction and its impact on the resultant VCs, so we chose a single data structure and specified it using multiple equivalent abstractions. For our data structure, we chose a list of elements, parameterized by type, with a movable cursor representing the insertion point. We will refer to this data structure as a Cursor_List.

The first abstraction we will consider is the most complex. Much of the separation logic literature chooses to maintain details such as pointer reasoning in the specification of data structures. As a baseline, we therefore include a specification of a Cursor_List as a linked list, including all details of pointer logic.

Two more abstractions seem immediately plausible. Along with definitions and results from mathematical developments that form the basis for these specifications.

We contrast these systems, which are capable of full functional specification, with model checking systems, which are primarily focused on verification of restricted properties of software. Because the latter generally do not require abstractions for full behavioral specification, they are less affected by this design choice.
of proof steps required.

Clearly all three of these alternative metrics are most indicative of the likely success of algebraic-style provers. Metrics more suited for SMT solvers would likely include number of unique variables and complexity of involved definitions.

We choose to focus on algebraic complexity for two reasons: first, for an extensible system, higher-order definitions and theorems, as well as user-defined mathematical types, are a must, and SMT solvers are ill-suited in these situations; second, many existing systems that rely on SMT solvers either incorporate algebraic simplification as a pre-processing step (like Z3) or use a myriad back-end provers, some of which include algebraic provers (like Jahob). We are hopeful that deeper understanding of how algebraic proof-strategies can inform specification design will net wide-ranging benefits, even for systems that primarily use SMT solvers.

5. EXPERIMENTS

Our experiments focused on a Cursor_List, a list into which the client is provided a cursor that can be moved forward (but not backward) and reset to the beginning. Inserts and deletes occur at the cursor location. As our client code example, we used a recursive reversal implementation (a subproblem of problem 5 in the VSTTE competition). We then analyzed the effect of the Cursor_List's mathematical model on ease of verification using the RESOLVE [21] system.

Because the Reverse() implementation remained constant, the same eight VCs were generated each time, corresponding to the same eight proof obligations. However, the nature of these VCs differed based on the Cursor_List specification that had been used to generate them.

Armed with multiple versions of the Reverse() VCs, the final step was to prove them by hand\(^4\) and draw some conclusions about their relative difficulty.

To control for the fact that there is a significant amount of subjectivity in deciding what constitutes a "step" in a proof—after all, each VC could simply be stated as a theorem—making each proof length 1—we established the following guidelines for our theorems:

Be atomic. A theorem should not be considered a single step if it could be decomposed into multiple smaller theorems, unless doing so avoids breaking the next guideline:

Do not introduce functions unnecessarily. While it is certainly true that all of the mathematics expressed in the VCs could be reduced via theorems to set theory or the lambda calculus, then manipulated in that most basic theory, it stands to reason that VCs are best viewed at the level of abstraction that generated them. Consider these theorems:

Theorem:

For all \(E : \text{Entry}, |<E>| = 1;\)

Theorem:

For all \(S, T : \text{String(Entry)}, |S \circ T| = |S| + |T|;\)

We could certainly use these along the path to proving a fact like \(|S \circ <E>| > |S|\), but by this guideline it would be acceptable to include this fact itself as a theorem, since\(^5\)

\(^4\)The reality of the model is significantly more complex and for the full details we direct the reader to [11]. However, this simplification suffices for our purposes here.

\(^5\)Most of the resulting VCs are easily dispatched by an automated prover. However, few provers are equipped to find the shortest such proof, a key part of this experiment.
5.1 Pointer Model

First, we present abstraction (a) from Figure 1, which represents a Cursor_List as in much of the verification literature: using pointers. We use a theory of abstract Locations, where each location takes a value from a set with a cardinality that parallels memory capacity. We do not use Z to model our pointers (a typical alternative) as we seek to disallow pointer arithmetic. The resulting concept is an example where the mathematical modeling in a specification is influenced by implementation internals.

