Carry Lookahead Adder
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| don’t want to wait! Looks like Adder2 can
have its carry figured out immediately!
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Sure, Adder3, | have both inputsas 1, so |
will carry 1 for you no matter what Adder 1
says. BTW, Adder 1, what is your carry?
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Adder2, don’t look at me, ask AdderO
instead. I'm adding 0 and 1, so I'll carry
whatever Adder O carries.

Adder O




What does that imply?

- “Sure, Adder3, | have both inputs as 1, so | will carry 1 for you no
matter what Adder 1 says.”

* An adder can generate carry if both its input are 1s. This property cuts
the long-chained carry dependency into pieces.

* We call it a “Generate” signal. G in short.
*G=AandB



What does that imply?

- “Adder2, don’t look at me, ask AdderO instead. I’'m adding 0 and 1, so
I"ll carry whatever Adder O carries.”

* If an adder is adding a 0 and a 1, its Cout will be exactly same as its
Cin. We can directly connect its Cin sighal directly to its Cout in this
case, so that the adder becomes transparent (eliminated) in the
dependency chain.

* We call this a “Propagate” signal. P in short.
*P=AxorB
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P& G

Meaning

00

Generate, cuts
propagation

01

Propagate,

transparent in
propagation

11

Adder sees 0 + 0 + Cin, knows Cout = 0 for sure.

Adders sees 1 + 1 + Cin, knows Cout = 1 for sure.

Propagate Cin to Cout. G becomes don’t care.

Unreachable because A & B, A xor B can’t be both 1



Recursive formula for carry

 Consider bitiin a N bit adder.
* Your carry C; = G; + P;C;_4
* C; =G; + P;(Gi—1 + P;i_1C;_3)

* If you keep substitute C;, with C,_1, you eventually reach a formula where
C; is some function of Gy ; and Py ; and C_4, which is equal to C;,

* You are “looking ahead” all the carries, finding your way through all units

that are “propagating”, until you find someone that’s “generating” or you
reach original C;;,

e All adders no longer have to wait for signal propagation delay because all P
& Gs are computed in parallel and made available to all adders by a
Lookahead logic circuit.
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* Assume all combinational logic (Propagate, Generate, Sum and Carry)
take same amount of time dt (for simplicity, not in reality!)

* Every dt, new produced values are marked red, done adders are
marked with green circle
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4-bit Carry Lookahead Unit at a glance
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Implementation of CLA
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Implementation of CLA
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Essentially a Fan-in series of 4 4-input Mux




What if Mux has delay?
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This implementation still causes propagation
trouble



This circuit behaves exactly same as the “Carrylookahead Unit”.
However, no hardware engineer will code 228 input mux. In fact, a
lot of inputs in those big muxes are duplicates and/or don’t-cares.
We can simplify the carry-MUX function into much more concise
circuits with P&G signals using the recursive formula.
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