EEL 4/83: HDL in Digital System Design

Lecture 3: Architeching Speed

Prof. Mingjie Lin

UCF

Stands For Opportunity

Flowchart of CAD

Specification/
Architecture

RTL Design and
Optimization

RTL Simulation

]

. Synthesis <
Synthesis "l Optimization
Y ﬁ'
Place and Route il
Optimization

Y

Static Timing and
Performance
Analysis

Program and
Debug Device

Digital Circuits: Definition of Speed

* Throughput
— The amount of data that is processed per clock cycle.
— A common metric for throughput is bits per second.

* Latency
— The time between data input and processed data output

— Typical metric: time or clock cycles
* Timing
— Logic delays between sequential elements
— Timing: critical path delay
— Composed of comb. Delay, clk-to-out delay, routing delay,
skew

— Typical metric: clock period and frequency

Main Points

* High-throughput architecture
— Maximizing number of bits processed per second.

* Latency
— The time between data input and processed data output
— Typical metric: time or clock cycles
* Timing
— Logic delays between sequential elements
— Timing: critical path delay

— Composed of comb. Delay, clk-to-out delay, routing delay,
skew

— Typical metric: clock period and frequency

High Throughput

*A high-throughput design is one that is concerned with the
steady-state data rate but less concerned about the time
any specific piece of data requires to propagate through
the design (latency).

*Analogy:

* Ford came up with to manufacture automobiles in great
guantities: an assembly line.

*Technique:
* Pipelining
* Price to pay?

Algorithmic Perspective of Pipeline

1. Unrolling the loop XPower = 1;
a) Iterative for (1=0;1i < 3; i++)
XPower = X * XPower;

module power3 (
output [7:0] XPower,

oukput finished,

input [7:0] X,

input clk, start); // the duration of start is a
single clock

reg [F=0] neount:

reg [7:0] XPower;

assign finished = (ncount == 0);

e e ,
alwayse@ (posedge clk) else 1f(!finished) begin

¥ . ncount <= ncount - 1;
if(start) begin XPower <= XPower * X;
XPower <= X; end
neount <= 2; endmodule

end

Algorithmic Perspective of Pipeline

1. Unrolling the loop XPower = 1;
a) Iterative for (1=0;1i < 3; i++)
XPower = X * XPower;

module power3 (
output [7:0] XPower,

oukput finished,

input [7:0] X,

input clk, start); // the duration of start is a
single clock

reg [F=0] neount:

reg [7:0] XPower;

assign finished = (ncount == 0);

e e ,
alwayse@ (posedge clk) else 1f(!finished) begin

¥ . ncount <= ncount - 1;
if(start) begin XPower <= XPower * X;
XPower <= X; end
neount <= 2; endmodule

end

Performance

clk

| start .
[7:0]
7:0]
[7:0] [70]
] ' —

>

D[7:0] Q[7:0] ==

[7:0]

IXPower[7:0] —

Throughput = 8/3, or 2.7 bits/clock
Latency = 3 clocks

Timing = One multiplier delay in the critical path

Pipelined Version

module power3 (
output reg [7:0] XPower,

input clk,

input [7:0] X

) ;

reg [7:0] XPowerl, XPower?2;
reg [7:0] X1, X2;

always @ (posedge clk) begin
// Pipeline stage 1
X1 <= X;
XPowerl <= X;

// Pipeline stage 2
X2 <= X1;
XPower2 <= XPowerl * X1;

// Pipeline stage 3
XPower <= XPower2 * X2;
end
endmodule

Circuit and Performance

[7:0]

>

clk 70 > | 3
| : — . . . [7:0]
X R iz AU [7:0]

D[7:0]

Q[7:0]

7:0]

>3

Throughput = 8/1, or 8 bits/clock

Latency = 3 clocks

D[7:0]

Q[7:0]

[7:0]

[7:0]

(7:0]

[7:0] *

7:0]

>

[7:0]

D[7:0] Q[7:0]1

[7:0]
[7:0]

XPower[7.0,

Timing = One multiplier delay in the critical path

10

Low-Latency

1. A low-latency design is one that passes the data from
the input to the output as quickly as possible by
minimizing the intermediate processing delays.

2. Oftentimes, a low-latency design will require
parallelisms, removal of pipelining, and logical short
cuts that may reduce the throughput or the max clock
speed in a design.

