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CHAPTER 9
MULTIPLEXERS, DECODERS, AND 
PROGRAMMABLE LOGIC DEVICES

This chapter in the book includes:
Objectives
Study Guide

9.1 Introduction
9.2 Multiplexers
9.3 Three-State Buffers
9.4 Decoders and Encoders
9.5 Read-Only Memories
9.6 Programmable Logic Devices
9.7 Complex Programmable Logic Devices
9.8 Field Programmable Gate Arrays

Problems
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Figure 9-1:  2-to-1 Multiplexer and Switch Analog

Multiplexers

A multiplexer has a group of data inputs and a group of 
control inputs used to select one of the data inputs and 
connect it to the output terminal.

Z = A′I0 + AI1
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Z = A′B′C′I0 + A′B′CI1 + A′BC′I2 + A′BCI3             + 
AB′C′I4 + AB′CI5 + ABC′I6 + ABCI7          (9-2)

Figure 9-2:  Multiplexers

8-to-1 MUX equation:
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Figure 9-3:  Logic Diagram for 8-to-1 MUX
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Figure 9-4:  Quad Multiplexer Used to Select Data

Control Variable A selects one of two 4-bit data words.
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Figure 9-5:  Quad Multiplexer with Bus Inputs 
and Output
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Figure 9-6:  Gate Circuit with Added Buffer

F = C
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Figure 9-7:  Three-State Buffer
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Figure 9-8:  Four Kinds of Three-State Buffers

(a) (b) (c) (d)
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Figure 9-9:  Data Selection Using
Three-State Buffers
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Figure 9-10:  Circuit with Two
Three-State Buffers

S1

S2

F is determined from the 
following table:
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Figure 9-11:  4-Bit Adder with Four Sources for 
One Operand
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Figure 9-12:  Integrated Circuit with
Bi-Directional Input/Output Pin
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Decoders

The decoder is another commonly used type of integrated 
circuit. The decoder generates all of the minterms of the 
three input variables. Exactly one of the output lines will be 
1 for each combination of the values of the input variables.

Section 9.4 (p. 256)
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Figure 9-13:  3-to-8 Line Decoder
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Figure 9-13:  3-to-8 Line Decoder
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Figure 9-14a:
A 4-to-10 Line 

Decoder
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(b) Block diagram
Figure 9-14b:

A 4-to-10 Line Decoder

     A    B    C    D

7442
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(c) Truth TableFigure 9-14c:
A 4-to-10 Line Decoder
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Figure 9-15:  Realization of a Multiple-Output 
Circuit Using a Decoder

f1(a, b, c, d) = m1 + m2 + m4

f2(a, b, c, d) = m4 + m7 + m9

Rewriting f1 and f2, we    have

f1 = (m1′m2′m4′)′
f2 = (m4′m7′m9′)′
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Encoders

An encoder performs the inverse function of a decoder. If 
input yi is 1 and the other inputs are 0, then abc outputs 
represent a binary number equal to i. 

For example, if y3 = 1, then abc = 011.

If more than one input is 1, the highest numbered input 
determines the output.

An extra output, d, is 1 if any input is 1, otherwise d is 0. 
This signal is needed to distinguish the case of all 0 inputs 
from the case where only y0 is 1.

Section 9.4 (p. 258)
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Read-Only Memories

A read-only memory (ROM) consists of an array of 
semiconductor devices that are interconnected to store an 
array of binary data. Once binary data is stored in the ROM, 
it can be read out whenever desired, but the data that is 
stored cannot be changed under normal operating 
conditions.

Section 9.5 (p. 259)
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Figure 9-17:  An 8-Word x 4-Bit ROM

(a) Block diagram
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Figure 9-18:  Read-Only Memory 
with n Inputs and m Outputs
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Figure 9-19:  Basic ROM Structure
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Figure 9-20:  An 8-Word x 4-Bit ROM

Figure 9-21:  
Equivalent 
OR Gate 

for F0
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Figure 9-22:  Hexadecimal to ASCII Code Converter
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Figure 9-22:  Hexadecimal to ASCII Code Converter
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Figure 9-23:  ROM Realization of Code Converter
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Programmable Logic Devices

A programmable logic device (or PLD) is a general name for 
a digital integrated circuit capable of being programmed to 
provide a variety of different logic functions. 

When a digital system is designed using a PLD, changes in 
the design can easily be made by changing the 
programming of the PLD without having to change the 
wiring in the system.

Section 9.6 (p. 263)
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Programmable Logic Arrays

A programmable logic array (PLA) performs the same basic 
function as a ROM. A PLA with n inputs and m outputs can 
realize m functions of n variables. 

The internal organization of the PLA is different from that of 
the ROM in that the decoder is replaced with an AND array 
which realizes selected product terms of the input variables. 
The OR array Ors together the product terms needed to 
form the output functions, so a PLA implements a 
sum-of-products expression.

