Modular Contracts with Procedures, Annotations, Pointcuts and Advice
Henrique Rebélo, Ricardo Lima, and Gary T. Leavens,

CS-TR-11-05
September, 2011

Keywords: Aspect-oriented programming, programming by contract, modularity

2011 CR Categories: D.2.1 [Sofiware Engineering] Requirements/ Specifications — languages, AOP, Aspect]; D.2.2 [Software
Engineering] Design Tools and Techniques — computer-aided software engineering (CASE); D.2.4 [Software Engineering] Soft-
ware/Program Verification — Assertion checkers, class invariants, formal methods, programming by contract, reliability, AOP,
Aspect]; F.3.1 [Logics and Meanings of Programs] Specifying and Verifying and Reasoning about Programs — Assertions, invari-
ants, pre- and post-conditions, specification techniques.

To appear in SBLP 2011.

Dept. of Electrical Engineering and Computer Science
University of Central Florida
4000 Central Florida Blvd.
Orlando, FL 32816-2362 USA

Modular Contractswith Procedures, Annotations,
Pointcuts and Advice

Henrique Rebélg Ricardo Limd, and Gary T. Leavers

! Federal University of Pernambuco, Brazil
{hemr,rmfl}@cin.ufpe.br
2 University of Central Florida, USA
leavens@eecs.ucf.edu

Abstract. There are numerous mechanisms for modularizing design ttyaz

at the source code level. Three mechanisms have been thefonagof atten-
tion, metadata annotations, pointcuts and advice. Therlatio are well-known
aspect-oriented programming mechanisms, and accorditigettiterature, fare
better in achieving contract modularization. Howeverymes efforts aimed at
supporting contract modularity actually hindered it. listpaper we report an
enhanced use of pointcuts and advice, and show how crossagramming in-

terfaces (XPIs) can significantly improve contract modtyatn addition, we

also discuss how these XPIs can be used together with aiomstad tackle the
pointcut fragility problem and minimize the limited enferoent of XPI interface
rules. We compare our approach with the literature’s in geaicode locality,

well-defined interfaces, reusability, changeabilitygfligdy, and pluggability.

1 Introduction

Design by Contract (DbC) is a technique for developing angroving functional soft-
ware correctness [17]. The key mechanism in DbC is the usheobt-called “con-
tracts”. A contract formally specifies an agreement betweeatient and its suppli-
ers. Clients must satisfy the supplier's conditions befaling one of the supplied
methods. When these conditions are satisfied, the supplaagtees certain proper-
ties, which constitute the supplier’s obligations. Howewehen a client or supplier
breaks a condition (contract violation), a runtime errocws. The use of such pre-
and postconditions to specify software contracts datek tmakloare’s 1969 paper on
formal verification [10].

In this context, numerous mechanisms have been develojesttioment, modular-
ize, and document contracts at source code level, inclygtiogedures, aspect-oriented
programming mechanisms and others. In this paper we foctlsrea mechanisms to
deal with design by contract modularization: metadata tatioms [2, 3], and pointcuts
and advice [11]. The latter two are well-known aspect-dgdrprogramming (AOP)
mechanisms. These mechanisms are attracting significeganeh on DbC [4, 6, 21]
and the special case of contracts known as design rules318, 2

It is often claimed in the literature [11, 4, 16, 6] that thentracts of a system are
de-facto a crosscutting concern and fare better when mozethwith AOP mecha-
nisms such as pointcuts and advice. To the best of our kngeldhlzer, Eugster, and

2 H. Rebélo, R. Lima, and G. T. Leavens

Meyer [1] were the first to investigate the adequacy of agteanodularize DbC. They
conclude that the use of aspects hinders design by contnatginentation and fails to
achieve the main DbC principles such as contract inheranc

In this paper, we go beyond Balzer, Eugster, and Meyer’s wottk an improved
understanding of why the common uses of AOP have failed tpgylp modularize
contracts with pointcuts and advice mechanisms. We inte@n enhanced use of such
pointcuts and advice mechanisms to modularize contrahts.ehhanced use relies on
well-defined interfaces, known as crosscut programmirgrfates, or XPls [23]. The
key idea behind the use of XPls is to introduce a crosscuptiogramming interface for
design constraints of the design by contract concern. Natethroughout this paper,
two related, but distinct concepts are usemhtract(description of the operations using
pre- and postconditions) artksign constrain{a pre-/postcondition, or an invariant).
Hence, we can say that a contract may have one or more desigtraiots.

To this end, we present a classical example with four desigistcaints (contracts)
and a comparison between six implementations of this exaneglarding a set of mod-
ularization mechanisms (including procedures and XPI®.algo illustrate, through
XPlIs (pointcuts and advice), how we can properly preserv@ piinciples such as con-
tract inheritance [17, 13]. In addition, we also discuss s can be used together
with annotations to tackle the pointcut fragility probleg®].

