
©2010 Cengage Learning

CHAPTER 9
MULTIPLEXERS, DECODERS, AND
PROGRAMMABLE LOGIC DEVICES

This chapter in the book includes:
Objectives
Study Guide

9.1 Introduction
9.2 Multiplexers
9.3 Three-State Buffers
9.4 Decoders and Encoders
9.5 Read-Only Memories
9.6 Programmable Logic Devices
9.7 Complex Programmable Logic Devices
9.8 Field Programmable Gate Arrays

Problems

©2010 Cengage Learning

Figure 9-1: 2-to-1 Multiplexer and Switch Analog

Multiplexers

A multiplexer has a group of data inputs and a group of
control inputs used to select one of the data inputs and
connect it to the output terminal.

Z = A′I0 + AI1

©2010 Cengage Learning

Z = A′B′C′I0 + A′B′CI1 + A′BC′I2 + A′BCI3 +
AB′C′I4 + AB′CI5 + ABC′I6 + ABCI7 (9-2)

Figure 9-2: Multiplexers

8-to-1 MUX equation:

©2010 Cengage Learning

Figure 9-3: Logic Diagram for 8-to-1 MUX

©2010 Cengage Learning

Figure 9-4: Quad Multiplexer Used to Select Data

Control Variable A selects one of two 4-bit data words.

©2010 Cengage Learning

Figure 9-5: Quad Multiplexer with Bus Inputs
and Output

©2010 Cengage Learning

Figure 9-6: Gate Circuit with Added Buffer

F = C

©2010 Cengage Learning

Figure 9-7: Three-State Buffer

©2010 Cengage Learning

Figure 9-8: Four Kinds of Three-State Buffers

(a) (b) (c) (d)

©2010 Cengage Learning

Figure 9-9: Data Selection Using
Three-State Buffers

©2010 Cengage Learning

Figure 9-10: Circuit with Two
Three-State Buffers

S1

S2

F is determined from the
following table:

©2010 Cengage Learning

Figure 9-11: 4-Bit Adder with Four Sources for
One Operand

©2010 Cengage Learning

Figure 9-12: Integrated Circuit with
Bi-Directional Input/Output Pin

©2010 Cengage Learning

Decoders

The decoder is another commonly used type of integrated
circuit. The decoder generates all of the minterms of the
three input variables. Exactly one of the output lines will be
1 for each combination of the values of the input variables.

Section 9.4 (p. 256)

©2010 Cengage Learning

Figure 9-13: 3-to-8 Line Decoder

©2010 Cengage Learning

Figure 9-13: 3-to-8 Line Decoder

©2010 Cengage Learning

Figure 9-14a:
A 4-to-10 Line

Decoder

©2010 Cengage Learning

(b) Block diagram
Figure 9-14b:

A 4-to-10 Line Decoder

 A B C D

7442

©2010 Cengage Learning

(c) Truth TableFigure 9-14c:
A 4-to-10 Line Decoder

©2010 Cengage Learning

Figure 9-15: Realization of a Multiple-Output
Circuit Using a Decoder

f1(a, b, c, d) = m1 + m2 + m4

f2(a, b, c, d) = m4 + m7 + m9

Rewriting f1 and f2, we have

f1 = (m1′m2′m4′)′
f2 = (m4′m7′m9′)′

©2010 Cengage Learning

Encoders

An encoder performs the inverse function of a decoder. If
input yi is 1 and the other inputs are 0, then abc outputs
represent a binary number equal to i.

For example, if y3 = 1, then abc = 011.

If more than one input is 1, the highest numbered input
determines the output.

An extra output, d, is 1 if any input is 1, otherwise d is 0.
This signal is needed to distinguish the case of all 0 inputs
from the case where only y0 is 1.

Section 9.4 (p. 258)

©2010 Cengage LearningFigure 9-16: 8-to-3 Priority Coder

©2010 Cengage Learning

Read-Only Memories

A read-only memory (ROM) consists of an array of
semiconductor devices that are interconnected to store an
array of binary data. Once binary data is stored in the ROM,
it can be read out whenever desired, but the data that is
stored cannot be changed under normal operating
conditions.

Section 9.5 (p. 259)

©2010 Cengage Learning
Figure 9-17: An 8-Word x 4-Bit ROM

(a) Block diagram

©2010 Cengage Learning

Figure 9-18: Read-Only Memory
with n Inputs and m Outputs

©2010 Cengage Learning

Figure 9-19: Basic ROM Structure

©2010 Cengage Learning

Figure 9-20: An 8-Word x 4-Bit ROM

Figure 9-21:
Equivalent
OR Gate

for F0

©2010 Cengage Learning
Figure 9-22: Hexadecimal to ASCII Code Converter

©2010 Cengage Learning

Figure 9-22: Hexadecimal to ASCII Code Converter

©2010 Cengage Learning

Figure 9-23: ROM Realization of Code Converter

©2010 Cengage Learning

Programmable Logic Devices

A programmable logic device (or PLD) is a general name for
a digital integrated circuit capable of being programmed to
provide a variety of different logic functions.

When a digital system is designed using a PLD, changes in
the design can easily be made by changing the
programming of the PLD without having to change the
wiring in the system.

Section 9.6 (p. 263)

©2010 Cengage Learning

Programmable Logic Arrays

A programmable logic array (PLA) performs the same basic
function as a ROM. A PLA with n inputs and m outputs can
realize m functions of n variables.