Section 9.6 (p. 263)
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Figure 9-24:  Programmable Logic Array Structure
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Figure 9-25:  PLA with Three Inputs, Five 
Product Terms, and Four Outputs
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Figure 9-26:  AND-OR Array Equivalent to 
Figure 9-25
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Table 9-1.  PLA Table for Figure 9-25
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PLA Tables

The input side of a PLA table defines the product terms 
generated by the AND array:

0 indicates a complemented variable
1 indicates an uncomplemented variable
− indicates a missing variable

The output side of a PLA table specifies which product terms 
are ORed together to form the output functions:

0 indicates a product term is not present
1 indicates a product term is present.

Unlike a truth table, zero, one, or more rows in a PLA table 
can be selected at the same time.
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Figure 9-27b:  PLA Realization of Equations

(a) PLA table
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Programmable Array Logic

The PAL (programmable array logic) is a special case of the 
PLA in which the AND array is programmable and the OR 
array is fixed.

Because only the AND array is programmable, the PAL is 
less expensive than the more general PLA, and the PAL is 
easier to program.

Section 9.6 (p. 263)
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Buffer logically equivalent to

Section 9.6 (p. 266)
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Section 9.6 (p. 267)
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Figure 9-28:
PAL Segment
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Figure 9-29:

Implementation
of a Full Adder

Using a PAL



©2010 Cengage Learning

Complex Programmable Logic Devices

As integrated circuit technology continues to improve, more 
and more gates can be placed on a single chip. This has 
allowed the development of complex programmable logic 
devices (CPLDs). 

Instead of a single PAL or PLA on a chip, many PALs or 
PLAs can be placed on a single CPLD chip and 
interconnected.

When storage elements such as flip-flops are also included 
on the same integrated circuit (IC), a small digital system 
can be implemented with a single CPLD.

Section 9.7 (p. 268)
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Figure 9-30:  Architecture of Xilinx XCR3064XL CPLD 
(Figure based on figures and text owned by Xilinx, Inc., Courtesy of Xilinx, Inc. © Xilinx, Inc.

1999-2003.  All rights reserved.)



©2010 Cengage Learning

Figure 9-31:  CPLD Function Block and Macrocell 
(A Simplified Version of XCR3064XL)

Signals generated in a PLA can 
be routed to an I/O pin through a 
macrocell.
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Field-Programmable Gate Arrays

A field-programmable gate array (FPGA) is an IC that 
contains an array of identical logic cells with programmable 
interconnections. The user can program the functions 
realized by each logic cell and the connections between the 
cells.

The interior of the FPGA consists of an array of logic cells, 
also called configurable logic blocks (CLBs). The array of 
CLBs is surrounded by a ring of I/O interface blocks. These 
I/O blocks connect the CLB signals to IC pins.

Section 9.8 (p. 270)
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Figure 9-32:  Layout of a Typical FPGA
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Figure 9-33:  Simplified Configurable
Logic Block (CLB)
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Figure 9-34:

Implementation of a Lookup Table (LUT)

A four-input LUT is 
essentially a 
reprogrammable  
ROM with            
16 1-bit words.
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Shannon′s Expansion Theorem

In order to implement a switching function of more than 
three variables using 3-variable function generators, the 
function must be decomposed into subfunctions where each 
subfunction requires only three variables.

For example, we can expand a function of the variables a, 
b, c, and d about the variable a:

Section 9.8 (p. 271-272)

f (a, b, c, d) = a'f (0, b, c, d) + a f (1, b, c, d) = a'f0 + a f1      (9-6)
f (a, b, c, d) = c'd'+ a'b'c + bcd + ac'      (9-7)

        = a'(c'd'+ b’c + bcd) + a(c'd'+ bcd + c')
        = a'(c'd'+ b'c + cd) + a(c'+ bd) = a'f0 + a f1
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Figure 9-35:  Function Expansion Using a 
Karnaugh Map
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The general form of Shannon’s expansion theorem for 
expanding an n-variable function about the variable xi is

f (x1, x2, . . . , xi−1, xi, xi+1, . . . , xn)
 =  xi′ f (x1, x2, . . . , xi−1, 0, xi+1, . . . , xn) + 
     xi  f (x1, x2, . . . , xi−1, 1, xi+1, . . . , xn)
 = xi′ f0 + xi f1 (9-8)

Where f0 is the (n − 1)-variable function obtained by setting xi 
to 0 in the original function and f1 is the (n − 1)-variable 
function obtained by setting xi to 1 in the original function.
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Figure 9-36:  Realization of a 5-Variable Function 
with Function Generators and a MUX
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Figure 9-36:  Realization of a 6-Variable Function 
with Function Generators and a MUX

G(a, b, c, d, e, f)
= a'G0 + aG1

G0 = b'G00 + bG01

G1 = b'G10 + bG11


