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CHAPTER 2

BOOLEAN ALGEBRA

This chapter in the book includes:
Objectives
Study Guide

2.1 Introduction
2.2 Basic Operations
2.3 Boolean Expressions and Truth Tables
2.4 Basic Theorems
2.5 Commutative, Associative, and Distributive Laws
2.6 Simplification Theorems
2.7 Multiplying Out and Factoring
2.8 DeMorgan’s Laws

Problems
Laws and Theorems of Boolean Algebra
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Section 2.2, p. 35

X' = 1 if X = 0 
X' = 0 if X = 1 

The electronic circuit which forms the 
inverse of X is referred to as an inverter
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Section 2.2, p. 36

AND Gate

Note that C = 1 if 
and only if A and B 

are both 1.
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Section 2.2, p. 36

OR Gate

Note that C = 1 if 
and only if A or B (or 

both) are 1.
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Section 2.2, p. 36

Switches                                                         
If switch X is open, then we will define the 

value of X to be 0; if switch X is closed, then 
we will define the value of X to be 1.
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Section 2.2, p. 36

T = AB
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Section 2.2, p. 37

T = A+B
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Figure 2-1:  Circuits for Expressions (2-1) and (2-2)

F = AB’ + C

F = [A(C + D)]’ + BE
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Figure 2-2:  2-Input Circuit

Figure 2-2(b) shows a 
truth table which 
specifies the output of 
the circuit in Figure 
2-2(a) for all possible 
combinations of values 
of the inputs A and B.
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Table 2-1: Truth Table for 3 variables

Since the expression (A + C)(B’ + C) has the same 
value as AB’ + C for all eight combinations of values 

of the variables A, B, and C, we conclude that:

AB’ + C = (A + C)(B’ + C) (2-3)
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Basic Theorems

Section 2.4 (p. 39)

The following basic laws and theorems of boolean algebra involve 
only a single variable:
Operations with 0 and 1:

Idempotent laws
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Each of these theorems is easily proved by showing that it is valid 
for both of the possible values of X. For example. To prove X + X′ 
= 1, we observe that if

Involution law

Laws of complementarity
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Section 2.4, p. 39

If two switches are both labeled with the variable A, this 
means that both switches are open when A = 0 and both 

are closed when A = 1, thus the following circuits are 
equivalent:
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Section 2.4, p. 40
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A in parallel with A’ can be replaced with a closed circuit 
because one or the other of the two switches is always 

closed.
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Similarly, switch A in series with A’ can be replaced 
with an open circuit because one or the other of the 

two switches is always open.
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Commutative and Associative Laws

Section 2.5 (p. 40-41)

Many of the laws of ordinary algebra, such as commutative and 
associative laws, also apply to Boolean algebra. The commutative 
laws for AND and OR, which follow directly from the definitions of 
the AND and OR operations, are

This means that the order in which the variables are written will not 
affect the result of applying the AND and OR operations.       The 
associate laws also apply to AND and OR:
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Table 2-2: Proof of Associative Law for AND
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Figure 2-3:  Associative Law for AND and OR

Two 2-input AND gates can be replaced with a single 
3-input AND gate (a). Similarly, two 2-input OR gates 

can be replaced with a single 3-input OR gate (b).
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Distributive Law

Section 2.5 (p. 42)

Using a truth table, it is easy to show that the distributive law is valid:

In addition to the ordinary distributive law, a second distributive law is 
valid for Boolean algebra, but not for ordinary algebra:

Proof of the second distributive law follows:
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Simplification Theorems

Section 2.6 (p. 42-43)

The following theorems are useful in simplifying Boolean expressions:
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Section 2.6, p. 43

Illustration of 

Theorem (2-14D):   XY’ + Y = X + Y
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Figure 2-4:  Equivalent Gate Circuits

F = A(A’ + B)

By Theorem (2-14), (X + Y’) = XY, the expression F 
simplifies to AB.
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Simplify (p. 43-44)

Example 1

Example 2

Simplify Z = A′BC + A′

This expression has the same form as (2-13) if we let X = A′ and Y = BC. 

