CHAPTER 4

APPLICATIONS OF BOOLEAN ALGEBRA MINTERM AND MAXTERM EXPANSIONS

This chapter in the book includes:
Objectives
Study Guide
4.1 Conversion of English Sentences to Boolean Equations
4.2 Combinational Logic Design Using a Truth Table
4.3 Minterm and Maxterm Expansions
4.4 General Minterm and Maxterm Expansions
4.5 Incompletely Specified Functions
4.6 Examples of Truth Table Construction
4.7 Design of Binary Adders and Subtractors Problems

Conversion of English Sentences to Boolean Equations

The three main steps in designing a single-output combinational switching circuit are

1. Find a switching function that specifies the desired behavior of the circuit.
2. Find a simplified algebraic expression for the function.
3. Realize the simplified function using available logic elements.

Section 4.1 (p. 90)

Example 1

Mary watches TV if it is Monday night and she has finished her homework.

F
A
B

We will define a two-valued variable to indicate the truth of falsity of each phrase:
$F=1$ if "Mary watches TV" is true; otherwise $F=0$.
$A=1$ if "it is Monday night" is true; otherwise $A=0$.
$B=1$ if "she has finished her homework" is true;
otherwise $B=0$.

Because F is "true" if A and B are both "true", we can represent the sentence by $F=A \cdot B$

Section 4.1 (p. 90-91)

Example 2

The alarm will ring iff the alarm switch is turned on and the door is not closed, or it is after 6 P.M. and the window is not closed.

Section 4.1 (p. 91)

Example 2 (continued)

The alarm will ring iff the alarm switch is turned on and the door is not closed, or it is after 6 P.M. and the window is not closed.

The corresponding equation is:

$$
Z=A B^{\prime}+C D^{\prime}
$$

And the corresponding circuit is:

Section 4.1 (p. 91)

Combinational Logic Design using a Truth Table

Suppose we want the output of a circuit to be $f=1$ if $\mathrm{N} \geq 011_{2}$ and $f=0$ if $\mathrm{N}<011_{2}$.
Then the truth table is:

A	B	C	f	f^{\prime}
0	0	0	0	1
0	0	1	0	1
0	1	0		0
0	1	1	1	1
1	0	0	1	0
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0

Figure 4-1
(b)

Next, we will derive an algebraic expression for f from the truth table by using the combinations of values of A, B, and C for which $f=1$. For example, the term $\mathrm{A}^{\prime} \mathrm{BC}$ is 1 only if $\mathrm{A}=0$, $B=1$, and $C=1$. Finding all terms such that $f=1$ and ORing them together yields:
$f=A^{\prime} B C+A B^{\prime} C^{\prime}+A B^{\prime} C+A B C^{\prime}+A B C$

The equation can be simplified by first combining terms and then eliminating A^{\prime} :

$$
\begin{equation*}
f=A^{\prime} B C+A B^{\prime}+A B=A^{\prime} B C+A=A+B C \tag{4-2}
\end{equation*}
$$

This equation leads directly to the following circuit:

Instead of writing f in terms of the 1 's of the function, we may also write f in terms of the 0 's of the function. Observe that the term $\mathrm{A}+\mathrm{B}+\mathrm{C}$ is 0 only if $\mathrm{A}=\mathrm{B}=\mathrm{C}=0$. ANDing all of these ' 0 ' terms together yields:

$$
\begin{equation*}
f=(A+B+C)\left(A+B+C^{\prime}\right)\left(A+B^{\prime}+C\right) \tag{4-3}
\end{equation*}
$$

By combining terms and using the second distributive law, we can simplify the equation:

$$
\begin{align*}
& f=(A+B+C)\left(A+B+C^{\prime}\right)\left(A+B^{\prime}+C\right) \tag{4-3}\\
& f=(A+B)\left(A+B^{\prime}+C\right)=A+B\left(B^{\prime}+C\right)=A+B C \tag{4-4}
\end{align*}
$$