In a RESOLVE specification, types are introduced in the context of a Concept, which provides the conceptualizations of those types and the specifications for related operations but no implementing code. Note that this concept is parameterized by a type called Entry, comparable to a generic in Java. A Family introduces a conceptual type which may have multiple concrete realizations. The clause exemplar L; simply introduces a name for the prototypical Cursor_List.
used in the assertions of the Family definition. \texttt{.L.First} is RESOLVE notation for the value of \texttt{L.First} at the beginning of the function call. Also on display are RESOLVE's parameter passing modes, which summarize the effect an implementation is permitted to have on each parameter — parameters that are updated will have meaningful incoming values and may be changed in a meaningful way by the operation, parameters that are cleared will have meaningful incoming values, but will be changed to an initial value by the end of the call, and parameters that are replaced have their input values ignored and overwritten with result values.

For the purposes of this paper, in the specification of the Insert operation it is irrelevant whether the inserted entry is specified to be preserved (meaning it remains the same), cleared, or altered (meaning the result value is unspecified). The motivation for avoiding copying (and thus preserving) generic type objects is discussed in [8].

One other principle in [8], however, is relevant: in RESOLVE, swapping, not reference or value assignment, is the basic data moving operation and is available on all objects implicitly. So by design, the question of specifying or reasoning about copying a list by reference assignment does not arise in the discussions in this paper.

In the specification above, we define a specific, named \texttt{Location}. \texttt{Void}, which will serve as the null location. The state space shared by lists is directly modeled in the specification using three shared, conceptual variables, \texttt{Entries}, \texttt{Target}, and \texttt{Is_Used}. The variable \texttt{Is_Used} is modeled as a predicate and it indicates whether or not a location is already in use. The variable \texttt{Target} is a mapping to the “next linked” location and the variable \texttt{Entries} maps a location to the entry. Note that the constraints disallow \texttt{Void} from ever becoming allocated and the initialization ensures that all links by default point to \texttt{Void}. For more details, we direct the interested reader to [14].

This specification is not fully abstract [24]. The specification of the Advance operation, which interestingly leaves the entire frame unchanged, is straightforward. The specifications of the Insert and Remove operations are more involved and must include frame-related properties because the conceptual state space is selectively affected. The specification expressions can be simplified with separation logic [19], data refinement [7], or some equivalent. However, verification will still require appropriate frame properties to be proved for the user code. We have not attempted to compare the proof of VCs arising from using this specification with others, because it is much more complex. The existential quantifier, at a minimum, is a hindrance to automated verification, unless user code is documented with suitable witnesses in some form.

In general, introduction of conceptual or shared space adds a non-trivial complexity to specification and corresponding verification. For this reason, it is more appropriate to abstract programming objects along the lines discussed in the next three models, encapsulating these kinds of details inside implementations.

5.2 Before and After Model

Next, we examine abstraction (b) from Figure 1: a before and after sequence. In RESOLVE, a \texttt{String} captures precisely the particulars of what is most commonly meant by “sequence”.

As an example of the style of specification, here is a snippet of the (String * String) version:

```plaintext
Concept Two_Strings_Cursor_List_Template(
  type Entry);
uses Std_Integer_Fac, String_Theory;

Family Cursor_List is modeled by Cart_Prod
  Before, After: String(Entry);
end;

exemplar P;
initialization
  ensures P.Before = empty_string and
  P.After = empty_string;

Operation Advance(updates L : Cursor_List);
  requires L.After /= empty_string;
  ensures L.Before = #L.Before o <First(#L.After)> and
  L.After = All_But_First(#L.After);
end;

Operation Insert(clears New_Entry : Entry;
  updates L : Cursor_List);
  ensures L.Before = #L.Before and
  L.After = <New_Entry> o #L.After;
end;

Operation Remove(;
  replaces Entry_Removed : Entry;
  updates L : Cursor_List);
  requires L.After /= empty_string;
  ensures L.Before = #L.Before and
  L.After = All_But_First(#L.After) and
  Entry_Removed = First(#L.After);
end;
(* Further operations elided for brevity *)
end;
```

The \texttt{o} operator is string concatenation. \texttt{<e>} indicates the string containing the sole element \texttt{e}. The high-level definitions \texttt{All_But_First} and \texttt{First} have the obvious meanings.