Therefore, the expression simplifies to Z = X + XY = X = A′.
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Simplify (p. 43-44)

Example 3

Note that in this example we let Y = (AB + C)′ rather than (AB + C) in 
order to match the form of (2-14D).
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Sum-Of-Products

Section 2.7 (p. 44)

An expression is said to be in sum-of-products (SOP) 
form when all products are the products of single 
variables. This form is the end result when an expression 
is fully multiplied out. 

For example:
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Product-Of-Sums

Section 2.7 (p. 45)

An expression is in product-of-sums (POS) form when all 
sums are the sums of single variables. It is usually easy to 
recognize a product-of-sums expression since it consists 
of a product of sum terms.

For example:
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EXAMPLE 1:  Factor A + B'CD. This is of the form X + YZ
where X = A, Y = B', and Z = CD, so

A + B'CD = (X + Y)(X + Z) = (A + B')(A + CD)
 
A + CD can be factored again using the second distributive law, so 

A + B'CD = (A + B')(A + C)(A + D)

EXAMPLE 2:  Factor AB' + C'D

EXAMPLE 3: Factor C'D + C'E' + G'H

Factor (p. 45-46)

AB′ + C’D = (AB′ + C′)(AB′ + D)

= (A + C′)(B′ + C′)(A + D)(B′ + D)

C′D + C′E′ + G′H = C′(D + E′) + G′H

= (C′ + G′H)(D + E′ + G′H)

= (C′ + G′)(C′ + H)(D + E′ + G′)(D + E′ + H)
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Figure 2-5:  Circuits for Equations (2-15) and (2-17)

(2-15):

AB′ + CD′E + AC′E′

(2-17):

A + B′ + C + D′E
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Figure 2-6:  Circuits for Equations (2-18) and (2-20)

(2-18):

(A +B′)(C + D′ + E)(A + C′ + E′)

(2-20):

AB′C(D′ + E)
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Section 2.8 (p. 47)

DeMorgan’s Laws

DeMorgan’s laws are easily generalized to n variables:

For example, for n = 3,
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Note that in the final expressions, the complement 
operation is applied only to single variables.
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Section 2.8 (p. 48)

Duality

Given an expression, the dual is formed by replacing 
AND with OR, OR with AND, 0 with 1, and 1 with 0. 
Variables and complements are left unchanged. The 
dual of AND is OR and the dual of OR is AND:

The dual of an expression may be found by 
complementing the entire expression and then 
complementing each individual variables. For example:
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Operations with 0 and 1:
1. X + 0 = X 1D. X • 1 = X
2. X + 1 = 1 2D. X • 0 = 0
 
Idempotent laws:
3. X + X = X 3D. X • X = X
 
Involution law:
4. (X')' = X
 
Laws of complementarity:
5. X + X' = 1 5D. X • X' = 0
 

LAWS AND THEOREMS (a)
p. 55
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Commutative laws:
6. X + Y = Y + X    6D. XY = YX
 
Associative laws:
7. (X + Y) + Z = X + (Y + Z)    7D. (XY)Z = X(YZ) = XYZ 
                       = X + Y + Z
 
Distributive laws:
8. X(Y + Z) = XY + XZ    8D. X + YZ = (X + Y)(X + Z) 
 
Simplification theorems:
9. XY + XY' = X    9D. (X + Y)(X + Y') = X
10. X + XY = X    10D. X(X + Y) = X
11. (X + Y')Y = XY    11D. XY' + Y = X + Y

LAWS AND THEOREMS (b)
p. 55
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DeMorgan's laws:
12. (X + Y + Z +...)' = X'Y'Z'... 12D. (XYZ...)' = X' + Y' + Z' +... 
 
Duality:
13. (X + Y + Z +...)D = XYZ... 13D. (XYZ...)D = X + Y + Z +... 
 
Theorem for multiplying out and factoring:
14.  (X + Y)(X' + Z) = XZ + X'Y 14D. XY + X'Z = (X + Z)(X' + Y) 
 
Consensus theorem:
15. XY + YZ + X'Z = XY + X'Z
15D. (X + Y)(Y + Z)(X' + Z) = (X + Y)(X' + Z)

LAWS AND THEOREMS (c)
p. 55


