
©2010 Cengage Learning

CHAPTER 12

REGISTERS AND COUNTERS

This chapter in the book includes:
Objectives
Study Guide

12.1 Registers and Register Transfers
12.2 Shift Registers
12.3 Design of Binary Counters
12.4 Counters for Other Sequences
12.5 Counter Design Using S-R and J-K Flip-Flops
12.6 Derivation of Flip-Flop Input Equations--Summary

Problems

©2010 Cengage Learning

Registers and Register Transfers

Several D flip-flops may be grouped together with a
common clock to form a register. Because each flip-flop can
store one bit of information, a register with four D flip-flops
can store four bits of information.

A load signal can be ANDed with the clock to enable and
disable loading the registers.

A better approach is to use registers with clock enables if
they are available.

Section 12.1 (p. 354)

©2010 Cengage Learning

Figure 12-1: 4-Bit D Flip-Flop Registers
with Data, Load, Clear, and Clock Inputs

©2010 Cengage Learning

Data Transfer Between Registers

Transferring data between registers is a common operation
in digital systems.

Data can be transferred from the output of one of two
registers into a third register using tri-state buffers.

Section 12.1 (p. 355)

©2010 Cengage Learning
Figure 12-2: Data Transfer Between Registers

©2010 Cengage Learning

Figure 12-3: Logic Diagram for 8-Bit Register
with Tri-State Output

©2010 Cengage Learning

Figure 12-4: Data Transfer Using a Tri-State Bus

©2010 Cengage Learning

When EnA = 0, the tri-state outputs of register A are enabled
onto the bus. If LdG = 1, these signals on the bus are loaded
into register G after the rising clock edge (or into register H if
LdH = 1). Similarly, the data in register B, C, or D is
transferred to G (or H) when EnB, EnC, or EnD is 0,
respectively, and LdG = 1 (or LdH = 1). If LdG = LdH = 1,
both G and H will be loaded from the bus.

The four enable signals may be generated by a decoder. The
operation can be summarized as follows:

If EF = 00, A is stored in G (or H).
If EF = 01, B is stored in G (or H).
If EF = 10, C is stored in G (or H).
If EF = 11, D is stored in G (or H).

©2010 Cengage Learning

Parallel Adder with Accumulator

In computer circuits, it is frequently desirable to store one
number in a register of flip-flops (called an accumulator) and
add a second number to it, leaving the result stored in the
accumulator.

Section 12.1 (p. 356)

©2010 Cengage Learning

Figure 12-5: N-Bit Parallel Adder with Accumulator

©2010 Cengage Learning

Loading Accumulator

Before addition in the previous circuit can take place, the
accumulator must be loaded with X. This can be
accomplished in several ways. The easiest way is to first
clear the accumulator using the asynchronous clear inputs
on the flip-flops, and then put the X data on the Y inputs to
the adder and add the accumulator in the normal way.

Alternatively, we could add multiplexers at the accumulator
inputs so that we could select either the Y input data or the
adder output to load into the accumulator.

Section 12.1 (p. 357)

©2010 Cengage Learning
Figure 12-6: Adder Cell with Multiplexer

©2010 Cengage LearningFigure 12-7: Right-Shift Register

A shift register is
a register in which
binary data can
be stored, and
this data can be
shifted to the left
or right when a
shift signal is
applied.

©2010 Cengage Learning

Figure 12-8: 8-Bit Serial-In, Serial-Out
Shift Register

©2010 Cengage Learning

Figure 12-9: Typical Timing Diagram for
Shift Register of Figure 12-8

Note that the 8th rising edge occurs at the end of the
7th clock period.

©2010 Cengage Learning

Figure 12-10: Parallel-In, Parallel-Out, Right Shift
Register

©2010 Cengage Learning

Figure 12-10: Parallel-In, Parallel-Out, Right Shift
Register

©2010 Cengage Learning

Table 12-1: Shift Register Operation

©2010 Cengage Learning

Figure 12-11: Timing Diagram for Shift Register

©2010 Cengage Learning

Figure 12-12: Shift Register with
Inverted Feedback

A circuit that
cycles

through a
fixed

sequence of
states is
called a
counter.

©2010 Cengage Learning

Figure 12-13: Synchronous Binary Counter

©2010 Cengage Learning

Design of Binary Counters

1. Create a state graph to count in the desired sequence.

2. Create a state table from the state graph created in (1).
We need one flip-flop per bit. Ex: if we need to count
from 0 to 7, we need 3 bits, therefore we should use
three flip-flops.