We show that XPls and annotations, unlike the previous &ffdr, 4, 16, 6], fare
better to modularize the design by contract concern usingdutarity criteria [12]. We
say the code that implements a design constraimodularif:

(i) itis textually local (i.e. not scattered),

(i) thereis a well-defined interface that is an abstractibthe implementation,

(iif) the implementation of a particular design constraiah be reused if applied to
other parts of the same system (e.g. contract inheritar@g [1

(iv) while performing change tasks, just the related designstraint's modules are
examined or changed and no new aspect is added if the chaskgeaia related
to existing design constraints,

(v) a particular refactoring (e.g. rename method [8]) doatsimvalidate the applica-
tion of a particular design constraint to one or a set of jaimfs, and

(vi) we can remove or compose design constraints into thesysithout being inva-
sive (i.e. without modifications to the base code).

Based on this, this paper provides: (i) an understandingoef the XPlIs (point-
cuts and advice) and annotations mechanisms work togeihaotiularize contracts
in a system; (ii) an understanding of how the previous wogs lee improved; (iii) an
analysis of the different mechanisms that considers cadiity, interface, reusability,
changeability, fragility, and pluggability.

This paper is structured as follows: Section 2 presents xaenple and its four
design constraint concerns. Section 3 presents six implttien of the studied mech-
anisms. Section 4 analyzes in qualitative ways these imghéations. Section 5 dis-
cusses related work and outlines open research issues. Ml iith a summary in
Section 6.

Modular Contracts with Procedures, Annotations, Poistamid Advice 3

Shape

moveBy(int, int) _
~

~
~
~
~
~
~
~

l I ™
\\
\\\
Point Line N
N
N
N
\\\
,9etX() getP1 (L N
/ getY() getP2() _ \\\ N
S ,setX(int) setP1(Pomt) —\:::\\\\ N
/b sety(int) setP2(Point) ™\ it S N
ey moveB int, int moveBy(int, int)\
//7/// y(nt, it By n)\ .| I NonNulReturnTypes | \

///f///,// AN / S N S — |

A A A A — / N |
— 1 \ N N
\ | / - \ /
| PointBoundsChecking | AN // } NonNullinputParameters | //
S \ L _________________ | P

;_/_ _________ -7

Fig. 1. The design of the traditional figure editor system [11, 12, 8Bowing the main classes
and four design constraint concerns that crosscuts methatie Shape, Point , andLine
classes.

2 A Running Example

This section introduces the example that will be used thnougithe paper. It consists
on a simple example from the literature: a figure editingaysfor editing drawings
made up of shape objects (e.g. points) [11, 12, 23]. Its ddsighown in Figure 1.

2.1 Four Design Constraint Concerns

In addition to concerns involving the core functionalitytbé shapes, the design com-
prises four key design constraint concerns, which are shasvdotted-line boxes in
Figure 1. All these design constraint concerns are disduasd enforced in terms of
pre- and postconditions, and invariants [17].

Point-Bounds-Checking— Denotes an invariant constraint on all methods oPtbiet
class. This constraint states that the coordinates of 4 a@@rstored in particular bounds
(between specifiIN andMAXvalues).

Non-Null-Input-Parameter — Denotes two preconditions that constrain the input ob-
ject parameters, of methodstP1 andsetP2 of Line class, to be non-null.

4 H. Rebélo, R. Lima, and G. T. Leavens

Non-Null-Return-Types— Denotes two postconditions that constrain the returnabbje
types, of methodgetP1 andgetP2 of Line class, to be non-null.

M ove-By-Par ameter s-Checking— Denotes a precondition that constrains the input pa-
rameters of the methadoveBy to be greater than or equal to zero. This precondition
crosscuts three types (the interfagleape andPoint andLine classes) that declares
the methodnoveBy. Since this precondition is defined in the supertgpeape, it rep-
resents a contract inheritance [17].

Some of these constraints are interconnected in the seatehtir realizations
crosscut the same class. For instance, as observed in HigthreLine class has its
methods constrained by three of the four design constramterns.

3 Six Implementations

This section presents the code for six implementations ®frtimning example (Fig-
ure 1). As discussed, the running example also comprisesdfsign constraint con-
cerns. Due to lack of space and for simplicity, we presenirtigementations of some
design constraints (e.ilove-By-Parameters-Checkiyand informally argument about
the others. A complete implementation of the four desigrstramts is available at [20].
We conduct an analyzes of these implementations in Section 4

31 GOFP

This first implementation uses good old-fashioned procesl(GOFP) to implement
the DbC concern code. In this implementation, each of thestcaimed methods of the
figure editor system (Figure 1) includes a call to a proce@astatic method in Java).
This call is placed at the beginning (for precondition codé)he end (for postcondition
code) or both (for invariant code) of each constrained nubtiNote that this is the
standard form commonly adopted in practice [5].