Minterm and Maxterm Expansions

$$
f=A^{\prime} B C+A B^{\prime} C^{\prime}+A B^{\prime} C+A B C^{\prime}+A B C(4-1)
$$

Each of the terms in Equation (4-1) is referred to as a minterm. In general, a minterm of n variables is a product of n literals in which each variable appears exactly once in either true or complemented form, but not both.
(A literal is a variable or its complement)

Section 4.3 (p. 93)

Table 4-1 Minterms and Maxterms for Three Variables

Row No.	$A B C$	Minterms	Maxterms
0	000	$A^{\prime} B^{\prime} C^{\prime}=m_{0}$	$A+B+C=M_{0}$
1	001	$A^{\prime} B^{\prime} C=m_{1}$	$A+B+C^{\prime}=M_{1}$
2	010	$A^{\prime} B C^{\prime}=m_{2}$	$A+B^{\prime}+C=M_{2}$
3	011	$A^{\prime} B C=m_{3}$	$A+B^{\prime}+C^{\prime}=M_{3}$
4	100	$A B^{\prime} C^{\prime}=m_{4}$	$A^{\prime}+B+C=M_{4}$
5	101	$A B^{\prime} C=m_{5}$	$A^{\prime}+B+C^{\prime}=M_{5}$
6	110	$A B C^{\prime}=m_{6}$	$A^{\prime}+B^{\prime}+C=M_{6}$
7	111	$A B C=m_{7}$	$A^{\prime}+B^{\prime}+C^{\prime}=M_{7}$

Minterm expansion for a function is unique. Equation (4-1) can be rewritten in terms of m-notation as:
$f=A^{\prime} B C+A B^{\prime} C^{\prime}+A B^{\prime} C+A B C^{\prime}+A B C(4-1)$
$f(A, B, C)=m_{3}+m_{4}+m_{5}+m_{6}+m_{7}$

This can be further abbreviated by listing only the decimal subscripts in the form:
$f(A, B, C)=\Sigma m(3,4,5,6,7)$

Minterm Expansion Example

Find the minterm expansion of $f(a, b, c, d)=a^{\prime}\left(b^{\prime}+d\right)+a c d^{\prime}$.

$$
\begin{align*}
& f=a^{\prime} b^{\prime}+a^{\prime} d+a c d^{\prime} \\
& f=a^{\prime} b^{\prime}+a^{\prime} d+a c d^{\prime} \\
& =a^{\prime} b^{\prime}\left(c+c^{\prime}\right)\left(d+d^{\prime}\right)+a^{\prime} d\left(b+b^{\prime}\right)\left(c+c^{\prime}\right)+\operatorname{acd}\left(b+b^{\prime}\right) \\
& =a^{\prime} b^{\prime} c^{\prime} d^{\prime}+a^{\prime} b^{\prime} c^{\prime} d+a^{\prime} b^{\prime} c d^{\prime}+a^{\prime} b^{\prime} c d+a^{\prime} b^{\prime} c^{\prime} d+a^{\prime} b^{\prime} c d \\
& +a^{\prime} b c^{\prime} d+a^{\prime} b c d+a b c d^{\prime}+a b^{\prime} c d^{\prime} \\
& \text { (4-9) } a b c d^{\prime}+a b^{\prime} c d^{\prime} \\
& f=a^{\prime} b^{\prime} c^{\prime} d^{\prime}+a^{\prime} b^{\prime} c^{\prime} d+a^{\prime} b^{\prime} c d^{\prime}+a^{\prime} b^{\prime} c d+a^{\prime} b c^{\prime} d+a^{\prime} b c d+a b c d^{\prime}+a b^{\prime} c d^{\prime} \\
& 0000 \quad 0001 \quad 0010 \quad 0011 \quad 0101 \quad 0111 \quad 1110 \quad 1010 \\
& f=\Sigma m(0,1,2,3,5,7,10,14) \tag{4-10}
\end{align*}
$$

