EEL 4783: HDL in Digital System Design

Lecture 2: Introduction to Logic Design with Verilog

Prof. Mingjie Lin

Stands For Opportunity

Schematic and Verilog description of a half adder.

Examples

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

... **nand** (*y,* a, b, c);

...

wire	y1, y2;
nor	(y_out, y1, y2);
and	(y1, x_in1, x_in2);
nand	(y2, x_in3, x_in4, x_in5);

TABLE 4-1Verilog primitives for modeling
combinational logic gates.

<i>n</i> -Input	<i>n</i> -Output, 3-state
and	buf
nand	not
or	bufif0
nor	bufif1
xor	notif0
xnor	notif1

The format of a Verilog module

module my_design (module_ports);
... // Declarations of ports go here
... // Functional details go here
endmodule

An AOI Circuit

module AOI_str_2005 (**output** y_out, **input** x_in1, x_in2, x_in3, x_in4, x_in5); **wire** y1, y2;

```
nor (y_out, y1, y2);
and (y1, x_in1, x_in2);
and (y2, x_in3, x_in4, x_in5);
endmodule
```

(b)

Hierarchical decomposition of a full adder: (a) gate-level schematic and (b) Verilog model

Hierarchical decomposition of a 16-bit, ripple-carry adder

Hierarchical decomposition of a 16-bit, ripple-carry adder (cont.)

Design hierarchy of a 16-bit ripple-carry adder.

Schematic of a 2-bit binary comparator.

Block diagram symbol of a 4-bit comparator.

Hierarchical structure of a 4-bit binary comparator

Organization of a testbench for verifying a unit under test.

Waveforms produced by a simulation of Add_half , a 0-delay binary half adder.

Results of unit-delay simulation of a 1-bit full adder

Results of simulating a 1-bit full adder implemented with ASIC cells

Final issues

- Please fill out the student info sheet before leaving
- Come by my office hours (right after class)
- Any questions or concerns?