The following code illustrates the checking of the prectindiconstraint (stated by
the Move-By-Parameters-Checkiggncern) oimoveBy method declared at thepint
class.

voi d moveBy(int dx, int dy) {
JC.requires(dx >= 0 && dy >= 0,
"dx is "+dx+" dy is "+dy);
setX(getX() + dx);
setY(getY() + dy);
}

The shadowed code shows the precondition constraint codbetks whether or not
the input parameters of methathveBy are greater than or equal to zero; if it is not, a
precondition error is thrown to signal the contract vialatiNote that the body of the
procedureequires (shown below) encapsulates/modularizes the signalirgg eade
(i.e. thet hr owclause).

Modular Contracts with Procedures, Annotations, Poistamid Advice 5

However, the call to the procedurgguires and its related error message are still
tangled and scattered within the figure editor system. Famgte, the methothoveBy
of classLine (not shown) must have an identical call to this proceduredeoto check
the precondition constraint. The scattered call is a liticitaof the object-oriented pro-
gramming mechanisms [11, 12] (later we discuss how to avat scattering). Regard-
ing the error message code, besides being tangled andredaitestill makes the code
more polluted and verbose. This error message code is liegllgrtant in the context
of DbC purposes [17,14]. Once a precondition error is detec user should receive
a detailed description of the violation in order to track dimdhe error. A detailed er-
ror message could be in terms of class name, method namextwalues (e.g. values
of input parameters), and so forth.(The second shadowedfithe methodnoveBy
illustrates the context values passing.)

static void requires(bool ean constraint, String errorMsg) {
i f (lconstraint)
t hr ow new PreconditionError(errorMsg);

}

This implementation illustrates the declaration of thecedurerequires used to
check precondition constraints. Let us assume that thisepliere was declared in a
Java class calledC (used to encapsulate all Java contract based operatidris)isTan
alternative instead of Java assertions, since in Java wetdwwe other built-in support
for DbC [17].

The postcondition and invariant constraint are implemeérsienilarly. The main
difference is that the procedure call is placed at the enccohatrained method (for the
postcondition) or at beginning and end of a constrained atetfor the invariant).

3.2 Enhanced-GOFP

This implementation enhances the previous one with the ftiaestvategydesign pat-
tern [9]. Itis used to encapsulate the constraint and eremsaige code. Hence, we need
only to pass the input parameters and the name of the metleddaisompose a useful
error reporting message. As a result, the preconditiontcainsis modularized in the
MoveByParametersCheckingTester class. This implementation is not commonly
used in practice [5], but it helps to reduce the tangling aadtsred implementation of
the precondition constraint related to the GOFP procedure.

voi d moveBy(int dx, int dy) {
JC.requires(new MoveByParametersCheckingTester(dx, dy ,
"Point.moveBy"));

setX(getX() + dx);
setY(getY() + dy);

}
Even though we were able to modularize the preconditiontcains and also the error
reporting code in the strategy clagsveByParametersCheckingTester , We cannot

remove the scattered calls to the procedergires (we still have a similar call to

6 H. Rebélo, R. Lima, and G. T. Leavens

this procedure in the body of methaaveBy in Line class). This is a limitation of the
object-oriented code [11,12]. Later in this section, wecd$§s how to improve these
implementation through an enhanced use of pointcuts andedv

3.3 Pointcuts-Advice

In this implementation, we show how the work described incilngent literature [11, 4,
16, 6] uses the aspect-oriented programming mechanisrhsasysointcuts and advice
to implement and “modularize” the same discussed preciondiVe evolve enhanced-
GOFP implementations with these AOP mechanisms.

voi d moveBy(int dx, int dy) {
setX(getX() + dx);
setY(getY() + dy);

}

before(int dx, int dy):
execution(voi d PointmoveBy(int, int))
&& args(dx, dy) {
JC.requires(new MoveByParametersCheckingTester(dx, dy ,

"Point.moveBYy"));
}

A single bef or e advice is used to modularize the call to procedwguires in
Point. moveBy . Fortheline class, a similabef or e advice is used; the only change is
in thepoi nt cut (i.e.execution(void Line.moveBy(int, int))).Inthe litera-
ture [11, 4, 16, 6], other authors employ an aspect per dtessce, we have two aspects
(one for clas$oint and other for th&ine one) where each one hasef or e advice
used to check the precondition constraint stated byvibee-By-Parameters-Checking
concern.

However, as the reader can observe, this has the same iscperblem presented
as in the GOFP and enhanced-GOFP implementations. As agqpmrsee, the following
question can be raised\hat are the benefits of the aspectization of design by ccintra
besides the physical separatidn®/e answer this question based on some variations of
this implementation and some analysis and discussionigdanut in Sections 4 and 5.

3.4 Annotation-Pointcuts-Advice

This implementation uses Java 1.5 metadata annotatio8F [Phus, each constrained
method that follows the restrictions imposed by teve-By-Parameters-Checking
concern has a custom annotation that states that the exeaitthe constrained and
annotated method should check the precondition.

