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CHAPTER 12

REGISTERS AND COUNTERS

This chapter in the book includes:
Objectives
Study Guide

12.1 Registers and Register Transfers
12.2 Shift Registers
12.3 Design of Binary Counters
12.4 Counters for Other Sequences
12.5 Counter Design Using S-R and J-K Flip-Flops
12.6 Derivation of Flip-Flop Input Equations--Summary

Problems
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Registers and Register Transfers

Several D flip-flops may be grouped together with a 
common clock to form a register. Because each flip-flop can 
store one bit of information, a register with four D flip-flops 
can store four bits of information. 

A load signal can be ANDed with the clock to enable and 
disable loading the registers.

A better approach is to use registers with clock enables if 
they are available.

Section 12.1 (p. 354)
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Figure 12-1:  4-Bit D Flip-Flop Registers
with Data, Load, Clear, and Clock Inputs
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Data Transfer Between Registers

Transferring data between registers is a common operation 
in digital systems. 

Data can be transferred from the output of one of two 
registers into a third register using tri-state buffers.

Section 12.1 (p. 355)
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Figure 12-2:  Data Transfer Between Registers
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Figure 12-3:  Logic Diagram for 8-Bit Register 
with Tri-State Output
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Figure 12-4:  Data Transfer Using a Tri-State Bus
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When EnA = 0, the tri-state outputs of register A are enabled 
onto the bus. If LdG = 1, these signals on the bus are loaded 
into register G after the rising clock edge (or into register H if 
LdH = 1). Similarly, the data in register B, C, or D is 
transferred to G (or H) when EnB, EnC, or EnD is 0, 
respectively, and LdG = 1 (or LdH = 1). If LdG = LdH = 1, 
both G and H will be loaded from the bus. 

The four enable signals may be generated by a decoder. The 
operation can be summarized as follows:

If EF = 00, A is stored in G (or H).
If EF = 01, B is stored in G (or H).
If EF = 10, C is stored in G (or H).
If EF = 11, D is stored in G (or H).
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Parallel Adder with Accumulator

In computer circuits, it is frequently desirable to store one 
number in a register of flip-flops (called an accumulator) and 
add a second number to it, leaving the result stored in the 
accumulator.

Section 12.1 (p. 356)
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Figure 12-5:  N-Bit Parallel Adder with Accumulator
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Loading Accumulator

Before addition in the previous circuit can take place, the 
accumulator must be loaded with X. This can be 
accomplished in several ways. The easiest way is to first 
clear the accumulator using the asynchronous clear inputs 
on the flip-flops, and then put the X data on the Y inputs to 
the adder and add the accumulator in the normal way.

Alternatively, we could add multiplexers at the accumulator 
inputs so that we could select either the Y input data or the 
adder output to load into the accumulator.

Section 12.1 (p. 357)
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Figure 12-6:  Adder Cell with Multiplexer
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A shift register is 
a register in which 
binary data can 
be stored, and 
this data can be 
shifted to the left 
or right when a 
shift signal is 
applied.
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Figure 12-8:  8-Bit Serial-In, Serial-Out
Shift Register
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Figure 12-9:  Typical Timing Diagram for
Shift Register of Figure 12-8

Note that the 8th rising edge occurs at the end of the 
7th clock period.
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Figure 12-10: Parallel-In, Parallel-Out, Right Shift 
Register



©2010 Cengage Learning

Figure 12-10: Parallel-In, Parallel-Out, Right Shift 
Register
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Table 12-1: Shift Register Operation
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Figure 12-11:  Timing Diagram for Shift Register
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Figure 12-12:  Shift Register with
Inverted Feedback

A circuit that 
cycles 

through a 
fixed 

sequence of 
states is 
called a 
counter.
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Figure 12-13:  Synchronous Binary Counter
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Design of Binary Counters

1. Create a state graph to count in the desired sequence.

2. Create a state table from the state graph created in (1). 
We need one flip-flop per bit. Ex: if we need to count 
from 0 to 7, we need 3 bits, therefore we should use 
three flip-flops.

