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CHAPTER 14

DERIVATION OF STATE GRAPHS 
AND TABLES

This chapter in the book includes:
Objectives
Study Guide

14.1 Design of a Sequence Detector
14.2 More Complex Design Problems
14.3 Guidelines for Construction of State Graphs
14.4 Serial Data Code Conversion
14.5 Alphanumeric State Graph Notation

Programmed Exercises
Problems
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Design of a Sequence Detector

To illustrate the design of a clocked Mealy sequential circuit, 
we will design a sequence detector. The circuit is of the 
form:

Figure 14-1:  Sequence Detector to be Designed
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Suppose we want to design the sequence detector so that 
any input sequence ending in 101 will produce an output    
Z = 1 coincident with the last 1. The circuit does not reset 
when a 1 output occurs. A typical input sequence and the 
corresponding output sequence are:

X = 0  0  1  1  0  1  1  0  0  1  0   1    0    1    0    0

Z = 0  0  0  0  0  1  0  0  0  0  0   1    0    1    0    0 (14-1)

(time: 0  1  2  3  4  5  6  7  8  9 10 11  12  13  14  15
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Initially, we do not know how many flip-flops will be 
required, so we will designate the circuit states as S0, S1, 
etc. We will start with a reset state designated S0. If a 0 
input is received, the circuit can stay in S0 because the input 
sequence we are looking for does not start with a 0. 
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However, if a 1 is received, the circuit must go to a new 
state (S1) to “remember” that the first input in the desired 
sequence has been received.

Figure 14-2
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When in state S1, if we receive a 0, the circuit must change 
to a new state (S2) to remember that the first two inputs of 
the desired sequence (101) have been received.

Figure 14-3
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If a 1 is received in state S2, the desired input sequence 
(101) is complete and the output should be 1. Since the last 
1 in a sequence can also be the first 1 in a new sequence, 
we should return to S1.

Figure 14-3
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If a 1 input occurs when in state S1, we can stay in S1 
because the sequence is simply restarted. If a 0 input 
occurs in state S2, we have received two 0’s in a row and 
must reset the circuit to S0 because 00 is not part of the 
desired sequence.

Figure 14-4:  Mealy 
State Graph for

Sequence Detector
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We can then convert our state graph to a state table:

Figure 14-4

Table 14-1

Since there are 3 states, we only 
need 2 flip-flops for the circuit   
(2 memory bits).
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Now we can convert our state table into a transition table:

Table 14-1

Table 14-2
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Section 14.1 (p. 433)

From the transition table, we can plot the next-state maps 
for the flip-flops and the map for the output function Z:
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Figure 14-5

Now we can draw the circuit corresponding to the 
equations we derived:
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The procedure for finding the state graph for a Moore 
machine is similar to that used for a Mealy machine, except 
that the output is written with the state.

We will rework the previous example as a Moore machine: 
the circuit should produce an output of 1 only if an input 
sequence ending in 101 has occurred. 
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The design is similar to that for the Mealy machine up until 
the input sequence 10 has occurred, except that 0 output is 
associated with states S0, S1, and S2:
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Now, when a 1 input occurs to complete the 101 sequence, 
the output must become 1; therefore, we cannot go back to 
state S1 and must create a new state S3 with a 1 output:
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We now complete the graph, as shown below. Note the 
sequence 100 resets the circuit to S0. A sequence 1010 
takes the circuit back to S2 because another 1 input should 
cause Z to become 1 again:
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Table 14-3 and Table 14-4 

As with the 
Mealy machine, 

we can derive 
the state and 

transition tables 
for the Moore 
machine from 

the state graph.
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More Complex Design Problems

Now we will derive a state graph for a sequential circuit of 
somewhat greater complexity than the previous examples. 

For this circuit, the output Z should be 1 if the input 
sequence ends in either 010 or 1001, and Z should be 0 
otherwise.

Ex:

Section 14.2 (p. 435)
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We will start construction of the state graph by working with 
the two sequences which lead to a 1 output. Then, we will 
later add arrows and states as required to make sure that 
the output is correct for other cases.

Mealy Example
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Figure 14-7
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Figure 14-8

Next, we construct the part of 
the graph corresponding to 

the sequence 1001, starting 
from the reset state S0.
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Figure 14-9

Now we fill in the missing 
arcs. With each arc, we 

first ask if we can go back 
to one of the previous 

states or do we have to 
create a new state?
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Moore Example

Design a Moore sequential circuit with one input X and 
one output Z. The output Z is to be 1 if the total number 
of 1’s received is odd and at least two consecutive 0’s 
have been received. A typical input and output sequence 
is:
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Figure 14-10
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Figure 14-11
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Figure 14-12
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Guidelines for Construction of State Graphs

Section 14.3 (p. 439)

Although there is no one specific procedure which can be used 
to derive state graphs or tables for every problem, the 
following guidelines should prove helpful:

1. First, construct some sample input and output sequences to 
make sure that you understand the problem statement.

2. Determine under what conditions, if any, the circuit 
should reset to its initial state.

3. If only one or two sequences lead to a nonzero output, 
a good way to start is to construct a partial state graph 
for those sequences.
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4. Another way to get started is to determine what 
sequences or groups of sequences must be 
remembered by the circuit and set up states 
accordingly. 

