Carry Lookahead Adder

Input Input |Carry | Carry
bit for | bit for | bit bit
number | number| input | output
A B | S | Cour
0 0 0 0
0 0 1 0
0 1 0 0
0 1 |]
‘ 0 0 0
0 1
1 0
1 1

A3

B3

C3

A

Cout

Cin

A2

C2

S3

B2
A B
Cout Cin
S

Al

Bl

C1

S2

Cin

AO

BO

o0

S1

Cin

Cin

SO

Compute 0101b + 0111b

A

Cout

Cin

S3

Cout

Cin

S2

Cin

S1

Cin

SO

A

Adder 3

O

- T

1

Adder 2 Adder 1

| don’t want to wait! Looks like Adder2 can
have its carry figured out immediately!

Adder O

Adder 3

N b

Adder 2 Adder 1 Adder O

0

Sure, Adder3, | have both inputsas 1, so |
will carry 1 for you no matter what Adder 1
says. BTW, Adder 1, what is your carry?

Adder 3

- T

1

Adder 2 Adder 1

Adder2, don’t look at me, ask AdderO
instead. I'm adding 0 and 1, so I'll carry
whatever Adder O carries.

Adder O

What does that imply?

- “Sure, Adder3, | have both inputs as 1, so | will carry 1 for you no
matter what Adder 1 says.”

* An adder can generate carry if both its input are 1s. This property cuts
the long-chained carry dependency into pieces.

* We call it a “Generate” signal. G in short.
*G=AandB

What does that imply?

- “Adder2, don’t look at me, ask AdderO instead. I’'m adding 0 and 1, so
I"ll carry whatever Adder O carries.”

* If an adder is adding a 0 and a 1, its Cout will be exactly same as its
Cin. We can directly connect its Cin sighal directly to its Cout in this
case, so that the adder becomes transparent (eliminated) in the
dependency chain.

* We call this a “Propagate” signal. P in short.
*P=AxorB

Input
bit for
nurmber

Input
bit for
nurmber

—_— O = O = 0O

Input Input |Carry | Carry
bit for | bit for | bit bit
number | number| input | output

A B | S | Cour

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

| 0 0 0

0 1 |

o © >

Il
o
I
(WY

= O

Input Input |Carry | Carry
bit for | bit for | bit bit
number | number| input | output
A B | S | Cour
0 0 0 0
0 0 | 0
0 1 0
0 1 1
0 0
0 1
1 0
1 1

P& G

Meaning

00

Generate, cuts
propagation

01

Propagate,

transparent in
propagation

11

Adder sees 0 + 0 + Cin, knows Cout = 0 for sure.

Adders sees 1 + 1 + Cin, knows Cout = 1 for sure.

Propagate Cin to Cout. G becomes don’t care.

Unreachable because A & B, A xor B can’t be both 1

Recursive formula for carry

 Consider bitiin a N bit adder.
* Your carry C; = G; + P;C;_4
* C; =G; + P;(Gi—1 + P;i_1C;_3)

* If you keep substitute C;, with C,_1, you eventually reach a formula where
C; is some function of Gy ; and Py ; and C_4, which is equal to C;,

* You are “looking ahead” all the carries, finding your way through all units

that are “propagating”, until you find someone that’s “generating” or you
reach original C;;,

e All adders no longer have to wait for signal propagation delay because all P
& Gs are computed in parallel and made available to all adders by a
Lookahead logic circuit.

Example

(s

Gg'

- P3(G-

P> (G -

- P1(Go -

B PO Cin)))

Cout

An.i Bn.1 Al Bl A0 BO
Xy Xy X Yy
C FAyy 2 < c FAl 2 |¢e—— c FAD 2z
s P g s P g s p g
A4 A4 4
Sh-1 Sy S0
Yy 9 Yy v Yy v
Pu-1 Op-1 Ch-1 C; P1 Gy Cy Po Go

N-bit Carry-Lookahead

* Assume all combinational logic (Propagate, Generate, Sum and Carry)
take same amount of time dt (for simplicity, not in reality!)

