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CHAPTER 3

BOOLEAN ALGEBRA
(continued)

This chapter in the book includes:
Objectives
Study Guide

3.1 Multiplying Out and Factoring Expressions
3.2 Exclusive-OR and Equivalence Operations
3.3 The Consensus Theorem
3.4 Algebraic Simplification of Switching Expressions
3.5 Proving the Validity of an Equation

Programmed Exercises
Problems
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Distributive Laws

Given an expression in product-of-sums form, the 
corresponding sum-of-products expression can be 
obtained by multiplying out, using the two distributive laws:

X(Y + Z) = XY + XZ (3-1)

(X + Y)(X + Z) = X + YZ (3-2)

In addition, the following theorem is very useful for 
factoring and multiplying out:

(X + Y)(X′ + Z) = XZ + X′Y (3-3)
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Example (3-4), p. 63

In the following example, if we were to multiply out by brute 
force, we would generate 162 terms, and 158 of these 
terms would then have to be eliminated to simplify the 
expression. Instead, we will use the distributive laws to 

simplify the process.
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The same theorems that are useful for multiplying out 
expressions are useful for factoring. By repeatedly 
applying (3-1), (3-2), and (3-3), any expression can be 
converted to a product-of-sums form.
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Exclusive-OR and Equivalence Operations

The exclusive-OR operation (   ) is defined as follows:

The equivalence operation (   ) is defined by:
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Section 3.2, p. 64

We will use the following 
symbol for an       

exclusive-OR gate:
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The following theorems apply to exclusive OR:
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Section 3.2, p. 65

We will use the following 
symbol for an       
equivalence gate:
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Section 3.2, p. 66

Because equivalence is the complement of exclusive-OR, 
an alternate symbol of the equivalence gate is an 
exclusive-OR gate with a complemented output:

The equivalence gate is also called an                
exclusive-NOR gate.
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Example 1:

Example 2:

Section 3.2 (p. 66)

By (3-6) and (3-17),

F = [(A′B)C + (A′B)′C′ ] + [B′(AC′) + B(AC′)′ ]                           
= A′BC + (A + B′)C′ + AB′C′ + B(A′ + C)                                  
= B(A′C + A′ + C) + C′(A + B′ + AB′) = B(A′ + C) + C′(A + B′)

= (A′B′ + AB)C′ + (A′B′ + AB) ′C (by (3-6))                   
         = (A′B′ + AB)C′ + (A′B + AB′)C (by (3-19))      
                    = A′B′C′ + ABC′ + A′BC + AB′C
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Section 3.2 (p. 66-67)

The consensus theorem can be stated as follows:
XY + X'Z + YZ = XY + X'Z                          (3-20)

Dual Form:
(X + Y)(X’ + Z)(Y + Z) = (X + Y)(X’ + Z)     (3-21)

The Consensus Theorem
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Consensus Theorem
Proof

XY + X'Z + YZ = XY + X'Z + (X + X')YZ
                        = (XY + XYZ) + (X'Z + X'YZ)
                        = XY(1 + Z) + X'Z(1 + Y) = XY + X'Z 

Section  3.3 (p. 67)
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Basic methods for 
simplifying functions

Section 3.4 (p. 68-69)

1. Combining terms. Use the theorem XY + XY′ = X to combine 
two terms. For example,

2. Eliminating terms. Use the theorem X + XY = X to eliminate 
redundant terms if possible; then try to apply the consensus 
theorem (XY + X′Z + YZ = XY + X′Z) to eliminate any consensus 
terms. For example,

abc′d′ + abcd′ = abd′ [X = abd′, Y = c] (3-24)

a′b + a′bc = a′b     [X = a′b]

a′bc′ + bcd + a′bd = a′bc′ + bcd [X = c, Y = bd, Z = a′b]  (3-24)
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3. Eliminating literals. Use the theorem X + X’Y = X + Y to 
eliminate redundant literals. Simple factoring may be necessary 
before the theorem is applied.

