EEL 4/83: HDL in Digital System Design

Lecture 4: Architeching Area

Prof. Mingjie Lin

UCF

Stands For Opportunity

Digital Circuits: Area=Cost

* Choosing correct topology
— Higher-level organization of the design
— Not device specific

. Circuit-level reduction
— Performed by the synthesis and layout tools
— Minimization of the number of gates
— May be device specific.

. Dilemma
— Good topology for area
— Reuse logic resources as much as possible

Main Points

Rolling up the pipeline to reuse logic resources in different
stages of a computation.

Controls to manage the reuse of logic when a natural flow does

not exist.

Sharing logic resources between different functional
operations.

The impact of reset on area optimization.

Impact of FPGA resources that lack reset capability.
Impact of FPGA resources that lack set capability.

Impact of FPGA resources that lack asynchronous reset
capability.

Impact of RAM reset.

Optimization using set/reset pins for logic implementation.

Rolling up the Pipeline

* “Rolling up” is direct opposite to “unrolling the loop”

* Unrolling a loop
— Increase performance

— Increase area — require more resource to hold immediate
results and replicate computational structures for parallel

* Rolling up a pipeline

— Optimize the area of pipelined designs with duplicated
logic in the pipeline stages.

Example: Fixed Point Fractional Multiplier

module malt8 (
output [7:0] product,
1nput [T 0] A,
1nput [T 0] B,
1nput clk) ;
reg [15:0] prodlb;

assign product = prodl6[1l5:8];

always @ (posedge clk)
prodle <= A * B;

endmodul e

Pipelined Version

module mults8(

output done,

coutput reg [7:0] product,

input [7:0] A,

input [7:0] B,

input clk,

input start) ;

reg [4:0] multcounter; // counter for number of

shift /adds

Pipelined Version +

reg [7:0] shiftB; // shift register for B
reg [7:0] shifthA; // shift register for A

wire adden; // enable addition

assign adden = shiftB[7] & !done;
assign done = multcounter[3];

always @ (posedge clk) begin
// increment multiply counter for shift/add ops
i1f (start) multcounter <= 0;
else if(!done) multcounter <= mul tcounter + 1:

// shift register for B
if (start) shiftB <= B;
else shiftB[7:0] <= {shiftB[6:0], 1'b0};

// shift register for A
if (start) shifth <= A;
else shiftA[7:0] <= {shiftA[7], shiftA[7:1]};

// calculate multiplication
1f (start) product <= 0;
else if (adden) product <= product + shifth;
end
endmodule

Logic Diagram

clk
‘[?J S [7-0]
B - . = — .
701, Jro [2J] om0 Qo . 7 [7:0] £ D70 7o) _I?'&
(AT an 7o ; i
17:0] —E
|S|arl -
:{Il:lI'IE- —
N }
‘Iﬁrﬁl o o
=7 T ool G
[

* Throughput
* Latency
* Timing

Control-Based Logic Reuse

Sharing logic resources oftentimes requires special control circuitry
to determine which elements are input to the particular structure

Previously, we described a multiplier that simply shifted the bits of
each register, where each register was always dedicated to a
particular input of the running adder. This had a natural data flow
that lent itself well to logic reuse

However, there are often more complex variations to the input of a
resource, and certain controls may be necessary to reuse the
logic

Controls can be used to direct the reuse of logic when the shared
logic Is larger than the control logic.

A state machine may be required as an additional input to the logic.

module lowpassfir (
[7:

output reg
output reg
input
input
input
input

Low-Pass FIR Filter

Y = coeffA * X[0] + coeffB * X[1] + coeffC x X[2]

0]

filtout,

done,

clk,

datain, // X[0]

datavalid, // X[0] is wvalid

coeffA, coeffB; coeffC); // coeffs for
low pass
filter

// define input/output samples

reg
reg
reg

reg
reg

reg

reg
reg
reg
wire
wire

[7:

0]

X0, X1, X2;

mul tdonedelay;

multstart; // signal to multiplier to
begin computation

multdat;

multcoeff; // the registers that are
multiplied together

state; // holds state for sequencing

through mults
accum; // accumulates multiplier products
clearaccum; // sets accum to zero

accumsum;

multdone; // multiplier has completed

multout; // multiplier product

// shift-add multiplier for sample-coeff mults

mult8 x 8 mult8 x 8(.clk(clk), .datl (multdat),
.dat2 (multcoeff), .start(multstart),
.done (multdone), .multout (multout));

multdonedelay <= multdone;