@PointMoveByParametersChecking
voi d moveBy(int dx, int dy) {
setX(getX() + dx);
setY(getY() + dy);
}

Modular Contracts with Procedures, Annotations, Poistamid Advice 7

The followingbef or e advice differs from the previous one (without annotatidns)
the sense that it intercepts the execution based on methadiedwith the annotation
@PointMoveByParametersChecking . It is written as:

before(int dx, int dy):
execut i on(@PointMoveByParametersChecking * x ()
&& args(dx, dy) {
JC.requires(new BoundsCheckingTester(dx, dy,

"Point.moveBy"));

}

Supplying annotations. Aspect-oriented programming languages such as AspectJ of-
fers specific static crosscutting constructs to supplydohice) annotations in a cross-
cutting manner [3]. Hence, we do not need to directly markrttethod declaration,
instead we can perform the following:

decl are @method: voi d Point.moveBy(int, int):
@PointMoveByParametersChecking;

This declaration introduces the annotat@mrointMoveByParametersChecking on
methodPoint.moveBy in a crosscutting way. Such a mechanism is useful when we
have several methods with the same annotation, leadingriotation clutter. More-
over, this AspectJ feature [3] works as a contributing fattothe pointcut fragility
problem [22] encountered in AspectJ-like languages. If yelyaarenamingmethod
refactoring [8] in methodPoint.moveBy , we got a compile-time error saying that the
method Yoi d Point.moveBy(int, int)”does notexist. Inthis case the developer
is forced to implement the exposed member. Note that thigdesle enforcement [18]

is not possible in the literature-based approach withouadsata annotations.

3.5 Enhanced-Pointcuts-Advice

In this implementation, we show how the use of pointcuts atuice, in contrast to the
literature [11, 4, 16, 6], can be enhanced. We seek an entialeséggn by contract code
modularization by exploring the quantification propertyA@P. Quantification is one
of the main benefits when adopting aspect-orientation [[7, 24

Another key idea behind our methodology is to combine poitstand advice with
the notion ofcrosscut programming interfacesr XPIs [23]. We use XPlIs to introduce
a short design phase before the design of the base and aspgecDuring this design
phase, for each (design constraint) concern, we define ah) {(®rface to decouple
the base design an the aspect design.

The following code is related to the XPI declaration usedxpose all the con-
strained join points by th®ove-By-Parameters-Checkiegncern.

aspect XMoveByParametersChecking {
public pointcut jp(int dx, int dy):
execution(voi d Shape+.moveBy(int, int))
&& ar gs(dx, dy);

8 H. Rebélo, R. Lima, and G. T. Leavens

By convention, aspects that specify XPls begin with #hifi order to distinguish them
from non-interface aspects. The syntactic part of the XPbses one named pointcut
(ip)- Theexecution(voi d Shape+.moveBy(int, int)) pointcut means execu-
tion of any methodnoveBy defined inShape or a subclass ddhape, that returnsoi d
and take two integer arguments. In contrast to previous sviirk, 4, 16, 6], our imple-
mentation of the precondition gains in reusability achiEve the AspectJ quantification
property, in this case, expressed by the use-ofused to intercept a hierarchy).

The aspect code that uses the XPI for keve-By-Parameters-Checkimgncern
is written as:

aspect MoveByParametersPreconditionChecking {
before(int dx, int dy):
XMoveByParametersChecking.jp(dx, dy) {
JC.requires(new BoundsCheckingTester(dx, dy,

"Shape+.moveBy"));

}
}

The aspect now depends only on the abstract public pointpuatire denoted bjp .
Unlike in the literature approach [11, 4, 16, 6], the poit$aused within the advice code
do not depend anymore on implementation details obtiepe, Point , orLine types.
As the pointcufp intercepts execution of any Shape objects (including sdsels), the
precondition constraint code is reused and automaticpjied to methodnoveBy of
Point andLine classes. As a result, we augmented the reuse by using théfipaan
tion mechanism present in aspect-oriented languages sudlpect]. Hence, instead
of two bef or e advice with a duplicated call to the proceduwquires (precondition
checking code), we only have a localized one. This is one pl@of how to properly
implement the contract inheritance principle of DbC methlody [17].

One of the main objectives of the XPI interfaces is to guaarhat the exposed
join points are really implemented in a system, thus avaidie pointcut fragility prob-
lem [22]. However, the XPI approach has limited enforcenaénimterface rules [23].
The application of object-oriented refactorings [8] sushiemamingcan break the ex-
posed join points in the XPI interfaces. In the following, discuss how XPls can be
significantly improved by using metadata annotations in lmioation with supplying
annotations [3] (previously discussed).

3.6 Enhanced-Annotation-Pointcuts-Advice

This implementation differs from the previous one only ie thay that XPIs expose
the join points. We combine the Java 1.5 metadata annosafijrwith the AspectJ
supplying annotations mechanisms [3].