5. Each time you add an arrow to the state graph, determine 
whether it can go to one of the previously defined states or 
whether a new state must be added.

6. Check your graph to make sure there is one and only one 
path leaving each state for each combination of values of 
the input variables. 

7. When your graph is complete, test it by applying the input 
sequences formulated in part 1 and making sure the output 
sequences are correct.
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Example 1

Section 14.3 (p. 439)

A sequential circuit has one input (X) and one output (Z). The 
circuit examines groups of four consecutive inputs and 
produces an output Z = 1 if the input sequence 0101 or 1001 
occurs. The circuit resets after every four inputs. Find a Mealy 
state graph.

1. First, construct some sample input and output sequences to 
make sure that you understand the problem statement.
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Since the circuit examines groups of four consecutive 
inputs and resets after each group of four, the circuit 
should reset to S0 after every fourth input is received.

2. Determine under what conditions, if any, the circuit 
should reset to its initial state.
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Figure 14-13:  Partial State Graph for Example 1

4. Another way to get started is to determine what 
sequences or groups of sequences must be remembered 
by the circuit and set up states accordingly. 
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Figure 14-14:  Complete State Graph for Example 1

6. Check your graph to make sure there is one and only one 
path leaving each state for each combination of values of the 
input variables. 
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Example 2

Section 14.3 (p. 440-441)

A sequential circuit has one input (X) and two outputs(Z1 and 
Z2). An output Z1 = 1 occurs every time the input sequence 100 
is completed, provided that the sequence 010 has never 
occurred. An output Z2 = 1 occurs every time the input 
sequence 010 is completed. Note that once a Z2 = 1 output has 
occurred, Z1 = 1 can never occur but not vice versa. Find a 
Mealy state graph and table.
A typical sequence of inputs and outputs is:
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Figure 14-15:  Partial Graphs for Example 2
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Table 14-5   State Descriptions for Example 2

Keeping track of what is remembered by each state will help 
us make the correct state graph.
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Figure 14-16:  State Graphs for Example 2
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Table 14-6.
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Example 3

Section 14.3 (p. 443)

A sequential circuit has two inputs (X1, X2) and one output (Z). The 
output remains a constant value unless one of the following input 
sequences occurs:
(a) The input sequence X1X2 = 01, 11 causes the output to become 0.
(b) The input sequence X1X2 = 10, 11 causes the output to become 1.
(c) The input sequence X1X2 = 10, 01 causes the output to change 
value.

(The notation X1X2 = 01, 11 means X1 = 0, X2 = 1 followed by X1 = 1,   X2 
= 1.)
Derive a Moore state graph for the circuit.
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Table 14-7
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Figure 14-17:  State Graph for Example 3
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Serial Data Code Conversion

Section 14.4 (p. 444)

As a final example of state graph construction, we will 
design a converter for serial data. Binary data is 
frequently transmitted between computers as a serial 
stream of bits.

A clock signal is often transmitted along with the data so 
the receiver can read the data at the proper time.

Alternatively, only the serial data is transmitted, and a 
clock recovery circuit (called a digital phase-locked loop) 
is used to regenerate the clock signal at the receiver.
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Figure 14-18:  Serial Data Transmission
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Figure 14-19:  Coding Schemes for
Serial Data Transmission
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Figure 14-20a:

Mealy Circuit for NRZ-to-Manchester Conversion
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Figure 14-20b:

Mealy Circuit for NRZ-to-Manchester Conversion
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Figure 14-20cd:

Mealy Circuit for NRZ-to-Manchester Conversion
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Figure 14-21a:

Moore Circuit for NRZ-to-Manchester Conversion
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Figure 14-21bc:

Moore Circuit for 
NRZ-to-Manchester 

Conversion

(c) State table 
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Alphanumeric State Graph Notation

Section 14.5 (p. 448)

When a state sequential circuit has several inputs, it is 
often convenient to label the state graph arcs with 
alphanumeric input variable names instead of 0’s and 
1’s.
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Figure 14-22:  State Graphs with
Variable Names on Arc Labels
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Table 14-8.  State Table for Figure 14-22
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Properly Specified State Graphs

Section 14.5 (p. 449)

In general, a completely specified state graph has the 
following properties:

1. When we OR together all input labels on arcs 
emanating from a state, the result reduces to 1.

2. When we AND together any pair of input labels on 
arcs emanating from a state, the result is 0.
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Alphanumeric Notation for Mealy State 
Graphs

Section 14.5 (p. 449)

XiXj / ZpZq means if inputs Xi and Xj are 1 (we don’t care 
what the other input values are), the outputs Zp and 
Zq are 1 (and the other outputs are 0). That is, for a 
circuit with four inputs (X1, X2, X3, and X4) and four 
outputs (Z1, Z2, Z3, and Z4), X1X4′ / Z2Z3 is equivalent 
to 1--0 / 0110. 

This type of notation is very useful for large sequential 
circuits where there are many inputs and outputs.