3. No opportunity reducing latency in serial circuit, but
there is in pipelined version.

11

module power3 (
output [T:0]

input [7:0]
) §

reg [7:0]
reg [7:0]

XPower,
X

XPowerl,
Xl, XZ:

Circuit

XPower?2;

assign XPower = XPower2 * X2;

always @* begin

X1 =
XPowerl =
end

always @* begin

X2 =
XPower2 =
end
endmodule

Xl ¢

XPowerl*X1;

12

Circuit and Performance

[7:0]
[7:0] [7:0] _
: [7:0] [7:0]
| X[7:0] =57

[7:0]
clk > s .
7:0 [7:0] [7:0]
X[7-0 , [D[7:0] Q[7:0] et . * D[7:0] Q[7:0] p=e=s -t 2.0
(4] (707 |3 [7:0] 70 [7:0] * 70] 2 D[7:0] Q[7:0] [7,(2]]XPower?zD
7:0] i : :
DI7:0] QI7:0] 4=

Throughput = 8 bits/clock (assuming one new input per clock)
Latency = Between one and two multiplier delays, O clocks

Timing = Two multiplier delays 1n the critical path

Timing

1. Timing refers to the clock speed of a design.

2. The maximum delay between any two sequential
elements in a design will determine the max clock
Speed.

1
. 1.1
max Tclk—q + Tng ‘o + Trouting + Tsetup - Tskew ()

where Fy,,« 18 maximum allowable frequency for clock; T 18 time from clock
arrival until data arrives at Q; Tjueic 18 propagation delay through logic between
flip-flops; Trouting 18 routing delay between flip-flops; Teqp 18 minimum time data
must arrive at D before the next rising edge of clock (setup time); and Tgew 1S
propagation delay of clock between the launch flip-flop and the capture flip-flop.

14

How to Improve Timing? 1

1. The first strategy for architectural timing
Improvements is to add intermediate layers of
registers to the critical path.

2. This technique should be used in highly pipelined
designs where an additional clock cycle latency does
not violate the design specifications, and the overall
functionality will not be affected by the further
addition of registers.

15

FIR Filter Example

module fir (
output [F:0] ¥,
input [7:0] A, By €, X,

input 21k ;
input validsample) ;
reg 750 Hl, X2, ¥:

always @(posedge clk)
if (validsample) begin

X1l <= X:

X2 == Xl:

Y <= A* X4B* X1+40% XJ:
end

endmodule

16

Diagram

g
[7:0] (7:0] -
o [7:0)
70
BT o) e —
: [7:0] [?:U]M [7:0]
[CI7:0]
[7:01
[7:0]
[clk = > > .
X[7:0] = L2 D7:0] Q[7:0] =t 2 D[7:0] Q[?:O]-WW?/O—T:O]
[validsample— E : E :

D[7:0]

Q[7:0]1

7:0]

17

Improve Timing

module fir(
output [Z:0] ¥,
snpat [7:0] &A; B; &y X,

input clk,

input validsample) ;

reg [7:0] X1, X2, Y;

reg [7:0] prodl., prod?, prodd;

always @ (posedge clk) begin
if (validsample) begin
X1 <= X
X2 R o
prodl, == A * Xz
prodz <= B * X1:
pradld <= @ * XZ;
end
Y <= prodl + prod2 + prod3;
end
endmodule

Diagram

[7:0]

B — e
(7:0] : * : ; .
[7:0] 70 [E’[?-Dl Q0] 701

ETET— ‘
[7:0] [7:00
[7:0]
=3 . » .

72071 [7:0] : 7:0
,—;2“" g d g [m - o7 Q7o) BT Y:\ e o0 arol -
X[70] =i D[7:0] Q[7:0] ey D[7:0] Q[7:0] e [7:0] E [7:0] 7:0])_/ [7:0] [7:0]

|va|idsamgla — 7 E ° —s— E N

. 79l C
2o [7:0] (7:0] * IR0 D70l Q70|
: [7:0] = [7:0]

Adding register layers improves timing by dividing the critical path 1nto two paths
of smaller delay.

19

How to Improve Timing? 2

1. The second strategy for architectural timing
Improvements Is to reorganize the critical path such
that logic structures are implemented in parallel.

2. This technique should be used whenever a function
that currently evaluates through a serial string of logic
can be broken up and evaluated in parallel.

20

X[7:0

Recall

[7:0]

70

D>

| D[7:0] Q[7:0]

[7:0]

[7:0]
b :
[7:0] [7:0]
=70 * : D[7:0] Q[7:0] j : -t
T e .
DI7:0] Q[7:0] [~a==ty

21

[k =
X2 =

Parallelize

2:1) - XPower[7:0
=00
(]

[1:0]
501 T 1:0 HiNg
G2 D(5:0] Q[5:0] G . g) _ [1:0] ‘ [2:1] - i [2:1]
(5:4] o] e S gy
[3:0] m
o — S ool Q0] — [3:0] : b
Dl — DI30] Q[3:0] [a==

Separating a logic function into a number of smaller functions that can be
evaluated 1n parallel reduces the path delay to the longest of the substuctures.

22

How to Improve Timing? 3

1. The third strategy for architectural timing
Improvements is to flatten logic structures.

2. This is closely related to the idea of parallel
structures, but applies specifically to logic that is
chained due to priority encoding. Typically, synthesis
and layout tools are smart enough to duplicate logic
to reduce fanout, but they are not smart enough to
break up logic structures that are coded in a serial
fashion, nor do they have enough information relating
to the priority requirements of the design.

