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Abstract—Asynchronous techniques have become more signifi-
cant with continued scaling of VLSI technologies. This paper 
proposes an asynchronous FPGA architecture. Different from 
previous methods of introducing asynchrony into FPGAs, our 
method seeks to preserve the current FPGA cell structure as 
much as possible, whilst achieving delay insensitivity in the in-
ter-cell interconnects. By using David Cells as the central tech-
nique in the delay insensitive clock replacement, this method is 
conducive to the establishment of an automatic design and syn-
thesis flow. It also particularly caters for low power designs, 
where current FPGA solutions are not effective yet. 

I. DESIGN CHALLENGES IN NANOMETER TECHNOLOGY 
CMOS feature size shrinking in nanometre technology has 

enabled a wide spectrum of applications ranging from high 
performance computers to low power portable devices. These 
in turn require a variety of computation and communication 
architectures to optimize silicon performance. The Interna-
tional Technology Roadmap for Semiconductors (ITRS) [1] 
and research [2] predict multitudes of difficulties in scaling for 
wires and transistors in future technology nodes.  

As the decrease in CMOS feature size keeps improving 
performance, programmable logic is becoming increasingly 
attractive. However, traditional FPGA architectures are facing 
challenges with the growing logic size of chips: 1) Delays of 
long interconnect wires can easily dominate all other delays; 
2) To evenly distribute global clock signals all over the FPGA 
area requires great efforts because of clock skew; 3) FPGAs 
are more likely to contain a multitude of modules running at 
different clock frequencies, with data signals appearing to be 
asynchronous in the new clock domain when moving data 
across modules; 4) Increased power consumption; and 5) 
process variations seriously affect circuit designs. 

The ITRS predicts that asynchronous circuits can be useful 
for these problems. As asynchronous circuits are hard to de-
sign and test, especially because of a lack of automatic design 
toolkits, they previously were primarily only used for the fol-
lowing reasons: 1) When speed requirements cannot be met 
with a synchronous design; 2) When power requirements can-
not be met with a synchronous design; 3) When dictated by 
requirements; And 4) to solve special problems. 

However, asynchronous logic has made enormous 
progress in the past decade. Complete asynchronous proces-
sors are routinely designed in the lab, and CAD toolkits are 

being developed. Since two of the main advantages of asyn-
chronous logic are the absence of a clock and low power con-
sumption, it seems natural to apply asynchronous technology 
to the design of FPGAs [3]. 

In this paper, we propose a low power asynchronous 
FPGA architecture. The main features of this work include: 1) 
Keeping the basic structures of the traditional FPGAs; 2) De-
signing a wrapper based on David Cells to implement a dis-
tributed control structure which replaces the clocks; and 3) 
proposing a design flow for asynchronous FPGAs. 

The remainder of the paper is organized as follows: Sec-
tions II describes existing asynchronous FPGAs including the 
architectures and advantages and disadvantages; Section III 
introduces our new proposed low power asynchronous FPGA 
and a design flow; Section IV gives the conclusions and the 
outlooks of the future work. 

II.  EXISTING ASYNCHRONOUS FPGAS 
Traditional FPGA architectures normally consist of confi-

gurable logic blocks (CLB), routings (interconnect links), and 
IO ports. As the FPGAs are pre-designed, there should be 
some limitations on hardware resources (components) of the 
FPGAs, such as interconnect links, clock buffers, the numbers 
of inputs of each CLB and so on.  

For example, most existing FPGAs only have four inputs 
for each Look Up Table (LUT). As a result, applications with 
more than four inputs may need long inter-block interconnect 
links. This will introduce long latency and may cause hazard 
problems. Synchronous implementations can overcome these 
problems by increasing clock period based on the worst case 
timing assumption at the cost of reduced performance and 
increased power consumption.  

Asynchronous FPGA solutions have been presented in the 
literature [3-14] since 1992. Payne in his paper [4] gave a 
summary for MONTAGE [5], PGA-STC [6], and STACC [7].  

MONTAGE from the University of Washington, was the 
first asynchronous FPGA, though it includes a clock signal for 
implementing synchronous circuits as well. It is extended 
from their own synchronous FPGA architecture by adding 
special arbitration cells, and modifying the function unit.  

