
© Copyright 2018 Xilinx
.

This material exempt per Department of Commerce license exception TSU

Introduction to High-Level Synthesis with
Vivado HLS

© Copyright 2018 Xilinx
.

Outline

➢ Introduction to High-Level Synthesis

➢ High-Level Synthesis with Vivado HLS

➢ Language Support

➢ Validation Flow

Intro to HLS- 2

© Copyright 2018 Xilinx
.

High-Level Synthesis

– Creates an RTL implementation from C, C++,

System C, OpenCL API C kernel code

– Extracts control and dataflow from the source

code

– Implements the design based on defaults and

user applied directives

Many implementation are possible from

the same source description

– Smaller designs, faster designs, optimal designs

– Enables design exploration

High-Level Synthesis: HLS

Intro to HLS- 3

© Copyright 2018 Xilinx
.

Design Exploration with Directives

The same hardware is used for each iteration of

the loop:

•Small area

•Long latency

•Low throughput

Different iterations are executed concurrently:

•Higher area

•Short latency

•Best throughput

…

loop: for (i=3;i>=0;i--) {

if (i==0) {

acc+=x*c[0];

shift_reg[0]=x;

} else {

shift_reg[i]=shift_reg[i-1];

acc+=shift_reg[i]*c[i];

}

}

….

Different hardware is used for each iteration of the

loop:

•Higher area

•Short latency

•Better throughput

Before we get into details, let’s look

under the hood ….

One body of code:

Many hardware outcomes

Intro to HLS- 4

© Copyright 2018 Xilinx
.

How is hardware extracted from C code?

– Control and datapath can be extracted from C code at the top level

– The same principles used in the example can be applied to sub-functions

• At some point in the top-level control flow, control is passed to a sub-function

• Sub-function may be implemented to execute concurrently with the top-level and or other sub-functions

How is this control and dataflow turned into a hardware design?

– Vivado HLS maps this to hardware through scheduling and binding processes

How is my design created?

– How functions, loops, arrays and IO ports are mapped?

Introduction to High-Level Synthesis

Intro to HLS- 5

© Copyright 2018 Xilinx
.

HLS: Control Extraction

void fir (

data_t *y,

coef_t c[4],

data_t x

) {

static data_t shift_reg[4];

acc_t acc;

int i;

acc=0;

loop: for (i=3;i>=0;i--) {

if (i==0) {

acc+=x*c[0];

shift_reg[0]=x;

} else {

shift_reg[i]=shift_reg[i-1];

acc+=shift_reg[i]*c[i];

}

}

*y=acc;

}

Code

From any C code example .. The loops in the C code correlated to states

of behavior

Function Start

For-Loop Start

For-Loop End

Function End

0

2

Control Behavior

1

Finite State Machine (FSM)

states

This behavior is extracted into a hardware

state machine

Intro to HLS- 6

© Copyright 2018 Xilinx
.

HLS: Control & Datapath Extraction

void fir (

data_t *y,

coef_t c[4],

data_t x

) {

static data_t shift_reg[4];

acc_t acc;

int i;

acc=0;

loop: for (i=3;i>=0;i--) {

if (i==0) {

acc+=x*c[0];

shift_reg[0]=x;

} else {

shift_reg[i]=shift_reg[i-1];

acc+=shift_reg[i]*c[i];

}

}

*y=acc;

}

Code

From any C code example ..

0

2

Control Behavior

1

Finite State Machine (FSM)

states

The control is

known

Operations

Operations are

extracted…

-

==

+

>=

*

+

*

RDx

WRy

RDc

Control & Datapath Behavior

A unified control dataflow behavior is

created.

Control Dataflow

>=

-

+

==

*

+ *

WRy

-

RDx RDc

Intro to HLS- 7

© Copyright 2018 Xilinx
.

Scheduling & Binding

– Scheduling and Binding are at the heart of HLS

Scheduling determines in which clock cycle an operation will occur

– Takes into account the control, dataflow and user directives

– The allocation of resources can be constrained

Binding determines which library cell is used for each operation

– Takes into account component delays, user directives

High-Level Synthesis: Scheduling & Binding

Design Source
(C, C++, SystemC)

Scheduling Binding

RTL
(Verilog, VHDL, SystemC)

Technology

Library

User

Directives

Intro to HLS- 8

© Copyright 2018 Xilinx
.