Section 4.3 (p. 95)

Maxterm Expansion Example

Find the maxterm expansion of $f(a, b, c, d)=a^{\prime}\left(b^{\prime}+d\right)+a c d^{\prime}$.

$$
\begin{align*}
& f=a^{\prime}\left(b^{\prime}+d\right)+a c d^{\prime} \\
& =\left(a^{\prime}+c d^{\prime}\right)\left(a+b^{\prime}+d\right)=\left(a^{\prime}+c\right)\left(a^{\prime}+d^{\prime}\right)\left(a+b^{\prime}+d\right) \\
& =\left(a^{\prime}+b b^{\prime}+c+d d^{\prime}\right)\left(a^{\prime}+b b^{\prime}+c c^{\prime}+d^{\prime}\right)\left(a+b^{\prime}+c c^{\prime}+d\right) \\
& =\left(a^{\prime}+b b^{\prime}+c+d\right)\left(a^{\prime}+b b^{\prime}+c+d^{\prime}\right)\left(a^{\prime}+b b^{\prime}+c+d^{\prime}\right) \\
& \left(a^{\prime}+b b^{\prime}+c^{\prime}+d^{\prime}\right)\left(a+b^{\prime}+c c^{\prime}+d\right) \\
& \begin{array}{ccc}
\left(a^{\prime}+b+c+d\right)\left(a^{\prime}+b^{\prime}+c+d\right)\left(a^{\prime}+b+c+d^{\prime}\right)\left(a^{\prime}+b^{\prime}+c+d^{\prime}\right) \\
1000 & 1100 & 1001
\end{array} \\
& \begin{array}{ccc}
\left(a^{\prime}+b+c^{\prime}+d^{\prime}\right)\left(a^{\prime}+b^{\prime}+c^{\prime}+d^{\prime}\right)\left(a+b^{\prime}+c+d\right)\left(a+b^{\prime}+c^{\prime}+d\right) \\
1011 & 01111 & 0110
\end{array} \\
& =\Pi M(4,6,8,9,11,12,13,15) \tag{4-11}
\end{align*}
$$

Section 4.3 (p. 96)

Table 4-2. General Truth Table for Three Variables

Table 4-2 represents a truth table for a general function of three
variables. Each a_{i} is a constant with a value of 0 or 1.

A	B	C	F
0	0	0	a_{0}
0	0	1	a_{1}
0	1	0	a_{2}
0	1	1	a_{3}
1	0	0	a_{4}
1	0	1	a_{5}
1	1	0	a_{6}
1	1	1	a_{7}

$$
F=a_{0} m_{0}+a_{1} m_{1}+a_{2} m_{2}+\cdots+a_{7} m_{7}=\sum_{i=0}^{7} a_{i} m_{i}
$$

General Minterm and Maxterm Expansions

We can write the minterm expansion for a general function of three variables as follows:
$F=a_{0} m_{0}+a_{1} m_{1}+a_{2} m_{2}+\cdots+a_{7} m_{7}=\sum_{i=0}^{7} a_{i} m_{i}$
The maxterm expansion for a general function of three variables is:
$F=\left(a_{0}+M_{0}\right)\left(a_{1}+M_{1}\right)\left(a_{2}+M_{2}\right) \cdots\left(a_{7}+M_{7}\right)=\prod_{i=0}^{7}\left(a_{i}+M_{i}\right)$

Section 4.4 (p. 97)

Table 4-3 summarizes the procedures for conversion between minterm and maxterm expansions of F and F^{\prime}

Table 4-3. Conversion of Forms

		DESIRED FORM			
		Minterm Expansion of F	Maxterm Expansion of F	Minterm Expansion of F^{\prime}	Maxterm Expansion of F^{\prime}
$\sum_{\substack{0}}^{\substack{0}}$	Minterm Expansion of F		maxterm nos. are those nos. not on the minterm list for F	list minterms not present in F	maxterm nos. are the same as minterm nos. of F
$\underset{\sim}{\mathbf{u}}$	Maxterm Expansion of F	minterm nos. are those nos. not on the maxterm list for F	-	minterm nos. are the same as maxterm nos. of F	list maxterms not present in F