Consider the discussed XPI implementation (without artiwta) of theMove-By-
Parameters-Checkingoncern. With the application of metadata annotations ettie
posed pointcuts become as follows:

Modular Contracts with Procedures, Annotations, Poistamid Advice 9

aspect XMoveByParametersChecking {
declare @method: voi d Shape+.moveBy(int, int):
@MoveByParametersChecking;

public pointcut jp(int dx, int dy):
execut i on(@MoveByParametersChecking * x (.))
&& ar gs(dx, dy);
}

The XPI now exposes all th@MoveByParametersChecking join points. The rest of
the code to check the precondition (the advising code) nesrthie same as discussed.
In addition, we mentioned that XPIs, without metadata aatiarts, have a limited en-
forcement of interface rules. For example, in the non-aatimt approach, we can not
ensure that the subclassesStfape really implements the exposed join point by the
XPI. Let us assume that we performed an @damingrefactoring [8] to change the
name of the methodhoveBy. If the programmer does not change the XPI as well, the
crosscutting behavior will be discarded. This problem isseal by the pointcut fragility.
However, by employing annotations, all the marked methaalst xist during compile-
time 1. Hence, if the hierarchy @hape replaces the name of theoveBy method with

a new one, we got a compile-time error saying that the metim@By does not exist
in the Shape’s hierarchy.

Therefore, the use of metadata annotations enhance thep¥&ifisation when ex-
posing all the join points of a particular concern. This agwh helps to improve the
enforcement (in a compile-time enforcement fashion) orifiaice (design) rules. The
idea to ensure design rules through a well-defined interfgciscussed by Netet
al's work [18]. They extend the AspectJ syntax with desigresuthat are enforced
for both base and advised code. Hence, they provide morerfidwesign rules than
those achieved by XPls [23]. We rely on XPIs because they apeétJ-based, require
no new constructs, and they are currently available for Aspasers (including our
enhancements using metada annotations [2], Bonner).

4 Analysisof the Implementations

In this section, we present an analysis of the six implentemis (non-AOP and AOP
based) of the figure editor (Figure 1) regarding the fourglesionstraints concerns
identified in Section 2 and based on the different mechaniisvestigated in this paper.
The assessment uses six modularity criteria (summarizédbie 1 and discussed in
Introduction Section): code locality, interface, reushichangeability, fragility, and
pluggability. The analysis is broken into three parts: GhrAOP implementations, (ii)
AOP implementations, and (iii) reasoning about change.lda$tepart uses the change-
ability modularity criterion.

! This can only be enforced for those join points that wereieitlyl defined without quantifica-
tion.

10 H. Rebélo, R. Lima, and G. T. Leavens

Table 1. Analysis of the six implementations.

Locality | Interface [Reusability| Changeability| Fragility | Pluggability
non AOP| GOFP no low no no n/a no
EGOFP| medium | medium medium medium n/a no
PA(1) | medium | medium medium medium yes yes
AOP APA(2) | medium | medium medium medium no yes
EPA(3) high high high high yes yes
EAPA(4)| high high high high no yes

(1) Pointcuts-Advice.

(2) Annotation-Pointcuts-Advice.

(3) Enhanced-Pointcuts-Advice.

(4) Enhanced-Annotation-Pointcuts-Advice.

4.1 TheNon-AOP Implementation

In the non-AOP code, the GOFP implementation of the figureoedystem (Figure 1)
fails to satisfy our modularity criteria related to the falegsign constraints. Firstly, it
is not localized. The GOFP implementation is good in the sghat it modularizes
the signaling of contract violation. However, its realipatis still scattered due to all
necessary calls to it. The legibility and tangling becomeraworse in GOFP due to the
error message code (including context information).

The GOFP implementation has a clearly defined interfacethisiinterface fail to
say anything about the design constraints. Even if thefaterin GOFP is an abstrac-
tion of the implementation, any change to a design condtraay propagate several
other changes due to the tangled and scattered nature o€saostraint. This also hin-
ders our reusability and pluggability criteria.

On the other hand, the enhanced procedure implementati®@P) fares better
than the GOFP one. Since we use a strategy design patteim¢@rapsulate the con-
straint and error reporting code, we have augmented the @&U3bC constraints such
as preconditions. The encapsulation of the constraint etsteimproved the code lo-
cality criterion. Finally, the use of the strategy pattesalates code related to design
constraints; this leads to a notion of interface that we diohawe with plain GOFP.
However, EGOFP implementation still have scattered angléancalls to procedures
that check constraints.

A common property of both GOFP and EGOFP is that they commemur plug-
gability criterion, because the DbC concern removal is ugrgsive in a non-AOP way.
Table 1 summarizes our analysis results.

4.2 The AOP Implementation

In the AOP code, each implementation exhibits better codality (against non-AOP)
resulting in a non-tangled DbC code. However, only the enedrAOP implemen-
tations really exhibit improved code locality (see Table This happens due to the
reusability achieved for procedure calls (which check pired postconditions, and in-
variants). The non-enhanced AOP implementations onlybéxigusability (quantifica-
tion) for invariant code. This compromises the overall eility (in terms of pre- and

Modular Contracts with Procedures, Annotations, Poistamid Advice 11

postconditions) and code locality (pre- and postcond#tiare still scattered in AOP
code as procedure calls).