The operations in the control flow graph are mapped into clock cycles

The technology and user constraints impact the schedule
– A faster technology (or slower clock) may allow more operations to occur in the same clock cycle

The code also impacts the schedule
– Code implications and data dependencies must be obeyed

Scheduling

void foo (

…

t1 = a * b;

t2 = c + t1;

t3 = d * t2;

out = t3 – e;

}

+

*
a
b
c

-

*d

e out

* -*+
Schedule 1

* -*+
Schedule 2

Intro to HLS- 9

© Copyright 2018 Xilinx
.

Binding is where operations are mapped to cores from the hardware library

– Operators map to cores

Binding Decision: to share

– Given this schedule:

• Binding must use 2 multipliers, since both are in the same cycle

• It can decide to use an adder and subtractor or share one addsub

Binding Decision: or not to share

– Given this schedule:

• Binding may decide to share the multipliers (each is used in a different cycle)

• Or it may decide the cost of sharing (muxing) would impact timing and it may decide not to share them

• It may make this same decision in the first example above too

Binding

* -*+

* -*+

Intro to HLS- 10

© Copyright 2018 Xilinx
.

High-Level Synthesis with Vivado HLS

Intro to HLS- 11

© Copyright 2018 Xilinx
.

Vivado HLS

– Determines in which cycle operations should occur (scheduling)

– Determines which hardware units to use for each operation (binding)

– Performs high-level synthesis by :

• Obeying built-in defaults

• Obeying user directives & constraints to override defaults

• Calculating delays and area using the specified technology/device

Priority of directives in Vivado HLS

1. Meet Performance (clock & throughput)

• Vivado HLS will allow a local clock path to fail if this is required to meet throughput

• Often possible the timing can be met after logic synthesis

2. Then minimize latency

3. Then minimize area

Understanding Vivado HLS Synthesis

Intro to HLS- 12

© Copyright 2018 Xilinx
.

The Key Attributes of C code

void fir (

data_t *y,

coef_t c[4],

data_t x

) {

static data_t shift_reg[4];

acc_t acc;

int i;

acc=0;

loop: for (i=3;i>=0;i--) {

if (i==0) {

acc+=x*c[0];

shift_reg[0]=x;

} else {

shift_reg[i]=shift_reg[i-1];

acc+=shift_reg[i] * c[i];

}

}

*y=acc;

}

Functions: All code is made up of functions which represent the design

hierarchy: the same in hardware

Loops: Functions typically contain loops. How these are handled can have a

major impact on area and performance

Arrays: Arrays are used often in C code. They can influence the device IO

and become performance bottlenecks

Operators: Operators in the C code may require sharing to control area or

specific hardware implementations to meet performance

Types: All variables are of a defined type. The type can influence the area

and performance

Let’s examine the default synthesis behavior of these …

Top Level IO : The arguments of the top-level function determine the

hardware RTL interface ports

Intro to HLS- 13

© Copyright 2018 Xilinx
.

Each function is translated into an RTL block
– Verilog module, VHDL entity

– By default, each function is implemented using a common instance

– Functions may be inlined to dissolve their hierarchy

• Small functions may be automatically inlined

Functions & RTL Hierarchy

void A() { ..body A..}

void B() { ..body B..}

void C() {

B();

}

void D() {

B();

}

void foo_top() {

A(…);

C(…);

D(…)

}

foo_top

A

C
B

D
B

Source Code RTL hierarchy

Each function/block can be shared like any other component (add, sub, etc) provided

it’s not in use at the same time
my_code.c

Intro to HLS- 14

© Copyright 2018 Xilinx
.

void fir (

data_t *y,

coef_t c[4],

data_t x

) {

static data_t shift_reg[4];

acc_t acc;

int i;

acc=0;

loop: for (i=3;i>=0;i--) {

if (i==0) {

acc+=x*c[0];

shift_reg[0]=x;

} else {

shift_reg[i]=shift_reg[i-1];

acc+=shift_reg[i]*c[i];

}

}

*y=acc;

}

Types = Operator Bit-sizes

Code

From any C code example ...