The internal organization of the PLA is different from that of
the ROM in that the decoder is replaced with an AND array
which realizes selected product terms of the input variables.
The OR array Ors together the product terms needed to
form the output functions, so a PLA implements a
sum-of-products expression.

Section 9.6 (p. 263)

©2010 Cengage Learning

Figure 9-24: Programmable Logic Array Structure

©2010 Cengage Learning

Figure 9-25: PLA with Three Inputs, Five
Product Terms, and Four Outputs

©2010 Cengage Learning

Figure 9-26: AND-OR Array Equivalent to
Figure 9-25

©2010 Cengage Learning

Table 9-1. PLA Table for Figure 9-25

©2010 Cengage Learning

PLA Tables

The input side of a PLA table defines the product terms
generated by the AND array:

0 indicates a complemented variable
1 indicates an uncomplemented variable
− indicates a missing variable

The output side of a PLA table specifies which product terms
are ORed together to form the output functions:

0 indicates a product term is not present
1 indicates a product term is present.

Unlike a truth table, zero, one, or more rows in a PLA table
can be selected at the same time.

©2010 Cengage Learning

Figure 9-27b: PLA Realization of Equations

(a) PLA table

©2010 Cengage Learning

Programmable Array Logic

The PAL (programmable array logic) is a special case of the
PLA in which the AND array is programmable and the OR
array is fixed.

Because only the AND array is programmable, the PAL is
less expensive than the more general PLA, and the PAL is
easier to program.

Section 9.6 (p. 263)

©2010 Cengage Learning

Buffer logically equivalent to

Section 9.6 (p. 266)

©2010 Cengage Learning

Section 9.6 (p. 267)

©2010 Cengage Learning

Figure 9-28:
PAL Segment

©2010 Cengage Learning

Figure 9-29:

Implementation
of a Full Adder

Using a PAL

©2010 Cengage Learning

Complex Programmable Logic Devices

As integrated circuit technology continues to improve, more
and more gates can be placed on a single chip. This has
allowed the development of complex programmable logic
devices (CPLDs).

Instead of a single PAL or PLA on a chip, many PALs or
PLAs can be placed on a single CPLD chip and
interconnected.

When storage elements such as flip-flops are also included
on the same integrated circuit (IC), a small digital system
can be implemented with a single CPLD.

Section 9.7 (p. 268)

©2010 Cengage Learning

Figure 9-30: Architecture of Xilinx XCR3064XL CPLD
(Figure based on figures and text owned by Xilinx, Inc., Courtesy of Xilinx, Inc. © Xilinx, Inc.

1999-2003. All rights reserved.)

©2010 Cengage Learning

Figure 9-31: CPLD Function Block and Macrocell
(A Simplified Version of XCR3064XL)

Signals generated in a PLA can
be routed to an I/O pin through a
macrocell.

©2010 Cengage Learning

Field-Programmable Gate Arrays

A field-programmable gate array (FPGA) is an IC that
contains an array of identical logic cells with programmable
interconnections. The user can program the functions
realized by each logic cell and the connections between the
cells.

The interior of the FPGA consists of an array of logic cells,
also called configurable logic blocks (CLBs). The array of
CLBs is surrounded by a ring of I/O interface blocks. These
I/O blocks connect the CLB signals to IC pins.

Section 9.8 (p. 270)

©2010 Cengage Learning

Figure 9-32: Layout of a Typical FPGA

©2010 Cengage Learning

Figure 9-33: Simplified Configurable
Logic Block (CLB)

©2010 Cengage Learning

Figure 9-34:

Implementation of a Lookup Table (LUT)

A four-input LUT is
essentially a
reprogrammable
ROM with
16 1-bit words.

©2010 Cengage Learning

Shannon′s Expansion Theorem

In order to implement a switching function of more than
three variables using 3-variable function generators, the
function must be decomposed into subfunctions where each
subfunction requires only three variables.

For example, we can expand a function of the variables a,
b, c, and d about the variable a:

Section 9.8 (p. 271-272)

f (a, b, c, d) = a'f (0, b, c, d) + a f (1, b, c, d) = a'f0 + a f1 (9-6)
f (a, b, c, d) = c'd'+ a'b'c + bcd + ac' (9-7)

 = a'(c'd'+ b’c + bcd) + a(c'd'+ bcd + c')
 = a'(c'd'+ b'c + cd) + a(c'+ bd) = a'f0 + a f1

©2010 Cengage Learning

Figure 9-35: Function Expansion Using a
Karnaugh Map

©2010 Cengage Learning

The general form of Shannon’s expansion theorem for
expanding an n-variable function about the variable xi is

f (x1, x2, . . . , xi−1, xi, xi+1, . . . , xn)
 = xi′ f (x1, x2, . . . , xi−1, 0, xi+1, . . . , xn) +
 xi f (x1, x2, . . . , xi−1, 1, xi+1, . . . , xn)
 = xi′ f0 + xi f1 (9-8)

Where f0 is the (n − 1)-variable function obtained by setting xi
to 0 in the original function and f1 is the (n − 1)-variable
function obtained by setting xi to 1 in the original function.

©2010 Cengage Learning

Figure 9-36: Realization of a 5-Variable Function
with Function Generators and a MUX

©2010 Cengage Learning

Figure 9-36: Realization of a 6-Variable Function
with Function Generators and a MUX

G(a, b, c, d, e, f)
= a'G0 + aG1

G0 = b'G00 + bG01

G1 = b'G10 + bG11