The enhanced AOP implementations offer better interfaceshie DbC concern
than non-enhanced ones. The interfaces are now a more teftection of the design
constraints. For example, one can look at a particular XBlraason about the effect of
a design constraint in the entire system. This separatioplgies the reasoning during
a change (our changeability criterion). Since the DbC caededll-localized, we just
need to change the pointcut declaration of XPls in orderduseend apply a common
constraint code, for example, to new added methods of atirexhape class.

All AOP implementations satisfy the pluggability criteniobecause the DbC code
is completely localized as aspects and can be easily renemeétdomposed when nec-
essary. Only the implementations that consider metadatatations can improve the
fragility pointcut problem. In summary, our last implematibn fares better in all mod-
ularity criteria.

4.3 Reasoning about Change

This section analyzes the implementations in terms of hoW tvey fare when per-

forming some change tasks (Table 1 summarizes how fare tuegelability criteria

for all the implementations). The selected change task$owed affect all the design
constraint concerns discussed in Section 2. This is usefahalyze the impact of the
changes regarding the existing implementation of the desigstraints.

Adding Color to Figure editor. The first change task (used in other work [23]) adds
Color (new class) as an attribute, with getter and setter methiodgth Point and
Line classes. The requirement is that addediqr) setter methods must fulfill the
constraints imposed by ti¢onNullinputParametersoncern. The addedblor) get-

ter methods should in turn fulfill the constraints imposedioyNonNullReturnTypes
concern. Finally, any method addedAnint class must satisfy the invariant condition
imposed by théointBoundsCheckingpncern.

Adding a new Shape class. Our second change task adds a new Shapeafe) class
in the figure editor system. This new added class has a setajetter and setter meth-
ods in addition to thenoveBy method (implemented through tB&ape interface). The
getter methods must satisfy the constraints imposed biNtrNullReturnTypeson-
cern, the setter ones must satisfy M@nNullinputParametersoncern, and theoveBy
method must satisfy theloveByParametersCheckiegncern.

In GOFP, the programmer must edit all the added operationglfith the design
constraint concerns of these change tasks. These editglatedrto the addition of
procedure calls responsible for checking the design cainstand passing the context
information useful for generating good error messagesidBeshe changes of every
added operation, this implementation also fails if we cleaogrefine the existing de-
sign constraints. This again leads to changes on every tigperalated to the refined
design constraints. This is a direct consequence of thedackuse previously dis-
cussed. In EGOFP, it also involves editing the same addechtipes (related to the

12 H. Rebélo, R. Lima, and G. T. Leavens

change tasks). However, these edits are related only teeguoe calls since the de-
sign constraint code are, in fact, encapsulated in theeglyatesign pattern. As a result,
EGOFP implementations fare better while maintaining existlesign constraints.

Another important issue to consider is when the number gisloctasses increases.
This indicates that the number of edited places also goeshilp using the GOFP and
EGOFP implementation mechanisms. In sum, the GOFP and EG@Q#@mentations
have limited benefits to satisfy our changeability criteria

In the AOP-based, only the enhanced ones have exhibiteer mbiangeability. In
relation to the non-enhanced ones, we have limited imprevesibecause they have
failed to properly deal with calls to procedures that cheo- @nd postconditions.
Thus, for a new added operation that has pre- and postconditinstraints associ-
ated, we need to add two new advice with a call to a correspgrmiocedure. Without
quantification, we tend to have the same problems occurrdd @OFP and EGOFP
implementations.

The use of quantification [7, 24] combined with a well-defireiteria to decom-
pose the design constraints, led us to mitigate the limitatof the non-enhanced AOP
implementations. This is the approach discussed in thigwanich employs XPIs for
modularizing DbC code. The main benefit of our approach i§ thdike the previous
analyzed implementations, we always modify the same plabés adding new shapes
classes. This is an evidence that our approach is more $ea@atl has maintenance
advantages than previous ones. Table 1 summarizes theseyfindll the six imple-
mentations along with their implemented change tasks aiade on the web [20].

5 Discussion

When a concern’s implementation is not modularized, thathis implementation is
scattered across the program and tangled with the soureereladed to other concerns,
the concern is said to baosscutting/11]. As advocated, DbC [17] is an example of
a concern in which its realization become crosscutting4116, 6] and that its imple-
mentation is better modularized by AOP.

However, as mentioned (in the Introduction Section), thekviny Balzer, Eugster,
and Meyer [1] contradicts this common belief. The authorsdeted a study similar
to the one we did here by using the same figure editor systemi21.1They argue that
the use of AOP hinders the proper usage of DbC, since the fdaite€ to emulate the
latter. Their main complaints are: (i) aspects cannot dél @ontract inheritance [17,
13], (ii) AOP breaks the documentation [17] property inmtref DbC, and (iii) the
aspects appear separately from the base program.