A′B + A′B′C′D′ + ABCD′ = A′(B + B′C′D′) + ABCD′

      = A′(B + C′D′) + ABCD′

      = B(A′ + ACD′) + A′C′D′

      = B(A′ + CD′) + A′C′D′

      = A′B + BCD′ + A′C′D′ (3-26)
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4. Adding redundant terms. Redundant terms can be 
introduced in several ways such as adding xx′, multiplying 
by (x + x′), adding yz to xy + x′z, or adding xy to x. When 
possible, the added terms should be chosen so that they 
will combine with or eliminate other terms.

WX + XY + X′Z′ + WY′Z′ (add WZ′ by consensus theorem)

= WX + XY + X′Z′ + WY′Z′ + WZ′  (eliminate WY′Z′)

= WX + XY + X′Z′ + WZ′  (eliminate WZ′)

= WX + XY + X′Z′  (3-27)
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Example (3-28), p 69-70

The following comprehensive example 
illustrates use of all four methods:
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Proving Validity of an Equation

Section 3.5 (p 70)

1. Construct a truth table and evaluate both sides of the 
equation for all combinations of values of the variables. 
(This method is rather tedious if the number of variables is 
large, and it certainly is not very elegant.)

2. Manipulate one side of the equation by applying various 
theorems until it is identical with the other side.

3. Reduce both sides of the equation independently to the 
same expression.

Often we will need to determine if an equation is valid for all 
combinations of values of the variables. Several methods can be 
used to determine if an equation is valid:
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4. It is permissible to perform the same operation on both sides 
of the equation provided that the operation is reversible. For 
example, it is all right to complement both sides of the 
equation, but it is not permissible to multiply both sides of 
the equation by the same expression. (Multiplication is not 
reversible because division is not defined for Boolean 
algebra.) Similarly, it is not permissible to add the same term 
to both sides of the equation because subtraction is not 
defined for Boolean algebra.
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1. First reduce both sides to a sum of products (or a product of sums).

2. Compare the two sides of the equation to see how they differ.

3. Then try to add terms to one side of the equation that are present on 
the other side.

4. Finally try to eliminate terms from one side that are not present on 
the other.

To prove that an equation is not valid, it is sufficient to show one 
combination of values of the variables for which the two sides of the 
equation have different values. When using method 2 or 3 above to 
prove that an equation is valid, a useful strategy is to

Whatever method is used, frequently compare both sides of the 
equation and let the different between them serve as a guide for what 
steps to take next.
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Example: Show that
A'BD' + BCD + ABC' + AB'D = BC'D' + AD + A'BC

Example 1 (p. 71)

Solution: Starting with the left side,
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Differences between Boolean algebra and 
ordinary algebra

Section 3.5 (p 72)

As we have previously observed, some of the theorems of 
Boolean algebra are not true for ordinary algebra. 
Similarly, some of the theorems of ordinary algebra are not 
true for Boolean algebra. Consider, for example, the 
cancellation law for ordinary algebra:

If x + y = x + z, then y = z        (3-31)

The cancellation law is not true for Boolean algebra. We 
will demonstrate this by constructing a counterexample in 
which x + y = x + z but y ≠ z. Let x = 1, y = 0, z = 1. Then,

1 + 0 = 1 + 1 but 0 ≠ 1
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In ordinary algebra, the cancellation law for multiplication 
is

If xy = xz, then y = z (3-32)

This law is valid provided x ≠ 0.

In Boolean algebra, the cancellation law for multiplication 
is also not valid when x = 0. (Let x = 0, y = 0, z = 1; then   
0 • 0 = 0 • 1, but 0 ≠ 1). Because x = 0 about half the time 
in switching algebra, the cancellation law for multiplication 
cannot be used.
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Similarities between Boolean algebra and 
ordinary algebra

Section 3.5 (p 72)

Even though the statements in the previous 2 slides   
(3-31 and 3-32) are generally false for Boolean algebra, 
the converses are true:

If y = z, then x + y = x + z (3-33)

If y = z, then     xy = xz (3-34)