PGA-STC developed at U.C. Davis is targeted at the im-
plementation of two-phase bundled-data systems such as Mi-
cropipelines [15]. The architecture is loosely based on that of 

The work is supported by EPSRC projects at the School of EECE, New-
castle University, England, U.K. 

978-1-4244-5309-2/10/$26.00 ©2010 IEEE 1436



the Xilinx FPGAs, with modification to the function unit, and 
addition of arbitration cells and programmable delay elements.  

STACC is an architecture developed at the University of 
Edinburgh. It is a dedicated architecture for the implementa-
tion of four-phase bundled-data systems. The STACC archi-
tecture is based on that of fine-grain FPGA architectures 
where the global clock is replaced by an array of timing-cells 
that generate local register control signals. 

All the above asynchronous FPGAs amend the function 
units to avoid hazards in signals, and use timing assumptions 
to guarantee the correctness of the asynchronous circuits. 

Royal and Cheung proposed a Globally Asynchronous Lo-
cally Synchronous FPGA in their paper [11]. They mimic the 
GALS architecture used in general asynchronous circuit de-
signs. A wrapper structure is presented in the paper. It is used 
to separate the synchronous blocks and asynchronous routings. 
The wrapper communicates with the synchronous block syn-
chronously and provides a local clock signal to the block. It 
uses handshake protocols to interface with the asynchronous 
routings. In addition, Micropipelines are used in asynchronous 
routings to improve the performance.  

Jia and Vemuri [12][13] proposed an asynchronous FPGA 
with large size of blocks using the same GALS structure as 
[11] and proposed a design flow for their FPGAs as well.  

Teifel and Manohar [10] presented a high performance 
asynchronous FPGA. They used fine-grain asynchronous 
pipelines as the basis, and proposed a completely new logic 
cell for the FPGAs, in which there are Function Unit, Merge 
Unit, Split Unit, and Token Unit. 

Fang et al in [14] presented a 3D asynchronous FPGA, 
which extended Teifel and Manohar’s work from 2D to 3D. 

Wong, Martin, et al [3] proposed a completely new asyn-
chronous FPGA. They proposed the precharge half-buffer 
(PCHB) circuits for implementing logic cells and unlike the 
other asynchronous FPGAs, in their solution the logic cells 
can be Speed Independent (SI) circuits and the interconnect 
links are Delay Insensitive (DI) circuits. The C elements are 
used to implement circuits bigger than cluster logic blocks to 
guarantee SI as the limitations of hardware resources. 

III. PROPOSED ASYNCHRONOUS FPGA  
Most of these asynchronous FPGAs are proposed for im-

proving performance to overcome the global worst case timing 
delays. In general, these can be classified into two types: 1) 
Working under timing assumptions with modification on logic 
cells (The GALS based FPGAs, for example, belong to this 
class); And 2) working under little timing assumptions with 
completely new logic cells. 

Type 1 in general replaces the global worst case timing as-
sumptions by the individual worst case timing assumptions. 
The problem of this type is that the methods mix the delays 
both inside blocks and between blocks. In nanometre technol-
ogy, process variations will seriously affect delays, and it will 
be hard to set matching delays for inter-block interconnects.  

Type 2 is fine from the performance point of view. How-
ever as the methods are completely new with novel cell struc-
tures, they can be impractical due to the lack of support from 
existing commercial EDA toolkits and testability is a problem 
too. In addition, as some heavy asynchronous components, 
such as C elements, are used, they can consume more power. 

Here we propose a solution different from these two types. 

Our proposed asynchronous FPGA architecture is sitting in the 
middle. It seeks to keep the traditional logic cells (CLB level 
and/or no more than 4 CLBs --- cluster logic level commonly 
defined in FPGA industries) which potentially make it possi-
ble to use existing commercial EDA toolkits. It also employs a 
distributed control system to obtain DI in the interconnect 
links with only the delays inside logic blocks needing to be 
considered. Our main contribution gets rid of the delay con-
strains on the interconnect links, possibly very long depending 
on routing. This provides more process variation tolerance as 
delays in small local circuits (blocks) are easier to manage. 

