
1

EEL 4783: HDL in Digital System Design

Lecture x: Introduction to SystemVerilog*

Prof. Mingjie Lin

* largely adopted from University of Washington EE400/590 Dean Wen Chen

2

Outline

 Introduction
 SystemVerilog enhancements

overview
 Conclusion

3

Introduction

 What is Verilog HDL?
 Verilog HDL is a Hardware Description

Language that can be used to model a
digital system at various levels of
abstraction.

 What is SystemVerilog?
 SystemVerilog is an extensive set of

enhancements to the IEEE 1364 Verilog-
2001 standard.

4

A problem that needed
solving

 As design sizes have increased,
several things increased as well:
 Number of lines of RTL design code

size
 Verification code size
 Simulation time

5

Alternatives to the
problem
 SystemC:

 modeling full systems at a much higher
level of abstraction.

 Hardware Verification Languages (HVLs)
 Such as Verisity's e and Synopsys' Vera
 More concisely describe complex

verification routines
 Require to work with multiple languages
 Increased simulation time.

6

SystemVerilog's roots
 Instead of re-invent the wheel, Accellera

relied on donations of technology from
a number of companies.
 High-level modeling constructs : Superlog

language developed by Co-Design
 Testbench constructs : Open Vera

language and VCS DirectC interface
technology by Synopsys

 Assertions : OVA from Verplex, ForSpec
from Intel, Sugar (renamed PSL) from IBM,
and OVA from Synopsys

7

Compatibility with Verilog-
2001

 fully compatible with the IEEE 1364-
2001 Verilog standard.

 There is one caveat to this backward
compatibility. SystemVerilog adds
several new keywords to the Verilog
language. Identifier maybe used in an
existing model. Compatibility switches
can be used to deal with this problem.

8

Assertions
 Special language constructs to

verify design behavior.
 Example:

9

Assertions (Cont..)

 Assertions can be defined outside
of Verilog modules, and then bind
them to a specific module or
module instance. This allows
verification engineers to add
assertions to existing Verilog
models, without having to change
the model in any way

10

Interfaces
 High level of abstraction for module

connections.
 Modules can use an interface the same

as if it were a single port.
 Can be considered a bundle of wires.

Interfaces go far beyond just
representing bundles of interconnecting
signals, however. An interface

 Can also include functionality and built-
in protocol checking.

11

Interface Example

interface simple_bus; // Define the
interface

logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode;
logic start, rdy;
endinterface: simple_bus

module memMod(simple_bus a, // Use
the simple_bus interface

input bit clk);
logic avail;
// a.req is the req signal in the

’simple_bus’ interface
always @(posedge clk) a.gnt <= a.req &

avail;
endmodule

module cpuMod(simple_bus b,
input bit clk);

...
endmodule

module top;
logic clk = 0;
simple_bus sb_intf; //

Instantiate the interface
memMod mem(sb_intf, clk);
cpuMod

cpu(.b(sb_intf), .clk(clk));
endmodule

12

Global declarations

 Allows global variables, type
definitions, functions and other
information to be declared, that
are shared by all levels of
hierarchy in the design.

13

Relaxed data type rules
 Allow variable types to be used in

almost any context and make it
much easier to write hardware
models without concern about
which data type class to use

 Net data types (such as wire,
wand, wor)

 Variables (such as reg, integer)

14

Data Types
 Adds several new data types, which allow hardware to be

modeled at more abstract levels, using data types more
intuitive to C programmers

 class — an object-oriented dynamic data type, similar to C++ and Java.
 byte — a 2-state signed variable, that is defined to be exactly 8 bits.
 shortint — a 2-state signed variable, that is defined to be exactly 16 bits.
 int — a 2-state signed variable, similar to the "int" data type in C, but

defined to be exactly 32 bits.
 longint — a 2-state signed variable, that is defined to be exactly 64 bits.
 bit — a 2-state unsigned data type of any vector width.
 logic — a 4-state unsigned data type of any vector width, equivalent to the

Verilog "reg" data type.
 shortreal — a 2-state single-precision floating-point variable, the same as

the "float" type in C.
 void — represents no value, and can be specified as the return value of a

function.
 User defined types

 Typedef unsigned int uint;
uint a, b;

15

Data Types (Cont..)

