
Asynchronous FPGA Architecture with Distributed
Control

Delong Shang, Fei Xia, Alex Yakovlev
MSD Group, School of EECE, Newcastle University

Newcastle upon Tyne, NE1 7RU, England, U.K.
{delong.shang,fei.xia,alex.yakovlev}@ncl.ac.uk

Abstract—Asynchronous techniques have become more signifi-
cant with continued scaling of VLSI technologies. This paper
proposes an asynchronous FPGA architecture. Different from
previous methods of introducing asynchrony into FPGAs, our
method seeks to preserve the current FPGA cell structure as
much as possible, whilst achieving delay insensitivity in the in-
ter-cell interconnects. By using David Cells as the central tech-
nique in the delay insensitive clock replacement, this method is
conducive to the establishment of an automatic design and syn-
thesis flow. It also particularly caters for low power designs,
where current FPGA solutions are not effective yet.

I. DESIGN CHALLENGES IN NANOMETER TECHNOLOGY
CMOS feature size shrinking in nanometre technology has

enabled a wide spectrum of applications ranging from high
performance computers to low power portable devices. These
in turn require a variety of computation and communication
architectures to optimize silicon performance. The Interna-
tional Technology Roadmap for Semiconductors (ITRS) [1]
and research [2] predict multitudes of difficulties in scaling for
wires and transistors in future technology nodes.

As the decrease in CMOS feature size keeps improving
performance, programmable logic is becoming increasingly
attractive. However, traditional FPGA architectures are facing
challenges with the growing logic size of chips: 1) Delays of
long interconnect wires can easily dominate all other delays;
2) To evenly distribute global clock signals all over the FPGA
area requires great efforts because of clock skew; 3) FPGAs
are more likely to contain a multitude of modules running at
different clock frequencies, with data signals appearing to be
asynchronous in the new clock domain when moving data
across modules; 4) Increased power consumption; and 5)
process variations seriously affect circuit designs.

The ITRS predicts that asynchronous circuits can be useful
for these problems. As asynchronous circuits are hard to de-
sign and test, especially because of a lack of automatic design
toolkits, they previously were primarily only used for the fol-
lowing reasons: 1) When speed requirements cannot be met
with a synchronous design; 2) When power requirements can-
not be met with a synchronous design; 3) When dictated by
requirements; And 4) to solve special problems.

However, asynchronous logic has made enormous
progress in the past decade. Complete asynchronous proces-
sors are routinely designed in the lab, and CAD toolkits are

being developed. Since two of the main advantages of asyn-
chronous logic are the absence of a clock and low power con-
sumption, it seems natural to apply asynchronous technology
to the design of FPGAs [3].

In this paper, we propose a low power asynchronous
FPGA architecture. The main features of this work include: 1)
Keeping the basic structures of the traditional FPGAs; 2) De-
signing a wrapper based on David Cells to implement a dis-
tributed control structure which replaces the clocks; and 3)
proposing a design flow for asynchronous FPGAs.

The remainder of the paper is organized as follows: Sec-
tions II describes existing asynchronous FPGAs including the
architectures and advantages and disadvantages; Section III
introduces our new proposed low power asynchronous FPGA
and a design flow; Section IV gives the conclusions and the
outlooks of the future work.

II. EXISTING ASYNCHRONOUS FPGAS
Traditional FPGA architectures normally consist of confi-

gurable logic blocks (CLB), routings (interconnect links), and
IO ports. As the FPGAs are pre-designed, there should be
some limitations on hardware resources (components) of the
FPGAs, such as interconnect links, clock buffers, the numbers
of inputs of each CLB and so on.

For example, most existing FPGAs only have four inputs
for each Look Up Table (LUT). As a result, applications with
more than four inputs may need long inter-block interconnect
links. This will introduce long latency and may cause hazard
problems. Synchronous implementations can overcome these
problems by increasing clock period based on the worst case
timing assumption at the cost of reduced performance and
increased power consumption.

Asynchronous FPGA solutions have been presented in the
literature [3-14] since 1992. Payne in his paper [4] gave a
summary for MONTAGE [5], PGA-STC [6], and STACC [7].

MONTAGE from the University of Washington, was the
first asynchronous FPGA, though it includes a clock signal for
implementing synchronous circuits as well. It is extended
from their own synchronous FPGA architecture by adding
special arbitration cells, and modifying the function unit.

