
Carry Lookahead Adder





A3

B3

A2

B2

A1

B1

A0

B0

C2C3 C1 C0 Cin
CinCout

A B

S

S3

CinCout

A B

S

S2

CinCout

A B

S

S1

CinCout

A B

S

S0



0

0

1

1

0

1

1

1

10 1 1 0

Compute 0101b + 0111b

CinCout

A B

S

S3

CinCout

A B

S

S2

CinCout

A B

S

S1

CinCout

A B

S

S0



Adder 3 Adder 2 Adder 1 Adder 0

0

0

1

1

0

1

1

1

0

I don’t want to wait! Looks like Adder2 can 
have its carry figured out immediately!



Adder 3 Adder 2 Adder 1 Adder 0

0

0

1

1

0

1

1

1

0

Sure, Adder3, I have both inputs as 1, so I 
will carry 1 for you no matter what Adder 1 

says. BTW, Adder 1, what is your carry?



Adder 3 Adder 2 Adder 1 Adder 0

0

0

1

1

0

1

1

1

0

Adder2, don’t look at me, ask Adder0 
instead. I’m adding 0 and 1, so I’ll carry 

whatever Adder 0 carries.



What does that imply?

- “Sure, Adder3, I have both inputs as 1, so I will carry 1 for you no 
matter what Adder 1 says.”

• An adder can generate carry if both its input are 1s. This property cuts 
the long-chained carry dependency into pieces.
• We call it a “Generate” signal. G in short.
• G = A and B



What does that imply?

- “Adder2, don’t look at me, ask Adder0 instead. I’m adding 0 and 1, so 
I’ll carry whatever Adder 0 carries.”

• If an adder is adding a 0 and a 1, its Cout will be exactly same as its 
Cin. We can directly connect its Cin signal directly to its Cout in this 
case, so that the adder becomes transparent (eliminated) in the 
dependency chain.
• We call this a “Propagate” signal. P in short.
• P = A xor B



A=B=0
P = 0
G = 0



A=B=1
P = 0
G = 1



A != B
P = 1
G = 0



P & G

PG Meaning

00 Adder sees 0 + 0 + Cin, knows Cout = 0 for sure.

01 Adders sees 1 + 1 + Cin, knows Cout = 1 for sure.

10 Propagate Cin to Cout. G becomes don’t care.

11 ------------------------------------------------------------
Unreachable because A & B, A xor B can’t be both 1

Generate, cuts 
propagation

Propagate, 
transparent in 
propagation



Recursive formula for carry

• Consider bit i in a N bit adder.
• Your carry 𝐶! = 𝐺! + 𝑃!𝐶!"#
• 𝐶! =𝐺! + 𝑃!(𝐺!"# + 𝑃!"#𝐶!"$)
• If you keep substitute 𝐶% with 𝐶%"#, you eventually reach a formula where 
𝐶! is some function of 𝐺&..! and 𝑃&..! and 𝐶"#, which is equal to 𝐶!(
• You are “looking ahead” all the carries, finding your way through all units 

that are “propagating”, until you find someone that’s “generating” or you 
reach original 𝐶!(
• All adders no longer have to wait for signal propagation delay because all P 

& Gs are computed in parallel and made available to all adders by a 
Lookahead logic circuit.



Example

𝐶! = 𝐺! + 𝑃!(𝐺"+𝑃" 𝐺# + 𝑃#(𝐺$ + 𝑃$𝐶%&) )





• Assume all combinational logic (Propagate, Generate, Sum and Carry) 
take same amount of time dt (for simplicity, not in reality!)
• Every dt, new produced values are marked red, done adders are 

marked with green circle



0

0

1

0

0

1

1

1

0

0

T=0

C a r r y L o o k a h e a d U n i t



0

0

1

0

0

1

1

1

0

0

0
1

0 Propagate Propagate 1
0

T=1

P=0 G=1P=1 G=0P=1 G=0P=0 G=0



0

0

1

0

0

1

1

1

0

0

0
1

0 Propagate
1

Propagate
1

1
0

0
1

001

T=2

P=0 G=1P=1 G=0P=1 G=0P=0 G=0



0

0

1

0

0

1

1

1

0

0

0
1

0 1
0

0
1

001

1
0

T=3

P=0 G=1P=1 G=0P=1 G=0P=0 G=0

Propagate
1

Propagate
1



0

0

1

0

0

1

1

1

0

0

0
1

0 1
0

0
1

001

1
01

0

T=4

P=0 G=1P=1 G=0P=1 G=0P=0 G=0

Propagate
1

Propagate
1



4-bit Carry Lookahead Unit at a glance

To achieve better performance, we often need 
to sacrifice area and energy. This is an 
engineering trade-off 







Implementation of CLA

Assuming Mux does not have any delays



Implementation of CLA

Essentially a Fan-in series of 4 4-input Mux



What if Mux has delay?

This implementation still causes propagation 
trouble



Solution

• Combine fan in series into a big mux

This circuit behaves exactly same as the “Carrylookahead Unit”. 
However, no hardware engineer will code 2^8 input mux. In fact, a 
lot of inputs in those big muxes are duplicates and/or don’t-cares. 
We can simplify the carry-MUX function into much more concise 
circuits with P&G signals using the recursive formula.


