CHAPTER 4

APPLICATIONS OF BOOLEAN ALGEBRA MINTERM AND MAXTERM EXPANSIONS

This chapter in the book includes:

- Objectives
- Study Guide
- 4.1 Conversion of English Sentences to Boolean Equations
- 4.2 Combinational Logic Design Using a Truth Table
- 4.3 Minterm and Maxterm Expansions
- 4.4 General Minterm and Maxterm Expansions
- 4.5 Incompletely Specified Functions
- 4.6 Examples of Truth Table Construction
- 4.7 Design of Binary Adders and Subtractors Problems

Conversion of English Sentences to Boolean Equations

The three main steps in designing a single-output combinational switching circuit are

1. Find a switching function that specifies the desired behavior of the circuit.

- 2. Find a simplified algebraic expression for the function.
- 3. Realize the simplified function using available logic elements.

Section 4.1 (p. 90)

Example 1

 $\underbrace{\text{Mary watches TV if it is Monday night and she has finished her homework.}}_{\textbf{F}} \textbf{A} \textbf{B}$

We will define a two-valued variable to indicate the truth of falsity of each phrase:

F = 1 if "Mary watches TV" is true; otherwise F = 0.

A = 1 if "it is Monday night" is true; otherwise A = 0.

$$B = 1$$
 if "she has finished her homework" is true; otherwise $B = 0$.

Because *F* is "true" if *A* and *B* are both "true", we can represent the sentence by $F = A \cdot B$

Section 4.1 (p. 90-91)

Example 2

The alarm will ring iff the alarm switch is turned on and the door is not closed, or it is after 6 P.M. and the window is not closed.

Section 4.1 (p. 91)

Example 2 (continued)

The alarm will ring iff the alarm switch is turned on and the door is not closed, or it is after 6 P.M. and the window is not closed.

The corresponding equation is:

Z = AB' + CD'

And the corresponding circuit is:

Section 4.1 (p. 91)

Combinational Logic Design using a Truth Table

Suppose we want the output of a circuit to be f = 1 if N $\ge 0.011_2$ and f = 0 if N $< 0.011_2$.

Then the truth table is:

Next, we will derive an algebraic expression for *f* from the truth table by using the combinations of values of A, B, and C for which f = 1. For example, the term A'BC is 1 only if A = 0, B = 1, and C = 1. Finding all terms such that f = 1 and **OR**ing them together yields:

$$f = A'BC + AB'C' + AB'C + ABC' + ABC$$
(4-1)

The equation can be simplified by first combining terms and then eliminating A':

$$f = A'BC + AB' + AB = A'BC + A = A + BC$$
(4-2)

This equation leads directly to the following circuit:

Instead of writing *f* in terms of the 1's of the function, we may also write *f* in terms of the 0's of the function. Observe that the term A + B + C is 0 only if A = B = C = 0. **AND**ing all of these '0' terms together yields:

$$f = (A + B + C)(A + B + C')(A + B' + C)$$
(4-3)

By combining terms and using the second distributive law, we can simplify the equation:

$$f = (A + B + C)(A + B + C')(A + B' + C)$$
(4-3)
$$f = (A + B)(A + B' + C) = A + B(B' + C) = A + BC$$
(4-4)

Minterm and Maxterm Expansions

f = A'BC + AB'C' + AB'C + ABC' + ABC(4-1)

Each of the terms in Equation (4-1) is referred to as a minterm. In general, a *minterm* of *n* variables is a product of *n* literals in which each variable appears exactly once in either true or complemented form, but not both.