Our proposed architecture mainly focuses on low power. 
The new architecture avoids hazard signals, has no clock dis-
tribution problems, and provides more flexibility and good 
potential for automatic design and synthesis. This flexibility 
will benefit system designers who want to employ more so-
phisticated low power design techniques.  
A. Architecture 

Existing synchronous FPGA architectures can be simply 
taken as CLBs used for functionality and interconnect links 
used for data communications and control communications. 
Each CLB consists of a LUT, a D flip-flop, a Multiplexer, and 
other logic, for example carry logic. The LUT is used to im-
plement the combinational computation. The output of the 
LUT changes with changes in the inputs. Our proposed archi-
tecture preserves this normal CLB structure to maintain usa-
bility of existing design toolkits. Basically we want to derive a 
technology which delivers an asynchronous equivalent to the 
common existing synchronous FPGA, with correct control and 
data path replacement techniques which get rid of the clocks. 

For this purpose we need to first avoid hazard signals, 
which asynchronous circuits potentially have. For this we in-
troduce a control signal, generated only when all inputs have 
settled. This can be done by using data encoding methods, 
such as dual-rail data, and completion detection logic. In the 
absence of a global clock, we also need to explicitly manage 
the delays inside CLBs. As the normal CLBs use single rail 
data encoding, it should use dedicated delay signals. In general 
a CLB is small in terms of circuit size and not distributed, 
making it is easy to manage the delays inside CLBs. However 
the delays on interconnect links are harder to manage as 
placement and routing may put them at arbitrary locations, 
allowing them to be affected more by process variations.  

Logic Block

DC based Async. Wrapper 

Asyncronous Routing  
Figure 1. Proposed asynchronous FPGAs with wrapper 

We propose a wrapper structure as shown in Figure 1 to 
connect asynchronous routings and control signals to CLBs. 
This wrapper uses David Cells (DC). DCs, proposed in [16], 
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form a kind of distributed control circuit. Each DC includes an 
elementary two state automation. The overall system is there-
fore a product of such automations. Some extension work 
were developed in [17][18][19]. In general DCs can be de-
fined as shown in Figure 2, in which there are a backward 
signal (bk), a forward signal (fw), a set of set signals (s1 to 
sn), and a set of reset signals (r1 to rm). A DC consists of a 
basic structure of three NAND gates and three logic blocks. 
Other implementations may be used [19]. 

L
og

ic
 2s1...sn

L
og

ic
 3Logic 1 r1...rmbk

fw

 
Figure 2. Definition of David Cells 

The logic 1 and 2 blocks are used to implement the set and 
propagate functions and the logic 3 block for the reset func-
tion. 
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Figure 3. Examples of DCs 

Two DC examples are shown in Figure 3. The left hand 
one is the simplest DC. Here we use the complex one on the 
right as an example to explain how a DC works. When both s1 
and s2 are low or s3 low, the DC is set up and then the bk is 
set to low. The {(s1,s2), bk} or {s3, bk} forms a handshake 
protocol. So after bk is low, either both s1 and s2 are set to 
high or s3 high. After that, fw is set to low to propagate the 
control to the next stage. Here {fw, (r1,r3)} or {fw, (r2,r3)} 
forms a handshake protocol as well. This DC therefore has the 
set function 3!2*!1! sss +  and reset function 3*!2!3*!1! rrrr + . 

For an application, some of the CLBs may execute in pa-
rallel and some of them in sequence. The DC based distributed 
control can be used to implement any combinations and com-
positions of these scenarios.  

This DC based distributed control is used to propagate the 
control path. After data is ready, it triggers the corresponding 
DC(s) and then the corresponding CLB(s). After finishing, it 
withdraws the data and propagates the control to the next 
stage. This way it implements an inter-block DI replacement 
of a clock-based control system. The proposed wrappers are 
used to link the distributed control and CLBs. The block dia-
gram of a possible implementation of the wrapper is shown in 
Figure 4, in which the dotted box is the normal CLB and the 
dashed box is the proposed wrapper. 

In Figure 4, P stands for programmable units; PD for pro-
grammable delays; COV for converter from single rail to dual-
rail; CD for completion detection logic; DC for David Cell; s 
for set and r for reset. 

This block diagram clearly shows that the delay on inter-
connect links is no longer relevant for correctness and the PDs 

only need to match the delays inside the CLBs. The structure 
is not limited to one wrapper per CLB. In practice, a wrapper 
can be used for a cluster of logic blocks.  
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Figure 4. A possible wrapper implementation 

The wrapper works as follows: All ready data pass through 
the left hand CD and then trigger the DC based on the re-
quirements. After that a signal is generated to pass all ready 
data to the LUT and start computation. Here timing assump-
tions are used for the delay for latching the computation re-
sults and the delay for converting the single rail data to dual-
rail data. After that the right CD generates the bk signal to 
allow the previous stage to start the next cycle. 