PGA-STC developed at U.C. Davis is targeted at the im-
plementation of two-phase bundled-data systems such as Mi-
cropipelines [15]. The architecture is loosely based on that of

The work is supported by EPSRC projects at the School of EECE, New-
castle University, England, U.K.

978-1-4244-5309-2/10/$26.00 ©2010 IEEE 1436

the Xilinx FPGAs, with modification to the function unit, and
addition of arbitration cells and programmable delay elements.

STACC is an architecture developed at the University of
Edinburgh. It is a dedicated architecture for the implementa-
tion of four-phase bundled-data systems. The STACC archi-
tecture is based on that of fine-grain FPGA architectures
where the global clock is replaced by an array of timing-cells
that generate local register control signals.

All the above asynchronous FPGAs amend the function
units to avoid hazards in signals, and use timing assumptions
to guarantee the correctness of the asynchronous circuits.

Royal and Cheung proposed a Globally Asynchronous Lo-
cally Synchronous FPGA in their paper [11]. They mimic the
GALS architecture used in general asynchronous circuit de-
signs. A wrapper structure is presented in the paper. It is used
to separate the synchronous blocks and asynchronous routings.
The wrapper communicates with the synchronous block syn-
chronously and provides a local clock signal to the block. It
uses handshake protocols to interface with the asynchronous
routings. In addition, Micropipelines are used in asynchronous
routings to improve the performance.

Jia and Vemuri [12][13] proposed an asynchronous FPGA
with large size of blocks using the same GALS structure as
[11] and proposed a design flow for their FPGAs as well.

Teifel and Manohar [10] presented a high performance
asynchronous FPGA. They used fine-grain asynchronous
pipelines as the basis, and proposed a completely new logic
cell for the FPGAs, in which there are Function Unit, Merge
Unit, Split Unit, and Token Unit.

Fang et al in [14] presented a 3D asynchronous FPGA,
which extended Teifel and Manohar’s work from 2D to 3D.

Wong, Martin, et al [3] proposed a completely new asyn-
chronous FPGA. They proposed the precharge half-buffer
(PCHB) circuits for implementing logic cells and unlike the
other asynchronous FPGAs, in their solution the logic cells
can be Speed Independent (SI) circuits and the interconnect
links are Delay Insensitive (DI) circuits. The C elements are
used to implement circuits bigger than cluster logic blocks to
guarantee SI as the limitations of hardware resources.

III. PROPOSED ASYNCHRONOUS FPGA
Most of these asynchronous FPGAs are proposed for im-

proving performance to overcome the global worst case timing
delays. In general, these can be classified into two types: 1)
Working under timing assumptions with modification on logic
cells (The GALS based FPGAs, for example, belong to this
class); And 2) working under little timing assumptions with
completely new logic cells.

Type 1 in general replaces the global worst case timing as-
sumptions by the individual worst case timing assumptions.
The problem of this type is that the methods mix the delays
both inside blocks and between blocks. In nanometre technol-
ogy, process variations will seriously affect delays, and it will
be hard to set matching delays for inter-block interconnects.

Type 2 is fine from the performance point of view. How-
ever as the methods are completely new with novel cell struc-
tures, they can be impractical due to the lack of support from
existing commercial EDA toolkits and testability is a problem
too. In addition, as some heavy asynchronous components,
such as C elements, are used, they can consume more power.

Here we propose a solution different from these two types.

Our proposed asynchronous FPGA architecture is sitting in the
middle. It seeks to keep the traditional logic cells (CLB level
and/or no more than 4 CLBs --- cluster logic level commonly
defined in FPGA industries) which potentially make it possi-
ble to use existing commercial EDA toolkits. It also employs a
distributed control system to obtain DI in the interconnect
links with only the delays inside logic blocks needing to be
considered. Our main contribution gets rid of the delay con-
strains on the interconnect links, possibly very long depending
on routing. This provides more process variation tolerance as
delays in small local circuits (blocks) are easier to manage.

Our proposed architecture mainly focuses on low power.
The new architecture avoids hazard signals, has no clock dis-
tribution problems, and provides more flexibility and good
potential for automatic design and synthesis. This flexibility
will benefit system designers who want to employ more so-
phisticated low power design techniques.
A. Architecture

Existing synchronous FPGA architectures can be simply
taken as CLBs used for functionality and interconnect links
used for data communications and control communications.
Each CLB consists of a LUT, a D flip-flop, a Multiplexer, and
other logic, for example carry logic. The LUT is used to im-
plement the combinational computation. The output of the
LUT changes with changes in the inputs. Our proposed archi-
tecture preserves this normal CLB structure to maintain usa-
bility of existing design toolkits. Basically we want to derive a
technology which delivers an asynchronous equivalent to the
common existing synchronous FPGA, with correct control and
data path replacement techniques which get rid of the clocks.