An implementation of Reverse on lists was created using this list specification. Here is the specification and an implementation:

```plaintext
Operation Reverse(updates S : Cursor_List);
  requires S.Before = empty_string;
  ensures S.Before = Rev(#S.After) and
  S.After = empty_string;
end;

Procedure Reverse(updates S : Cursor_List);
  decreasing |S.After|;
end;
```

if \texttt{After_Length(S)} > 0 then
 \texttt{Remove(temp, S); Reverse(S); Insert(temp, S); Advance(S); end; end;
Note that the procedure contains a decreasing clause: RESOLVE demonstrates total correctness using progress metrics such as these. \(\text{Rev}()\) is a mathematical function for reversing a string; it is a definition only and is not backed up by any kind of executable code.

After compiling this with the RESOLVE VC generator, 8 VCs are created, corresponding to the various proof obligations in the code. As an example, consider this VC arising from establishing the postcondition of \(\text{Reverse}\) (for one path through the code) at the end of the procedure:

\[
(((min_int \leq 0) \land
(0 < max_int)) \land
\text{S.Before} = \text{empty_string} \land
\text{P.val} = |\text{S.After}|) \land
(|\text{S.After} | > 0) \land
\text{Entry.is_initial(First(S.After)))) = \\
(\text{Rev(All_But_First(S.After)) o} \\
<\text{First(All_But_First(S.After)) o} \text{empty_string}>) = \\
\text{Rev(S.After)}
\]

The consequent of this implication reduces to:

\[
(\text{Rev(All_But_First(S.After)) o} <\text{First(S.After)}) = \\
\text{Rev(S.After)}
\]

Which is simply a tautology. We may thus dispatch this VC simply using a few well-designed theorems. The remaining VCs are, for the most part, simpler than this one.

5.3 List and Position Indicator Model

Now we tackle abstraction (c) from Figure 1: a single sequence with an integer index. This \((\text{String} \times \text{Z})\) model leads to a specification of the same operations from before like this:

```plaintext
Concept Integer_Pointer_Cursor_List_Template(
  type Entry);
  uses Std_Integer_Fac, String_Theory;

Family Cursor_List is modeled by
  Cart_Prod
  Entries : String(Entry);
  Insertion_Point : Z;
  end;
  exemplar P;
  constraint
    P.Insertion_Point <= |P.Entries| and 
    0 <= P.Insertion_Point;
  initialization
    ensures P.Entries = empty_string and 
    P.Insertion_Point = 0;
  Operation Advance(updates L : Cursor_List);
    requires L.Insertion_Point < |L.Entries|;
    ensures L.Entries = 
      Left_Substring( 
        L.Entries, L.Insertion_Point) o 
      Right_Substring( 
        L.Entries, 
        L.Insertion_Point + 1) and 
    Entry.Removed = 
      Element_At( 
        L.Entries, L.Insertion_Point) and 
    L.Insertion_Point = L.Insertion_Point;

  Operation Insert(clears New_Entry : Entry;
                  updates L : Cursor_List);
    ensures L.Entries = Left_Substring( 
      #L.Entries, #L.Insertion_Point) o 
    <#New_Entry> o Right_Substring( 
      #L.Entries, #L.Insertion_Point) and 
    L.Insertion_Point = #L.Insertion_Point;

  Operation Remove(
                replaces Entry_Removed : Entry;
                updates L : Cursor_List);
    requires L.Insertion_Point < |L.Entries|;
    ensures L.Entries = 
      Left_Substring( 
        L.Entries, L.Insertion_Point) o 
      Right_Substring( 
        L.Entries, 
        L.Insertion_Point + 1) and 
    Entry.Removed = 
      Element_At( 
        L.Entries, L.Insertion_Point) and 
    L.Insertion_Point = L.Insertion_Point;

  (* Further operations elided for brevity *)
end;
```

