
©2010 Cengage Learning

CHAPTER 14

DERIVATION OF STATE GRAPHS
AND TABLES

This chapter in the book includes:
Objectives
Study Guide

14.1 Design of a Sequence Detector
14.2 More Complex Design Problems
14.3 Guidelines for Construction of State Graphs
14.4 Serial Data Code Conversion
14.5 Alphanumeric State Graph Notation

Programmed Exercises
Problems

©2010 Cengage Learning

Design of a Sequence Detector

To illustrate the design of a clocked Mealy sequential circuit,
we will design a sequence detector. The circuit is of the
form:

Figure 14-1: Sequence Detector to be Designed

©2010 Cengage Learning

Suppose we want to design the sequence detector so that
any input sequence ending in 101 will produce an output
Z = 1 coincident with the last 1. The circuit does not reset
when a 1 output occurs. A typical input sequence and the
corresponding output sequence are:

X = 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 0

Z = 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 (14-1)

(time: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

©2010 Cengage Learning

Initially, we do not know how many flip-flops will be
required, so we will designate the circuit states as S0, S1,
etc. We will start with a reset state designated S0. If a 0
input is received, the circuit can stay in S0 because the input
sequence we are looking for does not start with a 0.

©2010 Cengage Learning

However, if a 1 is received, the circuit must go to a new
state (S1) to “remember” that the first input in the desired
sequence has been received.

Figure 14-2

©2010 Cengage Learning

When in state S1, if we receive a 0, the circuit must change
to a new state (S2) to remember that the first two inputs of
the desired sequence (101) have been received.

Figure 14-3

©2010 Cengage Learning

If a 1 is received in state S2, the desired input sequence
(101) is complete and the output should be 1. Since the last
1 in a sequence can also be the first 1 in a new sequence,
we should return to S1.

Figure 14-3

©2010 Cengage Learning

If a 1 input occurs when in state S1, we can stay in S1
because the sequence is simply restarted. If a 0 input
occurs in state S2, we have received two 0’s in a row and
must reset the circuit to S0 because 00 is not part of the
desired sequence.

Figure 14-4: Mealy
State Graph for

Sequence Detector

©2010 Cengage Learning

We can then convert our state graph to a state table:

Figure 14-4

Table 14-1

Since there are 3 states, we only
need 2 flip-flops for the circuit
(2 memory bits).

©2010 Cengage Learning

Now we can convert our state table into a transition table:

Table 14-1

Table 14-2

©2010 Cengage Learning

Section 14.1 (p. 433)

From the transition table, we can plot the next-state maps
for the flip-flops and the map for the output function Z:

©2010 Cengage Learning

Figure 14-5

Now we can draw the circuit corresponding to the
equations we derived:

©2010 Cengage Learning

The procedure for finding the state graph for a Moore
machine is similar to that used for a Mealy machine, except
that the output is written with the state.

We will rework the previous example as a Moore machine:
the circuit should produce an output of 1 only if an input
sequence ending in 101 has occurred.

©2010 Cengage Learning

The design is similar to that for the Mealy machine up until
the input sequence 10 has occurred, except that 0 output is
associated with states S0, S1, and S2:

©2010 Cengage Learning

Now, when a 1 input occurs to complete the 101 sequence,
the output must become 1; therefore, we cannot go back to
state S1 and must create a new state S3 with a 1 output:

©2010 Cengage Learning

We now complete the graph, as shown below. Note the
sequence 100 resets the circuit to S0. A sequence 1010
takes the circuit back to S2 because another 1 input should
cause Z to become 1 again:

©2010 Cengage Learning

Table 14-3 and Table 14-4

As with the
Mealy machine,

we can derive
the state and

transition tables
for the Moore
machine from

the state graph.

©2010 Cengage Learning

More Complex Design Problems

Now we will derive a state graph for a sequential circuit of
somewhat greater complexity than the previous examples.

For this circuit, the output Z should be 1 if the input
sequence ends in either 010 or 1001, and Z should be 0
otherwise.

Ex:

Section 14.2 (p. 435)

©2010 Cengage Learning

We will start construction of the state graph by working with
the two sequences which lead to a 1 output. Then, we will
later add arrows and states as required to make sure that
the output is correct for other cases.

Mealy Example

©2010 Cengage Learning
Figure 14-7

©2010 Cengage Learning
Figure 14-8

Next, we construct the part of
the graph corresponding to

the sequence 1001, starting
from the reset state S0.

©2010 Cengage Learning
Figure 14-9

Now we fill in the missing
arcs. With each arc, we

first ask if we can go back
to one of the previous

states or do we have to
create a new state?

©2010 Cengage Learning

Moore Example

Design a Moore sequential circuit with one input X and
one output Z. The output Z is to be 1 if the total number
of 1’s received is odd and at least two consecutive 0’s
have been received. A typical input and output sequence
is:

©2010 Cengage Learning

Figure 14-10

©2010 Cengage Learning

Figure 14-11

©2010 Cengage Learning

Figure 14-12

©2010 Cengage Learning

Guidelines for Construction of State Graphs

Section 14.3 (p. 439)

Although there is no one specific procedure which can be used
to derive state graphs or tables for every problem, the
following guidelines should prove helpful:

1. First, construct some sample input and output sequences to
make sure that you understand the problem statement.

2. Determine under what conditions, if any, the circuit
should reset to its initial state.

3. If only one or two sequences lead to a nonzero output,
a good way to start is to construct a partial state graph
for those sequences.

©2010 Cengage Learning

4. Another way to get started is to determine what
sequences or groups of sequences must be
remembered by the circuit and set up states
accordingly.