3. Derive Karnaugh maps from the state table created in
(2) and solve for the inputs to each flip-flop.

Section 12.3 (p. 363)

©2010 Cengage Learning

Table 12-2 State Table for Binary Counter

©2010 Cengage Learning

Figure 12-14: Karnaugh Maps for Binary Counter

©2010 Cengage Learning

Redesign using D flip-flops

Section 12.3 (p. 363)

We can redesign the binary counter to use D flip-flops
instead of T flip-flops by adding an XOR (exclusive-OR)
gate to the inputs of each flip flop.

©2010 Cengage Learning

Figure 12-15: Binary Counter with D Flip-Flops

©2010 Cengage Learning

Figure 12-16: Karnaugh Maps for D Flip-Flops

©2010 Cengage Learning

Figure 12-17: State Graph and Table
for Up-Down Counter

©2010 Cengage LearningFigure 12-18: Binary Up-Down Counter

©2010 Cengage Learning

Figure 12-19ab: Loadable Counter
with Count Enable

(b)

©2010 Cengage Learning

Figure 12-20: Circuit for Figure 12-19

©2010 Cengage Learning

Figure 12-21:
State Graph
for Counter

Table 12-3: State
Table for Figure 12-21

©2010 Cengage Learning

Deriving Equations for T Flip-Flops

Section 12.4 (p. 367)

We could derive TC , TB , and TA directly from the state
table, but it is often more convenient to plot next-state
maps showing C+, B+, and A+ as functions of C, B, and A,
and then derive TC , TB , and TA from these maps.

©2010 Cengage Learning

Figure 12-22

©2010 Cengage Learning

Table 12-4. Input for T Flip-Flop

Given the present state of a T flip-flop (Q) and the
desired next state (Q+), the T input must be a 1
whenever a change in state is required. Thus, T = 1
whenever Q+ ≠ Q.

©2010 Cengage Learning
Figure 12-23: Counter Using T Flip-Flops

©2010 Cengage Learning
Figure 12-24: Timing Diagram for Figure 12-23

©2010 Cengage Learning

Figure 12-25: State Graph for Counter

Although the original state table for the counter is not
completely specified, the next states of states 001, 101,
and 110 have been specified in the process of
completing the circuit design

©2010 Cengage Learning

Deriving Equations for T Flip-Flops

Section 12.4 (p. 370)

In summary, the following procedure can be used to design a
counter using T flip-flops:

1. Form a state table which gives the next flip-flop states for each
combination of present flip-flop states.

2. Plot the next-state maps from the table.
3. Plot a T input map for each flip-flop. When filling in the TQ

map, TQ must be 1 whenever Q+ ≠ Q. This means that the TQ
map can be formed from the Q+ map by complementing the Q
= 1 half of the map and leaving the Q = 0 half unchanged.

4. Find the T input equations from the maps and realize the
circuit.

©2010 Cengage Learning

Figure 12-26: Counter of Figure 12-21 Using D
Flip-Flops

©2010 Cengage Learning

Counter Design Using S-R Flip-Flops

Section 12.5 (p. 371)

The procedures used to design a counter with S-R flip-flops
are similar to the procedures for T flip-flops. However, instead
of deriving an input equation for each D or T flip-flop, the S
and R input equations must be derived for each S-R flip-flop.

©2010 Cengage Learning

Table 12-5. S-R Flip-Flop Inputs

©2010 Cengage Learning

Table 12-6.
S-R Realization of Figure 12-21

Figure 12-21:
State Graph
for Counter

©2010 Cengage Learning

Figure 12-27:
Counter of Figure 12-21 Using S-R Flip-Flops

©2010 Cengage Learning

Figure 12-27:

Counter of Figure 12-21
Using S-R Flip-Flops

(c) Logic circuit

©2010 Cengage Learning

Table 12-7. J-K Flip-Flop Inputs

Similarly, the same counter can be realized using J-K
flip-flops.

©2010 Cengage Learning

Figure 12-21:
State Graph
for Counter

Table 12-8.

©2010 Cengage Learning

Figure 12-28:
Counter of Figure 12-21 Using J-K Flip-Flops

©2010 Cengage Learning

Figure 12-28:

Counter of Figure 12-21
Using J-K Flip-Flops

©2010 Cengage Learning

Table 12-9. Determination of Flip-Flop
Input Equations from Next-State Equations

Using Karnaugh Maps

©2010 Cengage Learning
Example Illustrating the Use of Table 12-9

©2010 Cengage Learning

Figure 12-29a:
Derivation of Flip-Flop Input Equations

Using 4-Variable Maps

©2010 Cengage Learning

Figure 12-29b:
Derivation of Flip-Flop
Input Equations Using

4-Variable Maps

©2010 Cengage Learning

Figure 12-29c:
Derivation of Flip-Flop
Input Equations Using

4-Variable Maps