(A literal is a variable or its complement)

Section 4.3 (p. 93)

Table 4-1 Minterms and Maxtermsfor Three Variables

Row No.	ABC	Minterms	Maxterms
0	000	$A'B'C' = m_0$	$A + B + C = M_0$
1	001	$A'B'C = m_1$	$A + B + C' = M_1$
2	010	$A'BC' = m_2$	$A + B' + C = M_2$
3	011	$A'BC = m_3$	$A + B' + C' = M_3$
4	100	$AB'C' = m_4$	$A' + B + C = M_4$
5	101	$AB'C = m_5$	$A' + B + C' = M_5$
6	110	$ABC' = m_6$	$A' + B' + C = M_6$
7	111	$ABC = m_7$	$A' + B' + C' = M_7$

Minterm expansion for a function is unique. Equation (4-1) can be rewritten in terms of m-notation as:

$$f = A'BC + AB'C' + AB'C + ABC' + ABC(4-1)$$

$$f(A, B, C) = m_3 + m_4 + m_5 + m_6 + m_7$$
(4-5)

This can be further abbreviated by listing only the decimal subscripts in the form:

$$f(A, B, C) = \Sigma m(3, 4, 5, 6, 7)$$
(4-5)

Minterm Expansion Example

Find the minterm expansion of f(a,b,c,d) = a'(b' + d) + acd'.

$$\begin{split} f &= a'b' + a'd + acd' \\ f &= a'b' + a'd + acd' \\ &= a'b'(c + c')(d + d') + a'd(b + b')(c + c') + acd'(b + b') \\ &= a'b'c'd' + a'b'cd + a'b'cd' + a'b'cd + \frac{a'b'c'd}{a'b'c'd} + \frac{a'b'c'd}{a'b'c'd} + \frac{a'bc'd}{a'b'c'd} + \frac{a'b'cd'}{a'b'cd'} + \frac{a'b'cd'}{a'b'cd'$$

Section 4.3 (p. 95)

Maxterm Expansion Example

Find the maxterm expansion of f(a,b,c,d) = a'(b' + d) + acd'. f = a'(b' + d) + acd'= (a' + cd')(a + b' + d) = (a' + c)(a' + d')(a + b' + d)= (a' + bb' + c + dd')(a' + bb' + cc' + d')(a + b' + cc' + d)= (a' + bb' + c + d)(a' + bb' + c + d')(a' + bb' + c + d')(a' + bb' + c' + d')(a + b' + cc' + d)= (a' + b + c + d)(a' + b' + c + d)(a' + b + c + d')(a' + b' + c + d')1000100111001101 (a' + b + c' + d')(a' + b' + c' + d')(a + b' + c + d)(a + b' + c' + d)10111111 01000110 $= \prod M(4, 6, 8, 9, 11, 12, 13, 15)$ (4-11)

Section 4.3 (p. 96)

Table 4-2. General Truth Table for Three Variables

	АВС	F
	000	a ₀
Table 4-2 represents a	001	a ₁
function of three variables. Each a _i is a	010	a ₂
	011	a ₃
constant with a value of	100	a ₄
0 or 1.	101	a ₅
	110	a ₆
	1 1 1	a ₇

 $F = a_0 m_0 + a_1 m_1 + a_2 m_2 + \dots + a_7 m_7 = \sum_{i=0}^7 a_i m_i$

General Minterm and Maxterm Expansions

We can write the minterm expansion for a general function of three variables as follows:

$$F = a_0 m_0 + a_1 m_1 + a_2 m_2 + \dots + a_7 m_7 = \sum_{i=0}^7 a_i m_i \qquad (4-12)$$

The maxterm expansion for a general function of three variables is:

$$F = (a_0 + M_0)(a_1 + M_1)(a_2 + M_2) \cdots (a_7 + M_7) = \prod_{i=0}^7 (a_i + M_i) \quad (4-13)$$

Section 4.4 (p. 97)

Table 4-3 summarizes the procedures for conversion between minterm and maxterm expansions of F and F'