In fact, our analysis confirms Balzer, Eugster, and Meyé&i'§fdings. On the other
hand, our work goes beyond theirs in the sense that we havedastified the main
reasons why the literature efforts [11, 4, 16, 6] have fatle@ddress the modulariza-
tion problem and the main DbC principles. In this context,digcussed how best to
use AOP mechanisms such as quantification [7, 24], pointantsadvice, in addition to
their combination with metadata annotations [2, 3] whictuim makes the design more
stable and less fragile [22]. These new findings confirm tbatraon DbC objectives
such as contract inheritance (complaint i) can be sucdbssfiplemented using AOP

Modular Contracts with Procedures, Annotations, Poistamid Advice 13

(we demonstrated this regarding the implementation oMbgeByParametersCheck-
ing constraint which is common to all shape figures).

In relation to the claim that AOP hinders the documentati@pprty (complaint ii)
that is inherent in DbC, we argue that AOP languages such pscdboffer new mech-
anisms and possibilities that solve this problem. In paldéic metadata annotations [2]
can be used directly on the advised code, or in a crosscuttammer [3], to provide way
to document the design constraints. Tools like AJDT alreafthr similar functionality
that indicate which advice apply in a certain join point [12]

Regarding the last complaint, Where we document and ingntairtne contracts
of libraries which source code is not available? This commplgoes against the run-
time verification of APIs which we do not control source coHence, the previous
works [11, 4, 16, 6] already showed how to properly sepaabstfact the behavior (con-
tracts) from its implementation details.

Another point to highlight is that by using XPls [23], we eiqgitly make a well-
defined interface that is responsible for introducing astlesign phase that decouples
the base and aspect designs. The application of well-defimedaces help to decom-
pose the DbC concern into small common design constraidtsfzange the proper XPI
interface whenever needed. Finally, we also demonstragtdy using annotations we
can increase the design rules enforcement of XPIs, for ebartifat all exposed join
points should exist in the advised (base) code.

5.1 Other formsof Aspectized DbC

As discussed throughout the paper, there are several wortteeiliterature that ar-
guments if favor or implementing DbC with AOP [11, 4,16, 6]icKales opened this
avenue by showing a simple precondition constraint impteaten in one of his first
papers on AOP [11]. After that, several other authors exoldrow to implement and
separate the DbC concern with AOP [4, 16, 6, 21]. All theseka@ffer common tem-
plates and guidelines for DbC aspectization. However, abave shown, only invari-
ants have benefited from these original guidelines. We cemeit previous work in
the sense of how to better separate and reason about centiicaspects. One impor-
tant issue to point out about these researched templatestighey have been shown to
be very useful in the context of generative programming 121,

5.2 Open Issues

Afirst open issue is to expand our concept of applying XPIDio€ to investigate how
it fares when used to modularize advanced concepts of dbgigantract [17], such as
frame properties, information hiding with datagroupstdmg constraints, and abstract
contracts (such as model fields and model methods used in IMI15]). All these
features are available in JML [14, 15] (an interface spediiic language for Java).
Another nextimportant step is the large-scale validafidrere are several works [11,
4,16, 6,21] in the literature that advocate the use of AOP d¢alutfarize DbC. Other
work criticizes this use [1]. So a larger-scale validatiearss necessary to more defini-
tively settle this question. Furthermore, a predictive glddr using aspects to imple-
ment design by contract will be useful to guide developergtmgnize the situations

14 H. Rebélo, R. Lima, and G. T. Leavens

where it is advantageous to aspectize DbC code. Studiesifican modular reason-
ing and comprehensibility denote another issue. Compavisih other advanced tech-
niques (like JML [14, 15]) will be also useful to extend or nefithis work.

6 Summary

Metadata annotations, pointcuts and advice are useful amésins for separating the
design by contract concern in source code. To better uradelstnd be able to work
with these mechanisms, we proposed the use of well-defitedaces, known as XPIs.
Such interfaces are useful to decompose and reason abaigige by contract code as
recurrent design constraint concerns. We also combinesditfa of XPlIs with metadata
annotations, to improve the limited enforcement of XPI iifgees on advised code.
Finally, we evaluated these mechanisms, in a small cldssieanple, in terms of some
modularity criteria and how they fared when performing deatasks.
The model proposed here provides a good basis for furthearels on design by

contract implementation and modularization. We expectrowgments to the model
and guidelines to the combined use of annotations, pomtnd advice.

Acknowledgements

We thank Eric Eide, Mario Sudholt, Arndt Von Staa, David &oz and Mehmet Aksit
for fruitful discussions (we had during the AOSD 2011) abitnt ideas developed in
this paper and about design by contract modularization iive gg.

This work has been partially supported by CNPq under grant344539/2009-
3 for Ricardo Lima. Henrique Rebélo is also supported by ERE under grant No.
IBPG-1664-1.03/08. The work of Leavens was partially supggbby a US National
Science Foundation grant, CCF-10-17262.

References

1. Stephanie Balzer, Patrick Th. Eugster, and Bertrand M&gan aspects implement contracts.
In In: Proceedings of RISE 2005 (Rapid Implementation of Begjiimg Techniquepages
13-15, September 2005.

2. Joshua Block. A metadata facility for the java programgrianguage, 2004.

Jonas Boner. Aspectwerks. http://aspectwerkz.codetimi.