* Every dt, new produced values are marked red, done adders are
marked with green circle

T

0

A

A

Propagate

Propagate

T

2

A

Propagate

Propagate

1

T=3

A

Propagate

Propagate

1

T=4

A

Propagate

Propagate

1

4-bit Carry Lookahead Unit at a glance

1 engineeri

To achieve

ng trade-off

T —

i

T

better performance, we often need
'to sacrifice area and energy. This is an

full_cla_adde
2]
in
X “_‘ .
i i
full_cla_adder :fa2
E 2 r_bit_clu:u
cin | :
< 1 T r 00000 cout~0
ut

2 gout~1
3
0

File Edit View Project Processing Tools Window Help &) ISearch altera.com

|E@m&sTEsaf e/l SV | 2EES

1 | -

5 =

3 module carry_lookahead_adder

4 =N

5 input logic[15:0] A,

6 input 1ogic[j 0] B,

7 output 1logic[15:0] Sum,

8 output 1logic Co

9) :
File Edit Tools Window Help =) Search altera.com |@
& : E| Removal Summary -]
" =¥ Minimum Pulse Width Summary

#-] Worst-Case Timing Paths
#-] Datasheet Report
E| Metastability Report
% = [Slow 1200mV 0C Model
g fl:::1 Fmax Summary |
S M Setup Summary -
5 = Hold Summary
P E| Recovery Summary
2 E| Removal Summary
3 M Minimum Pulse Width Summarv ﬂ
Fmax Restricted Fmax Clock Name Note
1§ 78.88 MHz |78.88 MHz clk
This panel reports FMAX for every clock in the design, regardless of the user-specified clock 4
periods. FMAX is only computed for paths where the source and destination registers or)
‘ports are driven by the same clock. Paths of different clocks, including generated clocks, are
lignored. For paths between a clock and its inversion, FMAX is computed as if the rising and ~|
[100% 00:00:05

File Edit View Project Processing Tools Window Help

| % == a0l Nom 0 S8

module ripple_adder

1

2 gl

3 input logic[15:0] A,

4 input logic[15:0] B,

] output 1logic[15:0] Sum,
6 output logic CoO
L

File Edit Tools Window Help

|Searc|*. altera.com

& | = [&¥ TimeQuest Timing Analyzer
o EH Summary
*H Parallel Compilation
9 SDC File List
*H Clocks
#- [Slow 1200mV 85C Model
- [ZF Slow 1200mV 0C Model
==:] Fmax Summary
= Setup Summary
= Hold Summary
E| Recovery Summary
E] Removal Summarv

a Table of Contents

(ur TIAAM AF MAadal "7=-~=-"='"-"-V-ﬁary

Fmax Restricted Fmax Clock Name Note

==

70.84 MHz | 70.84 MHz clk

This panel reports FMAX for every clock in the design, regardless of the user-specified clock
periods. FMAX is only computed for paths where the source and destination registers or
ports are driven by the same clock. Paths of different clocks, including generated clocks, are
ignored. For paths between a clock and its inversion, FMAX is computed as if the rising and +|

-~

100%

00:00:35

Implementation of CLA

Cout

A3

B3

Cout

Cin

A2

B2

S3

Assuming Mux does not have any delays

00

10
11

Cin

Al

Bl

Cin

AO

BO

00

10
11

Cin

Cin

Implementation of CLA

A3 A2 Al AO
B3 B2 Bl BO
| | | —
00 0 00 0 00 0 82 0 Cin
01
Cout 10 [| 2(1) [] (1)(1) [] 10 [| .
111 11 1 11p=—1 11f—1
™\ ™\ 7™\ 7™\

Essentially a Fan-in series of 4 4-input Mux

What if Mux has delay?

A3 A2 Al AO
B3 B2 Bl BO
| | | —
00 0 00 0 00 0 82 0 Cin
Cout cl)él) [(1)(1)] (1)(1)] 10 [| —
11} 1 111 11—1 11f—1
™\ ™\ 7™\ 7™\

This implementation still causes propagation
trouble

This circuit behaves exactly same as the “Carrylookahead Unit”.
However, no hardware engineer will code 228 input mux. In fact, a
lot of inputs in those big muxes are duplicates and/or don’t-cares.
We can simplify the carry-MUX function into much more concise
circuits with P&G signals using the recursive formula.

A3..0 A2..0 Al1..0 AO

4/ 3 Z 2 Z

7 B3..0 r e B2..0 7 B1..0 BO

4, | 3. 2, | —

7 7 7

J/_ | l_ Cin
Cout—[‘[] -[: t .

_ — 27y i

28 276 _ |