5. Each time you add an arrow to the state graph, determine
whether it can go to one of the previously defined states or
whether a new state must be added.

6. Check your graph to make sure there is one and only one
path leaving each state for each combination of values of
the input variables.

7. When your graph is complete, test it by applying the input
sequences formulated in part 1 and making sure the output
sequences are correct.

©2010 Cengage Learning

Example 1

Section 14.3 (p. 439)

A sequential circuit has one input (X) and one output (Z). The
circuit examines groups of four consecutive inputs and
produces an output Z = 1 if the input sequence 0101 or 1001
occurs. The circuit resets after every four inputs. Find a Mealy
state graph.

1. First, construct some sample input and output sequences to
make sure that you understand the problem statement.

©2010 Cengage Learning

Since the circuit examines groups of four consecutive
inputs and resets after each group of four, the circuit
should reset to S0 after every fourth input is received.

2. Determine under what conditions, if any, the circuit
should reset to its initial state.

©2010 Cengage Learning
Figure 14-13: Partial State Graph for Example 1

4. Another way to get started is to determine what
sequences or groups of sequences must be remembered
by the circuit and set up states accordingly.

©2010 Cengage Learning

Figure 14-14: Complete State Graph for Example 1

6. Check your graph to make sure there is one and only one
path leaving each state for each combination of values of the
input variables.

©2010 Cengage Learning

Example 2

Section 14.3 (p. 440-441)

A sequential circuit has one input (X) and two outputs(Z1 and
Z2). An output Z1 = 1 occurs every time the input sequence 100
is completed, provided that the sequence 010 has never
occurred. An output Z2 = 1 occurs every time the input
sequence 010 is completed. Note that once a Z2 = 1 output has
occurred, Z1 = 1 can never occur but not vice versa. Find a
Mealy state graph and table.
A typical sequence of inputs and outputs is:

©2010 Cengage Learning

Figure 14-15: Partial Graphs for Example 2

©2010 Cengage Learning

Table 14-5 State Descriptions for Example 2

Keeping track of what is remembered by each state will help
us make the correct state graph.

©2010 Cengage Learning
Figure 14-16: State Graphs for Example 2

©2010 Cengage Learning

Table 14-6.

©2010 Cengage Learning

Example 3

Section 14.3 (p. 443)

A sequential circuit has two inputs (X1, X2) and one output (Z). The
output remains a constant value unless one of the following input
sequences occurs:
(a) The input sequence X1X2 = 01, 11 causes the output to become 0.
(b) The input sequence X1X2 = 10, 11 causes the output to become 1.
(c) The input sequence X1X2 = 10, 01 causes the output to change
value.

(The notation X1X2 = 01, 11 means X1 = 0, X2 = 1 followed by X1 = 1, X2
= 1.)
Derive a Moore state graph for the circuit.

©2010 Cengage Learning

©2010 Cengage Learning

Table 14-7

©2010 Cengage Learning

Figure 14-17: State Graph for Example 3

©2010 Cengage Learning

Serial Data Code Conversion

Section 14.4 (p. 444)

As a final example of state graph construction, we will
design a converter for serial data. Binary data is
frequently transmitted between computers as a serial
stream of bits.

A clock signal is often transmitted along with the data so
the receiver can read the data at the proper time.

Alternatively, only the serial data is transmitted, and a
clock recovery circuit (called a digital phase-locked loop)
is used to regenerate the clock signal at the receiver.

©2010 Cengage Learning
Figure 14-18: Serial Data Transmission

©2010 Cengage Learning

Figure 14-19: Coding Schemes for
Serial Data Transmission

©2010 Cengage Learning

Figure 14-20a:

Mealy Circuit for NRZ-to-Manchester Conversion

©2010 Cengage Learning

Figure 14-20b:

Mealy Circuit for NRZ-to-Manchester Conversion

©2010 Cengage Learning

Figure 14-20cd:

Mealy Circuit for NRZ-to-Manchester Conversion

©2010 Cengage Learning

Figure 14-21a:

Moore Circuit for NRZ-to-Manchester Conversion

©2010 Cengage Learning

Figure 14-21bc:

Moore Circuit for
NRZ-to-Manchester

Conversion

(c) State table

©2010 Cengage Learning

Alphanumeric State Graph Notation

Section 14.5 (p. 448)

When a state sequential circuit has several inputs, it is
often convenient to label the state graph arcs with
alphanumeric input variable names instead of 0’s and
1’s.

©2010 Cengage Learning

Figure 14-22: State Graphs with
Variable Names on Arc Labels

©2010 Cengage Learning

Table 14-8. State Table for Figure 14-22

©2010 Cengage Learning

Properly Specified State Graphs

Section 14.5 (p. 449)

In general, a completely specified state graph has the
following properties:

1. When we OR together all input labels on arcs
emanating from a state, the result reduces to 1.

2. When we AND together any pair of input labels on
arcs emanating from a state, the result is 0.

©2010 Cengage Learning

Alphanumeric Notation for Mealy State
Graphs

Section 14.5 (p. 449)

XiXj / ZpZq means if inputs Xi and Xj are 1 (we don’t care
what the other input values are), the outputs Zp and
Zq are 1 (and the other outputs are 0). That is, for a
circuit with four inputs (X1, X2, X3, and X4) and four
outputs (Z1, Z2, Z3, and Z4), X1X4′ / Z2Z3 is equivalent
to 1--0 / 0110.

This type of notation is very useful for large sequential
circuits where there are many inputs and outputs.