Table 4-4. Application of Table 4-3

	DESIRED FORM			
	Minterm Expansion of f	Maxterm Expansion of f	Minterm Expansion of f^{\prime}	Maxterm Expansion of f^{\prime}
$\begin{aligned} & \sum_{\mathrm{O}} \overline{f=} \\ & \text { O } \Sigma m(3,4,5,6,7) \end{aligned}$		$\Pi M(0,1,2)$	$\Sigma m(0,1,2)$	$\Pi M(3,4,5,6,7)$
$\begin{aligned} & \underset{\Psi}{\underset{\sim}{u}} f= \\ & \Pi M(0,1,2) \end{aligned}$	$\Sigma m(3,4,5,6,7)$		$\Sigma m(0,1,2)$	$П M(3,4,5,6,7)$

Incompletely Specified Functions

A large digital system is usually divided into many subcircuits. Consider the following example in which the output of circuit N_{1} drives the input of circuit N_{2} :

Section 4.5 (p. 99)

Let us assume the output of N_{1} does not generate all possible combinations of values for A, B, and C. In particular, we will assume there are no combinations of values for w, x, y, and z which cause A, B, and C to assume values of 001 or 110 .

Table 4-5: Truth Table with Don't Cares

A	B	C	F
0	0	0	1
0	0	1	
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	X
1	1	1	1

Section 4.5 (p. 99)

When we realize the function, we must specify values for the don't-cares. It is desirable to choose values which will help simplify the function. If we assign the value 0 to both X 's, then

$$
F=A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B C+A B C=A^{\prime} B^{\prime} C^{\prime}+B C
$$

If we assign 1 to the first X and 0 to the second, then

$$
F=A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B^{\prime} C+A^{\prime} B C+A B C=A^{\prime} B^{\prime}+B C
$$

If we assign 1 to both X^{\prime} s, then

$$
\begin{aligned}
F & =A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B^{\prime} C+A^{\prime} B C+A B C^{\prime}+A B C \\
& =A^{\prime} B^{\prime}+B C+A B
\end{aligned}
$$

The second choice of values leads to the simplest solution.

The minterm expansion for Table $4-5$ is:

$$
F=\Sigma m(0,3,7)+\Sigma d(1,6)
$$

The maxterm expansion for Table $4-5$ is:
$F=\Pi M(2,4,5) \bullet \Pi D(1,6)$

Table 4-5

| A | B | C | F |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | X |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | X |
| 1 | 1 | 1 | 1 |

Examples of Truth Table Construction

We will design a simple binary adder that adds two 1-bit binary numbers, a and b, to give a 2-bit sum. The numeric values for the adder inputs and outputs are as follows:

Section 4.6 (p. 100)

We will represent inputs to the adder by the logic variables A and B and the 2-bit sum by the logic variables X and Y, and we construct a truth table:

A	B	X	Y
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Because a numeric value of 0 is represented by a logic 0 and a numeric value of 1 by a logic 1 , the 0 's and 1 's in the truth table are exactly the same as in the previous table. From the truth table,

$$
X=A B \text { and } Y=A^{\prime} B+A B^{\prime}=A \oplus B
$$

Ex: Design an adder which adds two 2-bit binary numbers to give a 3-bit binary sum. Find the truth table for the circuit. The circuit has four inputs and three outputs as shown:

TRUTH TABLE:

N_{1}	N_{2}	N_{3}	N_{1}	N_{2}	N_{3}
$A B$	$C D$	$X Y Z$	A B	$C D$	$X Y Z$
00	00	000	10	00	010
00	01	001	10	01	011
00	10	010	10	10	100
00	11	011	10	11	101
01	00	001	11	00	011
01	01	010	11	01	100
01	10	011	11	10	101
01	11	100	11	11	110

Section 4.6 (p. 101)

Design of Binary Adders and Subtractors

We will design a parallel adder that adds two 4-bit unsigned binary numbers and a carry input to give a 4-bit sum and a carry output.