Operations

Operations are

extracted…

-

==

+

>=

*

+

*

RDx

WRy

RDc

Types

The C types define the size of the hardware used:

handled automatically

long long (64-bit)

int (32-bit)

short (16-bit)

char (8-bit)

double (64-bit)float (32-bit)

unsigned types

Standard C types

Arbitary Precision types

C: ap(u)int types (1-1024)

C++: ap_(u)int types (1-1024)

ap_fixed types

C++/SystemC: sc_(u)int types (1-1024)

sc_fixed types

Can be used to define any variable to be a specific bit-width (e.g. 17-bit, 47-

bit etc).

Intro to HLS- 15

© Copyright 2018 Xilinx
.

By default, loops are rolled

– Each C loop iteration Implemented in the same state

– Each C loop iteration Implemented with same resources

– Loops can be unrolled if their indices are statically determinable at elaboration time

• Not when the number of iterations is variable

– Unrolled loops result in more elements to schedule but greater operator mobility

• Let’s look at an example ….

Loops

void foo_top (…) {
...
Add: for (i=3;i>=0;i--) {

b = a[i] + b;
...
}

foo_top

+
Synthesis

N

a[N]
b

Loops require labels if they are to be referenced by Tcl

directives

(GUI will auto-add labels)

Intro to HLS- 16

© Copyright 2018 Xilinx
.

With the loop unrolled (completely)

– The dependency on loop iterations is gone

– Operations can now occur in parallel

• If data dependencies allow

• If operator timing allows

– Design finished faster but uses more operators

• 2 multipliers & 2 Adders

Schedule Summary

– All the logic associated with the loop counters and index checking are

now gone

– Two multiplications can occur at the same time

• All 4 could, but it’s limited by the number of input reads (2) on coefficient port C

– Why 2 reads on port C?

• The default behavior for arrays now limits the schedule…

Schedule after Loop Optimization

+

RDx

*

+

*
*
*

WRy

RDc

RDc

+

RDc

RDc

void fir (

…

acc=0;

loop: for (i=3;i>=0;i--) {

if (i==0) {

acc+=x*c[0];

shift_reg[0]=x;

} else {

shift_reg[i]=shift_reg[i-1];

acc+=shift_reg[i]*c[i];

}

}

*y=acc;

}

Intro to HLS- 17

© Copyright 2018 Xilinx
.

An array in C code is implemented by a memory in the RTL

– By default, arrays are implemented as RAMs, optionally a FIFO

The array can be targeted to any memory resource in the library

– The ports (Address, CE active high, etc.) and sequential operation (clocks from address to data out)

are defined by the library model

– All RAMs are listed in the Vivado HLS Library Guide

Arrays can be merged with other arrays and reconfigured

– To implement them in the same memory or one of different widths & sizes

Arrays can be partitioned into individual elements

– Implemented as smaller RAMs or registers

Arrays in HLS

void foo_top(int x, …)

{

int A[N];

L1: for (i = 0; i < N; i++)

A[i+x] = A[i] + i;

}

N-1

N-2

…

1

0

Synthesis

foo_top

DOUTDIN

ADDR

CE

WE

SPRAMBA[N]
A_outA_in

Intro to HLS- 18

© Copyright 2018 Xilinx
.

Top-level function arguments

– All top-level function arguments have a default hardware port type

When the array is an argument of the top-level function

– The array/RAM is “off-chip”

– The type of memory resource determines the top-level IO ports

– Arrays on the interface can be mapped & partitioned

• E.g. partitioned into separate ports for each element in the array

Default RAM resource

– Dual port RAM if performance can be improved otherwise Single Port RAM

Top-Level IO Ports

Synthesis

foo_top DOUT0DIN0

ADDR0

CE0

WE0

DPRAMBvoid foo_top(int A[3*N] , int x)

{

L1: for (i = 0; i < N; i++)

A[i+x] = A[i] + i;

}

+
Number of ports defined by the

RAM resource
DIN1

ADDR1

CE1

WE1

DOUT1

Intro to HLS- 19

© Copyright 2018 Xilinx
.