Here, \(|S|\) denotes the length of the string \(S\). The definition \(\text{Left_Substring}(s, x)\) returns the first \(x\) elements of \(s\), \(\text{Right_Substring}(s, x)\) returns the substring of \(s\) starting at element \(x\) and continuing to the end, and \(\text{Element_At}(x)\) returns the element at index \(x\).

First, note that the change in specification does not impact any implementation—a working implementation of \(\text{Cursor_List}\) is still a working implementation under either the specification from Section 5.2 or the one in this section.

It is also interesting to note that the model from Section 5.2 leads to a much more succinct specification of at least the \(\text{Remove}\) operation, while the model in this section leads to a somewhat more succinct \(\text{Advance}\) operation.

Because the model has changed, the specification of \(\text{Reverse}\) (but not its implementation\(^6\)) must change to follow suit. Here is what the specification looks like under this new model:

```plaintext
Operation Reverse(updates S : Cursor_List);
  requires S.Insertion_Point = 0;
  ensures S.Entries = Rev(#S.Entries) and 
  S.Insertion_Point = #S.Entries;
```

Given these two different mathematical models of a list, we are able to compare how easily they contribute to a verified \(\text{Reverse}\) operation. The number of steps required for a proof are shown in Table 1.

Clearly, the \((\text{String} \times \text{Z})\) model consistently requires more steps than the \((\text{String} \times \text{String})\) one. For the culprit, consider VC \(\text{VC}^2\) (which happens to correspond to establishing termination of \(\text{Reverse}\)'s recursion), as generated using the former model:

\(^6\)Save for the progress metric, which is a mathematical assertion embedded in the implementation.
\(^7\)Irrelevant conjuncts have been removed from this and future VCs for brevity.
Table 1: Proof steps for \((\text{String} \times \text{String})\) model vs. \((\text{String} \times \text{Z})\) model.

<table>
<thead>
<tr>
<th>Steps</th>
<th>((S \times S))</th>
<th>((S \times I))</th>
</tr>
</thead>
<tbody>
<tr>
<td>VC 1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>VC 2</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>VC 3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>VC 4</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>VC 5</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>VC 6</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>VC 7</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>VC 8</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

\(|S.\text{Entries}|-0\) > 0

\((|\text{Left}_\text{Substring}(S.\text{Entries}, 0) \circ \text{Right}_\text{Substring}(S.\text{Entries}, (0 + 1))| - 0) < (|S.\text{Entries}| - 0)\)

A full four of the nine required steps are devoted to eliminating spurious zeros and another two determining that the concatenation of \(\text{Left}_\text{Substring}(S.\text{Entries}, 0)\) adds nothing to the final sequence. Nonetheless, these obvious steps must be taken by the prover to reveal an otherwise straightforward proof.

5.4 List and Remaining Model

Finally, we explore abstraction (d) from Figure 1: two sequences of elements, the first representing all the elements and the second representing those elements after the cursor. This model was taken from [26], where presumably it was chosen because it corresponds closely to their linked list implementation. The list starting at the head and continuing to the end could be mapped directly to the “all elements” sequence, while the list starting at the cursor position and continuing to the end could be mapped directly to the “elements after the cursor” sequence.

Choosing an abstraction because it eases implementation verification is not, in and of itself, an invalid strategy if component verification is the sole goal. However, we hypothesize that more constrained models will complicate a verified component’s ability to be used as part of client code that is itself verifiable, an essential property in any verification system that is to scale [21].