For this purpose we need to first avoid hazard signals,
which asynchronous circuits potentially have. For this we in-
troduce a control signal, generated only when all inputs have
settled. This can be done by using data encoding methods,
such as dual-rail data, and completion detection logic. In the
absence of a global clock, we also need to explicitly manage
the delays inside CLBs. As the normal CLBs use single rail
data encoding, it should use dedicated delay signals. In general
a CLB is small in terms of circuit size and not distributed,
making it is easy to manage the delays inside CLBs. However
the delays on interconnect links are harder to manage as
placement and routing may put them at arbitrary locations,
allowing them to be affected more by process variations.

Logic Block

DC based Async. Wrapper

Asyncronous Routing
Figure 1. Proposed asynchronous FPGAs with wrapper

We propose a wrapper structure as shown in Figure 1 to
connect asynchronous routings and control signals to CLBs.
This wrapper uses David Cells (DC). DCs, proposed in [16],

1437

form a kind of distributed control circuit. Each DC includes an
elementary two state automation. The overall system is there-
fore a product of such automations. Some extension work
were developed in [17][18][19]. In general DCs can be de-
fined as shown in Figure 2, in which there are a backward
signal (bk), a forward signal (fw), a set of set signals (s1 to
sn), and a set of reset signals (r1 to rm). A DC consists of a
basic structure of three NAND gates and three logic blocks.
Other implementations may be used [19].

L
og

ic
 2s1...sn

L
og

ic
 3Logic 1 r1...rmbk

fw

Figure 2. Definition of David Cells

The logic 1 and 2 blocks are used to implement the set and
propagate functions and the logic 3 block for the reset func-
tion.

bk

fw

r1
r2
r3s1

s2

s3

bk

s

r

fw

Figure 3. Examples of DCs

Two DC examples are shown in Figure 3. The left hand
one is the simplest DC. Here we use the complex one on the
right as an example to explain how a DC works. When both s1
and s2 are low or s3 low, the DC is set up and then the bk is
set to low. The {(s1,s2), bk} or {s3, bk} forms a handshake
protocol. So after bk is low, either both s1 and s2 are set to
high or s3 high. After that, fw is set to low to propagate the
control to the next stage. Here {fw, (r1,r3)} or {fw, (r2,r3)}
forms a handshake protocol as well. This DC therefore has the
set function 3!2*!1! sss + and reset function 3*!2!3*!1! rrrr + .

For an application, some of the CLBs may execute in pa-
rallel and some of them in sequence. The DC based distributed
control can be used to implement any combinations and com-
positions of these scenarios.

This DC based distributed control is used to propagate the
control path. After data is ready, it triggers the corresponding
DC(s) and then the corresponding CLB(s). After finishing, it
withdraws the data and propagates the control to the next
stage. This way it implements an inter-block DI replacement
of a clock-based control system. The proposed wrappers are
used to link the distributed control and CLBs. The block dia-
gram of a possible implementation of the wrapper is shown in
Figure 4, in which the dotted box is the normal CLB and the
dashed box is the proposed wrapper.

In Figure 4, P stands for programmable units; PD for pro-
grammable delays; COV for converter from single rail to dual-
rail; CD for completion detection logic; DC for David Cell; s
for set and r for reset.

This block diagram clearly shows that the delay on inter-
connect links is no longer relevant for correctness and the PDs

only need to match the delays inside the CLBs. The structure
is not limited to one wrapper per CLB. In practice, a wrapper
can be used for a cluster of logic blocks.

CD PD PD

P

P

LUT

D
−

FF

M
U

X
CD

C
O

V

D
ua

l−
ra

il
da

ta

D
ua

l−
ra

il
da

ta

bk

fwse
t

re
se

t

DC

s

r

Figure 4. A possible wrapper implementation

The wrapper works as follows: All ready data pass through
the left hand CD and then trigger the DC based on the re-
quirements. After that a signal is generated to pass all ready
data to the LUT and start computation. Here timing assump-
tions are used for the delay for latching the computation re-
sults and the delay for converting the single rail data to dual-
rail data. After that the right CD generates the bk signal to
allow the previous stage to start the next cycle.