// accumulates sample-coeff products
accumsum <= accum + multout[7:0];

// clearing and loading accumulator
if (clearaccum) accum <= 0;
else if (multdonedelay) accum <= accumsum;
// do not process state machine if multiply 1s not done
case (state)
0: begin
// idle state
if (datavalid) begin
// 1f a new sample has arrived
// shift samples

X0 <= datain;

X1 <= XO0;

X2 <= X1;

multdat <= datain; // load mult

multcoeff <= coeffl;

multstart <= 1;

clearaccum <= 1; // clear accum
state <= 1;
end

11

else begin

multstart <= 0;
clearzaccum <= 03;

done g (=
end
end

1: begin

if (multdonedelay) begin
// A*X[0] 1is done, load B*X[1]
multdat <= X1;
multcoeff <= coeffB;
mal-tstart <= 1;

state £= P
end
else begin

mulkskart «= Q3
clearaccum <= 0;

done <= 0;
end
end
2: begin

if (multdonedelay) begin
// B*X[1] is done, load C*X[2]
maledak == XZ;

12

multcoeff <= coeffC;
multstart <= 1;

state <= Fa
end
else begin

multstart <= 0;
clearaccum <= 0;

done o= (=
end
end

3: begin

if (multdonedelay) begin
// C*X[2] is done, load output
filtout <= accumsum;

done <= L
state <= 0=
end

else begin
multstart <= 0;
clearaccum <= 0;
done = 2
end
end
default
state <= 0=
endcase
end
endmodule

Observations

1. A single multiplier
2. A single accumulator

3. AFSM is used to load coefficients and registered
samples into the multiplier. The state machine

operates on every combination of coefficients and
samples

clk .

L [7:0]

[?:Q-I-}D[?'O] Q7o) = done {— g el g \
' HI [7:0] : ne . il D[7:0] Q[7:0] =l p[7:0] Q[7:0

I [-?'-[Ti_[?.[;]. dat[7:0] multout7-0]] [7:0] 0] [7:0] Q[7:0] e |:1[] Q[7:0] 0]

dat2(7:0] [7:0) —E

=
7l pi7-0] Q[7:0]f=ed
o70] ool

14

Resource Sharing

* Higher-level architectural resource sharing where different
resources are shared across different functional boundaries

* This type of resource sharing should be used whenever there
are functional blocks that can be used in other areas of the
design or even in different modules

15

Example: Separate Counters

Top Level Module

Module A
8-bit 8 bits I Comparator 2.5 us
Counter == 255 strobe
Module B

Reset

11-bit | 11 bitsh Comparator
Counter ==hex 6ff
—®| Comparator PWM 5.5 kHz
Pulse Width - [P annmraine
0 to hex 6ff ? 2 ol

Example: Shared Counters

Top Level Module
Module A
8 bits Comparator 2.5 us
> == 255 strobe
Counter Module
¢ Reset
bits 7:0
11 bit Comparator
. Counter == hex 6ff
bits 10:0 *
Module B
11 bits =
x omparator PWM 5.5 kHz,
Pulse Width >
— 0-100% dut
0 to hex 6ff ~ b

Impact of RESET on Area

* A common misconception is that the reset structures
are always implemented in a purely global sense
and have little effect on design size

* A global set/reset condition for every flip-flop.
Although this may seem like good design practice,
It can often lead to a larger and slower design

* An improper reset strategy can create an
unnecessarily large design and inhibit certain area
optimizations

18

Resources Without Reset

IMPLEMENTATION 1 : Synchronous Reset

always @ (posedge iClk)
if(!iReset) sr <= 0;
else sr <= {sr[l14:0], iDat};

IMPLEMENTATION 2 : No Reset

always @ (posedge iClk)
sr <= {sr[14:0], iDat};

19

20

21

22

23

24

25

Final iIssues

* Please fill out the student info sheet before leaving
* Come by my office hours (right after class)

* Any questions or concerns?

26

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