4. Lionel C. Briand, W. J. Dzidek, and Yvan Labiche. Instrumieg Contracts with Aspect-
Oriented Programming to Increase Observability and Sujipelbugging. InCSM '05: Pro-
ceedings of the 21st IEEE International Conference on So&wWlaintenance (ICSM'05)
pages 687-690, Washington, DC, USA, 2005. IEEE Computeie§oc

5. Manuel Fahndrich, Michael Barnett, and Francesco LogoEmbedded contract languages.
In Proceedings of the 2010 ACM Symposium on Applied Comp@8i&G '10, pages 2103—
2110, New York, NY, USA, 2010. ACM.

6. Yishai A. Feldman, Ohad Barzilay, and Shmuel Tyszberowimse: Aspects for Design by
Contract80-89sefm 0:80-89, 2006.

7. Robert E. Filman and Daniel P. Friedman. Aspect-oriep@gramming is quantification
and obliviousness. Technical report, 2000.

w

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

Modular Contracts with Procedures, Annotations, Poistamid Advice 15

. Martin Fowler. Refactoring: improving the design of existing codeldison-Wesley Long-

man Publishing Co., Inc., Boston, MA, USA, 1999.

. Erich Gamma et al. Design patterns: elements of reusable object-orientedwsoé

Addison-Wesley Longman Publishing Co., Inc., Boston, MAA)J 1995.

Charles Antony R. Hoare. An axiomatic basis for compptegramming.Commun. ACM
12(10):576-580, 19609.

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kenstdeffrey Palm, and William G.
Griswold. An overview of aspectj. IfProceedings of the 15th European Conference
on Object-Oriented ProgrammindeCOOP '01, pages 327-353, London, UK, UK, 2001.
Springer-Verlag.

Gregor Kiczales and Mira Mezini. Aspect-oriented pamgming and modular reasoning. In
Proceedings of the 27th international conference on Seo&wagineeringlCSE '05, pages
49-58, New York, NY, USA, 2005. ACM.

Gary T. Leavens. JML's rich, inherited specificationstdehavioral subtypes. In Zhiming
Liu and He Jifeng, editors;ormal Methods and Software Engineering: 8th Internationa
Conference on Formal Engineering Methods (ICFEM)lume 4260 ofLecture Notes in
Computer Sciencgages 2—34, New York, NY, November 2006. Springer-Verlag.

Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Prelany design of JML: A behav-
ioral interface specification language for Jad&M SIGSOFT Software Engineering Notes
31(3):1-38, March 2006.

Gary T. Leavens and Peter Muller. Information hiding aisibility in interface specifica-
tions. InInternational Conference on Software Engineering (IC$Epes 385-395. IEEE,
May 2007.

Marius Marin, Leon Moonen, and Arie van Deursen. A classiion of crosscutting con-
cerns. InICSM '05: Proceedings of the 21st IEEE International Coafere on Software
Maintenancepages 673—-676, Washington, DC, USA, 2005. IEEE Computeie§o
Bertrand Meyer. Applying “design by contracComputey 25(10):40-51, 1992.

Alberto Costa Neto, Arthur Marques, Rohit Gheyi, Pauboli, and Fernando Castor. A de-
sign rule language for aspect-oriented programmindsBiP '09: Proceedings of the 2009
Brazilian Symposium on Programming Languagesges 131-144. Brazilian Computer So-
ciety, 2009.

Henrique Rebélo, Ricardo Lima, Marcio Cornélio, $>@r Leavens, Alexandre Mota, and
César Oliveira. Optimizing generated aspect-orientséréi®on checking code for jml using
program transformations: An empirical studgci. Comput. Program2010. Submitted
for publication. Also available as a TR #tttp://www.eecs.ucf.edu/ ~leavens/
tech-reports/UCF/CS-TR-10-01/TR.pdf .

Henrique Rebélo, Ricardo Lima, and Gary T. Leavens. Wardcontracts with procedures,
annotations, pointcuts and advice. Available framttp://cin.ufpe.br/ ~hemr/
sblpl1l .

Henrique Rebélo, Sérgio Soares, Ricardo Lima, Lapélerreira, and Marcio Cornélio.
Implementing java modeling language contracts with agpéetSAC '08: Proceedings of
the 2008 ACM symposium on Applied computipgges 228-233, New York, NY, USA,
2008. ACM.

Maximilian Storzer and Christian Koppen. Pcdiff: Atking the fragile pointcut prob-
lem, abstract. IfEuropean Interactive Workshop on Aspects in SoftwAezlin, Germany,
September 2004.

Kevin Sullivan, William G. Griswold, Hridesh Rajan, Yuaian Song, Yuanfang Cai, Mac-
neil Shonle, and Nishit Tewari. Modular aspect-orientesiglewith xpis.ACM Trans. Softw.
Eng. Methodol.20:5:1-5:42, September 2010.

Marco Tulio Valente, Cesar Couto, Jaqueline Faria, @1di§ Soares. On the benefits of
quantification in aspectj system&.Braz. Comp. Socl16(2):133-146, 2010.

	TR
	sblp_2011.pdf