Section 4.7 (p. 104)

Figure 4-2: Parallel Adder for 4-Bit Binary Numbers

One approach would be to construct a truth table with nine inputs and five outputs and then derive and simplify the five output equations.

A better method is to design a logic module that adds two bits and a carry, and then connect four of these modules together to form a 4-bit adder.

end-around carry for 1's complement

Figure 4-3: Parallel Adder Composed of Four Full Adders

Figure 4-4: Truth Table for a Full Adder

Full Adder Logic Equations

The logic equations for the full adder derived from the truth table are:

$$
\begin{align*}
\text { Sum } & =X^{\prime} Y^{\prime} C_{\text {in }}+X^{\prime} Y C_{\text {in }}^{\prime}+X Y^{\prime} C_{\text {in }}^{\prime}+X Y C_{\text {in }} \\
& =X^{\prime}\left(Y^{\prime} C_{\text {in }}+Y C_{\text {in }}^{\prime}\right)+X\left(Y^{\prime} C_{\text {in }}^{\prime}+Y C_{\text {in }}\right) \tag{4-20}\\
& =X^{\prime}\left(Y \oplus C_{\text {in }}\right)+X\left(Y \oplus C_{\text {in }}\right)^{\prime}=X \oplus Y \oplus C_{\text {in }} \\
C_{\text {out }} & =X^{\prime} Y C_{\text {in }}+X Y^{\prime} C_{\text {in }}+X Y C_{\text {in }}^{\prime}+X Y C_{\text {in }} \\
& =\left(X^{\prime} Y C_{\text {in }}+X Y C_{\text {in }}\right)+\left(X Y^{\prime} C_{\text {in }}+X Y C_{\text {in }}\right)+\left(X Y C_{\text {in }}^{\prime}+X Y C_{\text {in }}\right) \tag{4-21}\\
& =Y C_{\text {in }}+X C_{\text {in }}+X Y
\end{align*}
$$

Section 4.7 (p. 105)

cosis Sum

Figure 4-5: Implementation of Full Adder

Overflow for Signed Binary Numbers

An overflow has occurred if adding two positive numbers gives a negative result or adding two negative numbers gives a positive result.

We define an overflow signal, $\mathrm{V}=1$ if an overflow occurs. For Figure 4-3, $V=A_{3}{ }^{\prime} B_{3}{ }^{\prime} S_{3}+A_{3} B_{3} S_{3}{ }^{\prime}$

end-around carry for 1 's complement
Figure 4-3

Full Adders may be used to form A - B using the 2's complement representation for negative numbers.
The 2's complement of B can be formed by first finding the 1 's complement and then adding 1.

Figure 4-6: Binary Subtracter Using Full Adders

Alternatively, direct subtraction can be accomplished by employing a full subtracter in a manner analogous to a full adder.

Figure 4-7: Parallel Subtracter

Table 4.6. Truth Table for Binary Full Subtracter

x_{i}	y_{i}	b_{i}	b_{i+1}
0	0	0	
0	0	1	
0	1	0	1
0	1	1	1
1	1	1	
1	0	0	1
1	0	1	0
1	1	0	0
1	0	0	0
1	1	1	

Consider $x_{i}=0, y_{i}=1$, and $b_{i}=1$:

	Column i Before Borrow	Column i After Borrow
x_{i}	0	10
$-b_{i}$	-1	-1
$\frac{-y_{i}}{d_{i}}$	-1	$\frac{-1}{0} \quad\left(b_{i+1}=1\right)$

Section 4.7 (p. 107)