For complex applications which require more than one ba-
sic block, the control signals among DCs in multiple wrappers 
will form set-reset signaling chains. 
B. Design Automation  

Here an EDA design flow is proposed for automatically 
design and synthesis systems based on the proposed asyn-
chronous FPGA architecture. The design flow is focused on 
designs starting from high level specifications. 

The proposed asynchronous architecture has three parts: 
function parts which are limited to small size circuits such as 
one CLB or several CLBs forming a cluster with efficient in-
ternal links, wrappers and asynchronous routings. 

Existing EDA toolkits are not suitable as they do not sup-
port asynchronous designs. However as the function parts are 
synchronous circuits, especially as we limit the scale of each 
function block to one CLB or several CLBs with internal links, 
existing FPGA designing toolkits can be borrowed to partition 
functionality and map the partitioned functionality as we pre-
serve the basic CLB structure of the traditional FPGAs.  

However, the asynchronous wrapper and the asynchronous 
routings cannot be designed using the current most popular 
asynchronous EDA toolkits, such as Handshake Solutions [23] 
and Balsa [24], as they mix the datapath and control parts. 

One asynchronous design method called direct mapping 
and related EDA toolkits [22] was developed by us. In this 
design flow, after partitioning and scheduling, a high level 
specification is divided into datapath, global control, and local 
control between the datapath and the global control. This 
matches our proposed asynchronous FPGA architecture. So 
the wrappers and asynchronous routings can be designed 
based on the direct mapping method.  

To further develop the existing method, for asynchronous 
FPGA design, we propose that Petri nets [21] be used as an 
intermediate language for the above DC based distributed con-
trol as Petri net specifications can be directly mapped to DC 
based circuits [20]. Figure 5 shows an example Petri net mod-
el. The mapped DC circuit is shown in Figure 6. This example 
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shows that complex control structures including a combination 
of sequential and parallel executions can be described in Petri 
net models and mapped to DC circuits in a reasonably 
straightforward manner. 

PC MAR_r

1WdInst

Mem

IR
2WdInst

1WdEx

2WdEx

IF IE

Instruction
Fetching

Instruction
Execution

PC = Program Counter Update
MAR_r = Memory Address
Register, loading for Read
Mem = memory Read
IR = Instruction Register Load
1WdInst = One Word Instruction

2WdInst = Two Word Instruction

1WdEx = One Word Instruction 

2WdEx = two Word Instruction

Decoding

Decoding

Execution

Execution

 
Figure 5. Petri net example 
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Figure 6. DC based distributed control 

The proposed automatic design flow is therefore a combi-
nation of existing commercial FPGA development toolkits and 
direct mapping asynchronous design methods. From a high-
level behaviour and functional specification, the functionality 
is partitioned to CLBs (clusters) using existing FPGA tools, 
and then the inter-block relationships are scheduled to obtain 
an intermediate Petri net model of control communications, 
which is purely data/event driven without mandating clocks. 
After that DC based wrappers are implemented to form an 
asynchronous distributed control, resulting in DI inter-block 
data and control links. In addition, asynchronous routings are 
implemented to transfer data between CLBs.  

During the wrapper mapping process, the delays matched 
to the corresponding CLBs (clusters) should be considered.  

IV. CONCLUSIONS AND OUTLOOKS 
In this paper an asynchronous FPGA architecture is pro-

posed. The fundamental features of this architecture are the 
preservation of current FPGA cell structures and delay insen-
sitive inter-block data and control links. The preservation of 
current FPGA cell structure made it possible for the continued 
use of existing FPGA design toolkits and the simple DC-based 
distributed control made it possible for a straightforward au-
tomatic design flow to be developed. The DI across intercon-
nect links and wrapper-based cell control also imply self-
timed and data-driven operation targeting low power. Future 
work includes the development of a general systematic me-
thod of developing Petri net control models targeting this 
FPGA architecture and further development of the direct map-

ping method to include wrapper implementations. The David 
Cell technology also has significant scope for further devel-
opment to suit future FPGA systems. 
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