23

Example

module regwrite
output reg [3:0] rout,

input clk, 1in,

input [3:0] ctrl);

always @ (posedge clk)
1f(ctrl[0]) rout |
else 1f(ctrl[1l]) rout]
else 1f(ctrl[2]) rout]
else 1f(ctrl[3]) rout]

w N P O

endmodule

Circuit

clk

| ctrl[3:0] = 30]

e

Ym a0 oo ﬂ.y

1l —
WO__/ "
[3:1]
s
% [3:2
\
i (0
|3f
0
2.0
0
[T
2 .

[3:0]

e
T

[3:0]

>
D[3:0]

E

Q[3:0]

[3:0

— [3:0]

}: rout[3:0] —

25

Improved

module regwrite (
output reg [3:0] rout,

input clk, 1in,
input [3:0] ctrl);
always @ (posedge clk) begin
1f(ctrl[0]) rout[0] <= 1in;
if(ctrl[1l]) rout[l] <= 1in;
1if(ctrl[2]) rout[2] <= 1in;
1if(ctrl[3]) rout[3] <= 1in;
end

endmodule

26

Circuit

- (3]
ctrl[3:0] =T30] e
0
[in == 1
[clk
[2]
> 5
[2] ?JH D[3:0] QI3:0] [3:053'0]} rout[3:0] —
1 j/?
(]
[11 3
1
[O]
(0]

£

How to Improve Timing? 4

1. The fourth strategy is called register balancing.

2. Conceptually, the idea is to redistribute logic evenly
between registers to minimize the worst-case delay
between any two registers.

3. This technique should be used whenever logic is
highly imbalanced between the critical path and an
adjacent path. Because the clock speed is limited by
only the worst-case path, it may only take one small
change to successfully rebalance the critical logic.

28

Example

module adder (

output
Input
TR
reg

always
rA
B
g, B
Sum
end
endmodule

reg [7:0] Sum,
[T:0] A, B, @,
clk) »

[T#=0] 2, ¥B; ¥C:

@ (posedge clk) begin
<= A;

<= B;

€= 7

<= rA + ¥B + r(C;

29

Circuit

clk

Cl7:0] =

[7:0]

>
D[7:0] Q[7:0]

[7:0]

>

[70]

| B[7:0] == 701

AT

D[7:0] Q[7:0]

>

70

D[7:0] Q[7:0]

>
D[7:0] Q[7:0]

0}

[[Sum[70L
[7:0]

30

Improved

module adder (
output reg [7:0] Sum,

input [7:0] A, B, C,
input clk) ;
reg [7:0] rABSum, rC;

always @ (posedge clk) begin
rABSum <= A + B;

rC <= C;
Sum <= rABSum + rC;
end

endmodule

31

Improved

C[7:0 =1 [m]>D[7:0] Q[7:0]] 72l 701 [7:0]
clk Q
7.0
[A7:0] =>—= 72 7071
[7:0] [7:0] 5 _ D[7:0] Q[7:0]
L il =

Register balancing improves timing by moving combinatorial logic from the

critical path to an adjacent path.

32

How to Improve Timing? 5

1. The fifth strategy Is to reorder the paths in the data
flow to minimize the critical path.

2. This technique should be used whenever multiple
paths combine with the critical path, and the
combined path can be reordered such that the critical
path can be moved closer to the destination register.

3. With this strategy, we will only be concerned with the
logic paths between any given set of registers.

33

Example

module randomlogic (

output reg [7:0]
input [7:0]
1hpuE
input
always @ (posedge
1L:E{ Condl.)
out <= A;
else if(Cond2 &&
Out <= B;
else
OuE == €:

endmodule

out,
A, B, C;
clk,

Condl,

clk)

(C < 8))

CondZ2) ;

34

Circuit

ond1
Cond2 — - &
C[7:0] [7:0] L._ TEAUps
TR (O B
04001Q00 —Q 24 7o
[clk O e
- 7:0
. d
B0 = <

35

Improved

module randomlogic (
output reg [7:0] Out,

input [7:0] A, B, C,

input clk,

input Condl, Cond2) :
wire CondB = (Cond2 & !Condl) ;

always @ (posedge clk)
if (CondB && (C < 8))

Out == B;
else i1f(Condl)
Oout <= A;

else
OuE <= O;

endmodule

36

Circuit

Cond2 — .

Condi — e

R .

B

A[7:0] —

:0
B[7:0] f>-[-[7;,: (_‘}]

7.0
C[7:0] [7:!]] 70
00001000

Timing can be improved by reordering paths that are combined with the critical
path in such a way that some of the critical path logic 1s placed closer to the des-
tination register.

=

Ym o o d.y
=
A=

B

37

Final iIssues

* Please fill out the student info sheet before leaving
* Come by my office hours (right after class)

* Any questions or concerns?

38

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