Table 4-3. Conversion of Forms

DESIRED FORM

		Minterm	Maxterm	Minterm	Maxterm
		Expansion	Expansion	Expansion	Expansion
		of F	of F	of <i>F'</i>	of F'
N FORM	Minterm Expansion of <i>F</i>		maxterm nos. are those nos. not on the minterm list for <i>F</i>	list minterms not present in <i>F</i>	maxterm nos. are the same as minterm nos. of <i>F</i>
GIVE	Maxterm Expansion of <i>F</i>	minterm nos. are those nos. not on the maxterm list for <i>F</i>		minterm nos. are the same as maxterm nos. of <i>F</i>	list maxterms not present in <i>F</i>

Table 4-4. Application of Table 4-3

		Minterm	Maxterm	Minterm	Maxterm		
		Expansion	Expansion	Expansion	Expansion		
~		of <i>f</i>	of f	of <i>f</i> ′	of <i>f</i> ′		
RN	<i>f</i> =						
E	$\Sigma m(3, 4, 5, 6, 7)$		Π <i>M</i> (0, 1, 2)	Σ <i>m</i> (0, 1, 2)	Π <i>M</i> (3, 4, 5, 6, 7)		
ΈN	<i>f</i> =						
GI	Π <i>M</i> (0, 1, 2)	Σ m(3, 4, 5, 6, 7)		Σ <i>m</i> (0, 1, 2)	Π <i>M</i> (3, 4, 5, 6, 7)		

DECIDED FORM

Incompletely Specified Functions

A large digital system is usually divided into many subcircuits. Consider the following example in which the output of circuit N_1 drives the input of circuit N_2 :

Section 4.5 (p. 99)

Let us assume the output of N_1 does not generate all possible combinations of values for *A*, *B*, and *C*. In particular, we will assume there are no combinations of values for *w*, *x*, *y*, and *z* which cause *A*, *B*, and *C* to assume values of 001 or 110.

Section 4.5 (p. 99)

Table 4-5: Truth Table with Don't Cares F ABC 000 Х 001 010 011 100 01 Х 10

When we realize the function, we must specify values for the don't-cares. It is desirable to choose values which will help simplify the function. If we assign the value 0 to both X's, then

F = A'B'C' + A'BC + ABC = A'B'C' + BC

If we assign 1 to the first X and 0 to the second, then

F = A'B'C' + A'B'C + A'BC + ABC = A'B' + BC

If we assign 1 to both X's, then

F = A'B'C' + A'B'C + A'BC + ABC' + ABC

= A'B' + BC + AB

The second choice of values leads to the simplest solution.

The minterm expansion for Table 4-5 is:

$$F = \sum m(0, 3, 7) + \sum d(1, 6)$$

The maxterm expansion for Table 4-5 is:

$$F = \prod M(2, 4, 5) \bullet \prod D(1, 6)$$

Table 4-5						
4 <i>B C</i>	F					
000	1					
001	Х					
010	0					
011	1					
100	0					
101	0					
110	Х					
111	1					

Examples of Truth Table Construction

We will design a simple binary adder that adds two 1-bit binary numbers, *a* and *b*, to give a 2-bit sum. The numeric values for the adder inputs and outputs are as follows:

а	b	Sun	า
0	0	00	(0 + 0 = 0)
0	1	01	(0 + 1 = 1)
1	0	01	(1 + 0 = 1)
1	1	10	(1 + 1 = 2)

Section 4.6 (p. 100)

We will represent inputs to the adder by the logic variables *A* and *B* and the 2-bit sum by the logic variables *X* and *Y*, and we

construct a truth table:

Α	В	X	Y	
0	0	0	0	
0	1	0	1	
1	0	0	1	
1	1	1	0	

Because a numeric value of 0 is represented by a logic 0 and a numeric value of 1 by a logic 1, the 0's and 1's in the truth table are exactly the same as in the previous table. From the truth table,

X = AB and $Y = A'B + AB' = A \oplus B$

Ex: Design an adder which adds two 2-bit binary numbers to give a 3-bit binary sum. Find the truth table for the circuit. The circuit has four inputs and three outputs as shown:

TRUTH TABLE:			TRUTH TABLE:		
N ₁	N ₂	N ₃	N ₁	N ₂	N ₃
ΑB	C D	XYZ	A B	CD	XYZ
0 0	0 0	000	10	0 0	010
0 0	0 1	001	10	0 1	011
0 0	1 0	010	10	1 0	100
0 0	1 1	011	10	11	101
01	0 0	001	1 1	0 0	011
01	0 1	010	1 1	0 1	100
01	1 0	011	1 1	1 0	101
01	1 1	100	1 1	1 1	110

Section 4.6 (p. 101)

Design of Binary Adders and Subtractors

We will design a parallel adder that adds two 4-bit unsigned binary numbers and a carry input to give a 4-bit sum and a carry output.

Section 4.7 (p. 104)

Figure 4-2: Parallel Adder for 4-Bit Binary Numbers

One approach would be to construct a truth table with nine inputs and five outputs and then derive and simplify the five output equations.

A better method is to design a logic module that adds two bits and a carry, and then connect four of these modules together to form a 4-bit adder.

Figure 4-3: Parallel Adder Composed of Four Full Adders

$\begin{array}{c} X \longrightarrow \\ Y \longrightarrow \\ C_{in} \longrightarrow \end{array}$	Full Adder	→ C _{out} → Sum				
		X	Υ	Cin	Cout	Sum
		0	0	0	0	0
		0	0	1	0	1
		0	1	0	0	1
		0	1	1	1	0
		1	0	0	0	1
		1	0	1	1	0
		1	1	0	1	0
		1	1	1	1	1

Figure 4-4: Truth Table for a Full Adder

Full Adder Logic Equations

The logic equations for the full adder derived from the truth table are:

$$Sum = X'Y'C_{in} + X'YC'_{in} + XY'C'_{in} + XYC_{in}$$

= $X'(Y'C_{in} + YC'_{in}) + X(Y'C'_{in} + YC_{in})$
= $X'(Y \oplus C_{in}) + X(Y \oplus C_{in})' = X \oplus Y \oplus C_{in}$ (4-20)

$$C_{out} = X'YC_{in} + XY'C_{in} + XYC'_{in} + XYC_{in}$$

= $(X'YC_{in} + XYC_{in}) + (XY'C_{in} + XYC_{in}) + (XYC'_{in} + XYC_{in})$ (4-21)
= $YC_{in} + XC_{in} + XY$

Section 4.7 (p. 105)

Figure 4-5: Implementation of Full Adder

Overflow for Signed Binary Numbers

An overflow has occurred if adding two positive numbers gives a negative result or adding two negative numbers gives a positive result.

We define an overflow signal, V = 1 if an overflow occurs. For Figure 4-3, V = $A_3'B_3'S_3 + A_3B_3S_3'$

Figure 4-3

Full Adders may be used to form A – B using the 2's complement representation for negative numbers. The 2's complement of B can be formed by first finding the 1's complement and then adding 1.

Figure 4-6: Binary Subtracter Using Full Adders

Alternatively, direct subtraction can be accomplished by employing a full subtracter in a manner analogous to a full adder.

Figure 4-7: Parallel Subtracter

Table 4.6. Truth Table for Binary Full Subtracter

X _i	Уi	b _i	$b_{i+1}d_i$
0	0	0	0 0
0	0	1	11
0	1	0	11
0	1	1	10
1	0	0	0 1
1	0	1	0 0
1	1	0	0 0
1	1	1	11

Consider
$$x_i = 0$$
, $y_i = 1$, and $b_i = 1$:

	Column <i>i</i>	Column <i>i</i>	
	Before	After	
	Borrow	Borrow	
X _i	0	10	
$-b_i$	-1	-1	
<u> </u>	<u>-1</u>	<u>-1</u>	
d_i		0 (b _{i+1}	= 1)

Section 4.7 (p. 107)