3. Derive Karnaugh maps from the state table created in 
(2) and solve for the inputs to each flip-flop.

Section 12.3 (p. 363)
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Table 12-2 State Table for Binary Counter
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Figure 12-14:  Karnaugh Maps for Binary Counter
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Redesign using D flip-flops

Section 12.3 (p. 363)

We can redesign the binary counter to use D flip-flops 
instead of T flip-flops by adding an XOR (exclusive-OR) 
gate to the inputs of each flip flop.
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Figure 12-15:  Binary Counter with D Flip-Flops
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Figure 12-16:  Karnaugh Maps for D Flip-Flops
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Figure 12-17:  State Graph and Table
for Up-Down Counter
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Figure 12-19ab:  Loadable Counter 
with Count Enable

(b)
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Figure 12-20:  Circuit for Figure 12-19
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Figure 12-21:  
State Graph 
for Counter

Table 12-3:  State 
Table for Figure 12-21 
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Deriving Equations for T Flip-Flops

Section 12.4 (p. 367)

We could derive TC , TB , and TA directly from the state 
table, but it is often more convenient to plot next-state 
maps showing C+, B+, and A+ as functions of C, B, and A, 
and then derive TC , TB , and TA from these maps.
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Figure 12-22
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Table 12-4.  Input for T Flip-Flop 

Given the present state of a T flip-flop (Q) and the 
desired next state (Q+), the T input must be a 1 
whenever a change in state is required. Thus, T = 1 
whenever Q+ ≠ Q.



©2010 Cengage Learning
Figure 12-23:  Counter Using T Flip-Flops
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Figure 12-24:  Timing Diagram for Figure 12-23
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Figure 12-25:  State Graph for Counter

Although the original state table for the counter is not 
completely specified, the next states of states 001, 101, 
and 110 have been specified in the process of 
completing the circuit design
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Deriving Equations for T Flip-Flops

Section 12.4 (p. 370)

In summary, the following procedure can be used to design a 
counter using T flip-flops:

1. Form a state table which gives the next flip-flop states for each 
combination of present flip-flop states.

2. Plot the next-state maps from the table.
3. Plot a T input map for each flip-flop. When filling in the TQ 

map, TQ must be 1 whenever Q+ ≠ Q. This means that the TQ 
map can be formed from the Q+ map by complementing the Q 
= 1 half of the map and leaving the Q = 0 half unchanged.

4. Find the T input equations from the maps and realize the 
circuit.
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Figure 12-26:  Counter of Figure 12-21 Using D 
Flip-Flops
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Counter Design Using S-R Flip-Flops

Section 12.5 (p. 371)

The procedures used to design a counter with S-R flip-flops 
are similar to the procedures for T flip-flops. However, instead 
of deriving an input equation for each D or T flip-flop, the S 
and R input equations must be derived for each S-R flip-flop.
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Table 12-5.  S-R Flip-Flop Inputs 
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Table 12-6. 
S-R Realization of Figure 12-21

Figure 12-21:  
State Graph 
for Counter
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Figure 12-27:
Counter of Figure 12-21 Using S-R Flip-Flops
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Figure 12-27:

Counter of Figure 12-21
Using S-R Flip-Flops

(c) Logic circuit
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Table 12-7.  J-K Flip-Flop Inputs 

Similarly, the same counter can be realized using J-K 
flip-flops.
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Figure 12-21:  
State Graph 
for Counter

Table 12-8.
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Figure 12-28:
Counter of Figure 12-21 Using J-K Flip-Flops
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Figure 12-28:

Counter of Figure 12-21
Using J-K Flip-Flops
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Table 12-9.  Determination of Flip-Flop 
Input Equations from Next-State Equations 

Using Karnaugh Maps 
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Example Illustrating the Use of Table 12-9
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Figure 12-29a:
Derivation of Flip-Flop Input Equations

Using 4-Variable Maps
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Figure 12-29b:
Derivation of Flip-Flop 
Input Equations Using 

4-Variable Maps
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Figure 12-29c:
Derivation of Flip-Flop 
Input Equations Using 

4-Variable Maps