For complex applications which require more than one ba-
sic block, the control signals among DCs in multiple wrappers
will form set-reset signaling chains.
B. Design Automation

Here an EDA design flow is proposed for automatically
design and synthesis systems based on the proposed asyn-
chronous FPGA architecture. The design flow is focused on
designs starting from high level specifications.

The proposed asynchronous architecture has three parts:
function parts which are limited to small size circuits such as
one CLB or several CLBs forming a cluster with efficient in-
ternal links, wrappers and asynchronous routings.

Existing EDA toolkits are not suitable as they do not sup-
port asynchronous designs. However as the function parts are
synchronous circuits, especially as we limit the scale of each
function block to one CLB or several CLBs with internal links,
existing FPGA designing toolkits can be borrowed to partition
functionality and map the partitioned functionality as we pre-
serve the basic CLB structure of the traditional FPGAs.

However, the asynchronous wrapper and the asynchronous
routings cannot be designed using the current most popular
asynchronous EDA toolkits, such as Handshake Solutions [23]
and Balsa [24], as they mix the datapath and control parts.

One asynchronous design method called direct mapping
and related EDA toolkits [22] was developed by us. In this
design flow, after partitioning and scheduling, a high level
specification is divided into datapath, global control, and local
control between the datapath and the global control. This
matches our proposed asynchronous FPGA architecture. So
the wrappers and asynchronous routings can be designed
based on the direct mapping method.

To further develop the existing method, for asynchronous
FPGA design, we propose that Petri nets [21] be used as an
intermediate language for the above DC based distributed con-
trol as Petri net specifications can be directly mapped to DC
based circuits [20]. Figure 5 shows an example Petri net mod-
el. The mapped DC circuit is shown in Figure 6. This example

1438

shows that complex control structures including a combination
of sequential and parallel executions can be described in Petri
net models and mapped to DC circuits in a reasonably
straightforward manner.

PC MAR_r

1WdInst

Mem

IR
2WdInst

1WdEx

2WdEx

IF IE

Instruction
Fetching

Instruction
Execution

PC = Program Counter Update
MAR_r = Memory Address
Register, loading for Read
Mem = memory Read
IR = Instruction Register Load
1WdInst = One Word Instruction

2WdInst = Two Word Instruction

1WdEx = One Word Instruction

2WdEx = two Word Instruction

Decoding

Decoding

Execution

Execution

Figure 5. Petri net example

&

&
 +

& s2
&

b

f
s1

&

s2
&

b

f
s1

&

 +

 +

2WdInst

1WdInst

1wdEx

PC

Mem

(1)

(1)

(1)

b r1

s1 f

b

b b

b b b

f

f f

fff

s1

s1 s1

s1

s1
s2
s3

s1
s2

r1
r2

r1
r1.1
r1.2
r2.1

r1

r1
MAR_r

r1

r2

b b

f fs1s1

r1

r2

b

fs1

r1

r1

r2

2WdEx

IR
s2

&

b

f
s1

r1

 +
r1

Figure 6. DC based distributed control

The proposed automatic design flow is therefore a combi-
nation of existing commercial FPGA development toolkits and
direct mapping asynchronous design methods. From a high-
level behaviour and functional specification, the functionality
is partitioned to CLBs (clusters) using existing FPGA tools,
and then the inter-block relationships are scheduled to obtain
an intermediate Petri net model of control communications,
which is purely data/event driven without mandating clocks.
After that DC based wrappers are implemented to form an
asynchronous distributed control, resulting in DI inter-block
data and control links. In addition, asynchronous routings are
implemented to transfer data between CLBs.

During the wrapper mapping process, the delays matched
to the corresponding CLBs (clusters) should be considered.

IV. CONCLUSIONS AND OUTLOOKS
In this paper an asynchronous FPGA architecture is pro-

posed. The fundamental features of this architecture are the
preservation of current FPGA cell structures and delay insen-
sitive inter-block data and control links. The preservation of
current FPGA cell structure made it possible for the continued
use of existing FPGA design toolkits and the simple DC-based
distributed control made it possible for a straightforward au-
tomatic design flow to be developed. The DI across intercon-
nect links and wrapper-based cell control also imply self-
timed and data-driven operation targeting low power. Future
work includes the development of a general systematic me-
thod of developing Petri net control models targeting this
FPGA architecture and further development of the direct map-

ping method to include wrapper implementations. The David
Cell technology also has significant scope for further devel-
opment to suit future FPGA systems.