With the existing code & defaults

– Port C is a dual port RAM

– Allows 2 reads per clock cycles

• IO behavior impacts performance

With the C port partitioned into (4) separate ports

– All reads and mults can occur in one cycle

– If the timing allows

• The additions can also occur in the same cycle

• The write can be performed in the same cycles

• Optionally the port reads and writes could be registered

Schedule after an Array Optimization

+

RDx

*

+

*
*
*

WRy

RDc

RDc

+

RDc

RDc

+

RDx

*

+

*
*
*

WRy

RDc

+

RDc

RDc

RDc

Note: It could have performed 2 reads in the original rolled design but there

was no advantage since the rolled loop forced a single read per cycle

loop: for (i=3;i>=0;i--) {

if (i==0) {

acc+=x*c[0];

shift_reg[0]=x;

} else {

shift_reg[i]=shift_reg[i-1];

acc+=shift_reg[i]*c[i];

}

}

*y=acc;

Intro to HLS- 20

© Copyright 2018 Xilinx
.

Language Support

Intro to HLS- 21

© Copyright 2018 Xilinx
.

A Complete C Validation & Verification Environment

– Vivado HLS supports complete bit-accurate validation of the C model

– Vivado HLS provides a productive C-RTL co-simulation verification solution

Vivado HLS supports C, C++, SystemC and OpenCL API C kernel

– Functions can be written in any version of C

– Wide support for coding constructs in all three variants of C

Modeling with bit-accuracy

– Supports arbitrary precision types for all input languages

– Allowing the exact bit-widths to be modeled and synthesized

Floating point support

– Support for the use of float and double in the code

Support for OpenCV functions

– Enable migration of OpenCV designs into Xilinx FPGA

– Libraries target real-time full HD video processing

Comprehensive C Support

Intro to HLS- 22

© Copyright 2018 Xilinx
.

The vast majority of C, C++ and SystemC is supported

– Provided it is statically defined at compile time

– If it’s not defined until run time, it won’ be synthesizable

Any of the three variants of C can be used

– If C is used, Vivado HLS expects the file extensions to be .c

– For C++ and SystemC it expects file extensions .cpp

C, C++ and SystemC Support

Intro to HLS- 23

© Copyright 2018 Xilinx
.

Validation Flow

Intro to HLS- 24

© Copyright 2018 Xilinx
.

There are two steps to verifying the design

– Pre-synthesis: C Validation

• Validate the algorithm is correct

– Post-synthesis: RTL Verification

• Verify the RTL is correct

C validation

– A HUGE reason users want to use HLS

• Fast, free verification

− Validate the algorithm is correct before synthesis

• Follow the test bench tips given over

RTL Verification

– Vivado HLS can co-simulate the RTL with the

original test bench

C Validation and RTL Verification

Validate C

Verify RTL

Intro to HLS- 25

© Copyright 2018 Xilinx
.

The test bench is the level above the function

– The main() function is above the function to be synthesized

Good Practices

– The test bench should compare the results with golden data

• Automatically confirms any changes to the C are validated and verifies the RTL is correct

– The test bench should return a 0 if the self-checking is correct

• Anything but a 0 (zero) will cause RTL verification to issue a FAIL message

• Function main() should expect an integer return (non-void)

C Function Test Bench

int main () {

int ret=0;

…

ret = system("diff --brief -w output.dat output.golden.dat");

if (ret != 0) {

printf("Test failed !!!\n");

ret=1;

} else {

printf("Test passed !\n");

}

…

return ret;

}

Intro to HLS- 26

© Copyright 2018 Xilinx
.

Determine the top-level function for synthesis

If there are Multiple functions, they must be merged

– There can only be 1 top-level function for synthesis

Determine or Create the Top-level Function

int main () {

...

func_A(a,b,*i1);

func_B(c,*i1,*i2);

func_C(*i2,ret)

return ret;

}

func_A

func_B

func_C

main.c

#include func_AB.h

func_AB(a,b,c, *i1, *i2) {

...

func_A(a,b,*i1);

func_B(c,*i1,*i2);

…

}

#include func_AB.h

int main (a,b,c,d) {

...

// func_A(a,b,i1);

// func_B(c,i1,i2);

func_AB (a,b,c, *i1, *i2);

func_C(*i2,ret)

return ret;

}

func_A

func_B

func_AB

func_C

main.c

func_AB.c

Given a case where functions func_A and

func_B are to be implemented in FPGA

Re-partition the design to create a new single

top-level function inside main()

Recommendation is to separate test

bench and design files

Intro to HLS- 27