In particular, notice that this abstraction places a number of implicit constraints on the relationship between the two sequences. The sequence of remaining elements must be a subsequence of the sequence of all elements. Additionally, this subsequence must continue until the end of the sequence of all elements.

To explore the effects of such an implicitly constrained model, we created a similarly specified \texttt{Cursor_List} using RESOLVE, yielding this specification:

```plaintext
Concept Jahob\_Cursor\_List\_Template(
  type Entry;
  uses Std\_Integer\_Fac, String\_Theory;

Family Cursor\_List is modeled by
  Cart\_Prod
    All, Remaining: String\(\langle\text{Entry}\rangle\);
end;
```

As before, this necessitates reconceiving our \texttt{Reverse()} specification:

```plaintext
Operation Reverse(updates S : Cursor\_List);
  requires S.\text{All} = S.\text{Remaining};
  ensures S.\text{All} = \text{Reverse}\(\langle\text{S.\text{All}}\rangle\) and
  S.\text{Remaining} = empty_string;

<table>
<thead>
<tr>
<th>Steps</th>
<th>Unconstrained</th>
<th>Constrained</th>
</tr>
</thead>
<tbody>
<tr>
<td>VC 1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>VC 2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>VC 3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>VC 4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>VC 5</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>VC 6</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>VC 7</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>VC 8</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
```

exemplar P;
initialization
ensures P.\text{All} = empty_string and
P.\text{Remaining} = empty_string;

Operation Advance(updates L : Cursor_List);
 requires L.\text{Remaining} /= empty_string;
 ensures L.\text{All} = \#L.\text{All} and
 L.\text{Remaining} =
 \text{All}_\text{But}_\text{First}(\#L.\text{Remaining});

Operation Insert(clears New_Entry : Entry;
 updates L : Cursor_List);
 ensures L.\text{Remaining} =
 \langle\#\text{New_Entry}\rangle \circ \#L.\text{Remaining} and
 L.\text{All} = \text{Left}_\text{Substring}(\#L.\text{All},
 |\#L.\text{All}| - |\#L.\text{Remaining}|) \circ
 \langle\#\text{New_Entry}\rangle \circ \#L.\text{Remaining};

Operation Remove(
 replaces Entry_Removed : Entry;
 updates L : Cursor_List);
 requires L.\text{Remaining} /= empty_string;
 ensures L.\text{Remaining} =
 \text{All}_\text{But}_\text{First}(\#L.\text{Remaining}) and
 L.\text{All} = \text{Left}_\text{Substring}(\#L.\text{All},
 |\#L.\text{All}| - |\#L.\text{Remaining}|) \circ
 \text{All}_\text{But}_\text{First}(\#L.\text{Remaining}) and
 Entry_Removed = \text{First}(\#L.\text{Remaining});