REFERENCES
[1] International Technology Roadmap for Semiconductores:

http://public.itrs.net/.
[2] R.M. Ho, K.W. Mai, M.A. Horowitz, The Future of Wires, Proc. of

IEEE, Vol 89, No 4, pp 490-504, 2001.
[3] C.G. Wong, A.J. Martin, and P. Thomas, An Architecture for

Asynchronous FPGAs, Proc. of Field-Programmable Technology (FPT)
2003, pp. 170-177, 15-17 December 2003.

[4] R.E. Payne, Asynchronous FPGA Architectures, IEE Proc. on
Computers and Digital Techniques, Special Issue on Asynchronous
Processors, September 1996.

[5] S. Hauck, S. Burns, G. Borriello and C. Ebeling, A FPGA for
Implementing Asynchronous Circuits, IEEE Design and Test of
Computers, Vol. 11, No. 3, 1994.

[6] K, Maheswaran, Implementing Self-Timed Circuits in Field
Programmable Gate Arrays, Master’s thesis, U.C. Davis, 1995.

[7] R.E. Payne, Self-Timed FPGA Systems, Proc. of 5th international
workshop on field programmable logic and applications, LNCS 975, pp
21-35, 1995.

[8] R. Konishi, H. Ito, H. Nakada, A. Nagoya, K, Oguri, etc., PCA-1: A
Fully Asynchronous, Self-Reconfigurable LSI, Proc. of ASYNC 2001,
March 2001.

[9] A. Rettberg and B. Kleinjohann, A Fast Asynchronous Reconfigurable
Architecture for Multimedia Applications, Proc. 14th Symposium on
Integrated Circuits and Systems Design, September 2001.

[10] J. Teifel and R. Manohar, Programmable Asynchronous Pipeline
Arrays, Proc. 13th Intel Conference on Field Programmable Logic and
Applications, September 2003.

[11] A. Royal and P.Y.K. Cheung, Globally Asynchronous Locally
Synchronous FPGA Architectures, Proc. of 13th Field Programmable
Logic and Application (FPL) 2003, LNCS 2778, Lisbon, Portugal,
September 1-3, 2003..

[12] X. Jia and R. Vemuri, The GAPLA: A Globally Asynchronous Locally
Synchronous FPGA Architecture, Proc. of 13th IEEE Symposium on
Field-Programmable Custom Computing Machines (FCCM) 2005,
Napa, CA, USA, April 17-25, 2005.

[13] X. Jia, and R. Vemuri, Studying a GALS Architecture Using a
Parameterized Automatic Design Flow, Proc. of ICCAD’06, November
5-9, 2006, San Jose, CA.

[14] D. Fang, S. Peng, C. Lafrieda, and R. Manohar, A Three Tier
Asynchronous FPGA, Proc. of 23rd VLSI/ULSI Multilevel
Interconnection Conference, Septmber, 2006.

[15] I.E. Sutherland, Micropipelines, Commun. ACM, Vol. 32, No. 6, pp.
720-738, 1989.

[16] R. David, Modular Design of Asynchronous Circuits Defined by
Graphs. IEEE Trans. On Computers, Vol. 26, No. 8, pp. 727-737,
August 1977

[17] V. Varshavsky and V. Marakhoysky, Hardware Support for Discrete
Event Coordination, Proc. of WODES’96, pp. 332-340, Edinburgh,
U.K., August 1996.

[18] A. Yakovlev and A.M. Koelmans, Petri nets and Digital Hardware
Design, In Lectures on Petri nets II: Applications, Advances in Petri
nets, Vol. 1492, pp. 154-236, 1998.

[19] D. Shang, Asynchronous Communication Circuits: Design, Test, and
Synthesis, Ph.D thesis of Newcastle University, U.K., 2003.

[20] D. Shang, F. Burns, etc., Asynchronous System Synthesis Based on
Direct Mapping using VHDL and Petri nets, IEE Proc. CDT, Vol. 151,
No.3, 2004.

[21] J.L. Peterson, Petri net Theory and Modelling of Systems, Pretice-Hall,
1981.

[22] http://www.staff.ncl.ac.uk/alex.yakovlev/home.formal/besst/project-
summary.html

[23] Handshake Solutions: TiDE:Timeless Design Environment,
http://www.handshakesolutions.com/products_services/tools/Index.htm
l

[24] Balsa: http://intranet.cs.man.ac.uk/apt/projects/tools/balsa/

1439

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index

	Table of Contents