(* Further operations elided for brevity *)
end;
```

The difficulty of proving each VC resulting from using this model with the \texttt{Reverse()} client code is summarized in Table 2 against the results for our original, unconstrained, \((\text{String} \times \text{String})\) model.

Consistent with our intuition, the constrained version requires significantly more steps for two of the VCs (VC 3 and VC 5, corresponding to establishing the precondition
on the recursive call to Reverse() and establishing the final correctness of Reverse() on non-empty input, respectively.)

For purposes of discussion, consider VC 5 from the constrained model, reproduced here:

\[
\text{Left_Substring}(S.\text{Remaining}, a) = \text{All}_\text{But}_\text{First}(S.\text{Remaining}) \circ \text{All}_\text{But}_\text{First}(S.\text{Remaining})
\]

First notice that this is simply a tautology. The entire Left_Substring(...) clause reduces to empty_string, which can then be eliminated, leaving us with All_But_First(S.Remaining) = All_But_First(S.Remaining).

This VC corresponds to the precondition on the recursive call to Reverse(), which states that the cursor must be at the beginning of the list. In the case of the unconstrained version, the rationale is straightforward: when the outer call to Reverse() occurred, the precondition held, and nothing has happened that might change S.Before, so it still holds. Here, however, we cannot reason directly about those things before the cursor, so we are left reconstructing the value of S.All, then comparing it to S.Remaining, leading to the increase in complexity of the VC.

While this small experiment is insufficient to draw any broad conclusions, we find some support to warrant further investigation.

6. IMPLEMENTATION VERIFICATION

Ultimately, list implementations themselves have to be verified against the list specification, regardless of how it is conceptualized. Assuming that a list is represented internally in a form close to the mathematical modeling given in section 5.1 (with a structure that includes first, cursor, and last pointers), it may be easy to verify it against the “pointer” modeled specification. To verify against other specifications, abstraction functions (or relations) that relate the internal representations with the abstract models would be necessary. Verification of such data abstraction implementations, in general, will involve multiple mathematical theories. However, such verification needs to happen only once for a component implementation. Verification of such software will be at the client end—the focus of the paper—so the specifications should be tuned to ease that verification task.

The complexity of the list specification in version 5.1 should be ideally moved down to the specification of a pointer concept, as explained in [14]; once such a pointer concept and a suitable mathematical specification of lists (such as those in Sections 5.2, 5.3, or 5.4) are available, then it becomes possible to implement the list concept using the pointer concept and contain the verification complexity to that component.

7. RELATED WORK

While, to our knowledge, this is the first experimental exploration of alternative specification formulations in the literature, Hatcliff et al. [9] evaluate multiple specification systems (i.e., choices made at the language level) with respect to frame properties. This work includes interesting general discussion comparing the systems. Each is evaluated in terms of three criteria: abstraction, which measures to what degree heap properties are given in a device-independent way; reasoning, the degree to which clean, automatic reasoning is encouraged; and framing, the degree to which disjoint state spaces affected by code may be identified and expressed. Examples are provided for each style in a different language that exemplifies that specification style, and general discussion follows.

Among the systems discussed in detail [9] are Dafny[17] and Spec#[5], both of which are built on Boogie[4]. The former is an experimental research language, while Spec# is a superset of C# augmented with a specification language. Another system mentioned in this paper is Jahob: an attempt to verify programs written in the Java language, capturing all Java complexity. It targets a large range of prover backends. Perhaps most relevant to this paper are the exciting result from the Jahob team in [26], in which linked data structures were fully verified using automatic means. However, by contrast to the goals of our research, sizable annotations and significant reasoning about the back-end provers were required on the part of the programmer in order to accomplish this.

The motivation for specifying linked list behavior with an abstraction is the topic of [15]. Though it does not contain a specification such as the one in Section 5.1, it illustrates potential difficulties in specifying a splice procedure and its invariant. The recent work in [7] contains a detailed discussion of client-end reasoning difficulties in the presence of pointers, but the (partial) solution proposed there concerns how client programs need to be written and not how mathematical models may be used for abstract specification.

8. CONCLUSION

The results of this preliminary experiment have sparked our interest in continuing with a comprehensive evaluation over multiple concept specifications. For this small result, it seems the reality is consistent with intuition, though much more work is needed to determine if this is generally true for different kinds of components and client procedures.

For future work, we would like to experiment with specification differences that are not limited to choice of abstraction. For example, the same facts can be encoded in functional or implicit style, which is likely to have an impact on client provability.

In addition, much of the complication inherent in experiments such as this one arise from the necessity to prove VCs by hand. In the future, we hope to develop RESOLVE’s integrated prover so that it is able to categorize VCs mechanically. Ultimately, we hope to arrive at programming-independent specification design guidelines for software component developers, so that avoidable obstacles to automated verification are systematically eliminated.

9. ACKNOWLEDGMENTS

We would like to thank current and past members of the RSHG at Clemson, Ohio State, Denison, and Virginia Tech. This research is supported by NSF grants DMS-0701187 and CCF-0811748.
10. REFERENCES