 Enumerated types
 enum {red, green, blue} RGB;
 Built in methods to work with

 Structures and unions
Struct {
bit[15:0]opcode;
Logic[23:0] address

} IR;
IR.opcode = 1 or IR = {5, 200};

16

Casting
 SystemVerilog adds the ability to change the

type, vector size or "signedness" of a value using
a cast operation. To remain backward compatible
with the existing Verilog language, casting in
SystemVerilog uses a different syntax than C.

17

Arrays
 dynamic arrays

 one-dimensional arrays where the size of the
array can be changed dynamically

 associative arrays
 one-dimensional sparse arrays that can be

indexed using values such as enumerated type
names.

 exists(), first(), last(), next(), prev() and
delete().

18

Classes
 Can contain data declarations (referred to as "properties")
 Can contain functions for operating on the data (referred to as

"methods").
 Can have inheritance and public or private protection, as in C+

+.
 Allow objects to be dynamically created, deleted and assigned

values.
 Objects can be accessed via handles, which provide a safe form

of pointers.
 Memory allocation, de-allocation and garbage collection are

automatically handled, preventing the possibility of memory
leaks.

 Classes are dynamic by nature, instead of static. They are ideal
for test-bench modeling. Therefore, they are not considered
synthesizable constructs.

 Intended for verification routines and highly abstract system-
level modeling.

19

Class example:

20

String data type
 Defined as a built-in class.
 The string data type contains a variable length

array of ASCII characters. Each time a value is
assigned to the string, the length of the array
is automatically adjusted.

 Operations:
 Standard Verilog operators: =, ==, !=, <, <=, >,

>=, {,}, {{}}.
 Methods: len(), putc(), getc(), toupper(), tolower(),

compare(), icompare(), substr(), atoi(), atohex(),
atooct(), atobin(), atoreal(), itoa(), hextoa(), octtoa(),
bintoa() and realtoa().

21

Operators

 ++ and -- increment and
decrement operators

 +=, -=, *=, /=, %=, &=, ^=, |=,
<<=, >>=, <<<= and >>>=
assignment operators

22

Unique and priority decision
statements

 Adds the ability to explicitly specify when
each branch of a decision statement is
unique or requires priority evaluation.

 using the keywords "unique" and "priority."
These keywords affect simulators, synthesis
compilers, formal verifiers and other tools,
ensuring that all tools interpret the model
the same way.

23

Enhanced for loops
 Allow the loop control variable to be declared as part of the for

loop, and allows the loop to contain multiple initial and step
assignments.

for (int i=1, shortint count=0; i*count < 125; i++, count+=3)

 Bottom testing loops
 adds a do-while loop, which tests the loop condition at the end of

executing code in the loop.
 Jump statements

 adds "break" and "continue" keywords, which do not require the
use of block names, and a "return" keyword, which can be used to
exit a task or function at any point.

 Final blocks
 Execute at the very end of simulation, just before simulation exits.

Final blocks can be used in verification to print simulation results,
such as code coverage reports.

24

Hardware-specific procedures
 adds three new procedures to explicitly

indicate the intent of the logic:
 always_ff — the procedure is intended to

represent sequential logic
 always_comb —: the procedure is

intended to represent combinational logic
 always_latch — the procedure is intended

to represent latched logic.

25

Task and function
enhancements
 Function return values can have a "void" return type. Void

functions can be called the same as a Verilog task.
 Functions can have any number of inputs, outputs and

inouts, including none.
 Values can be passed to a task or function in any order,

using the task/function argument names. The syntax is the
same as named module port connections.

 Task and function input arguments can be assigned a
default value as part of the task/function declaration. This
allows the task or function to be called without passing a
value to each argument.

 Task or function arguments can be passed by reference,
instead of copying the values in or out of the task or
function. To use pass by reference, the argument direction
is declared as a "ref," instead of input, output or inout.

26

Enhanced fork-join
 Adds fork-join_none, and fork-join_any blocks.

 join_none — statements that follow the fork-
join_none are not blocked from execution while the
parallel threads are executing. Each parallel thread
is an independent, dynamic process.

 join_any — statements which follow a fork-join_any
are blocked from execution until the first of any of
the threads has completed execution.

27

Inter-process synchronization
 semaphore :

 Serve as a bucket with a fixed number of "keys."
 Built-in methods for working with semaphores: new(), get(), put()

and try_get().
 mailbox

 Allows messages to be exchanged between processes. A message
can be added to the mailbox at anytime by one process, and
retrieved anytime later by another process.

 Mailboxes behave like FIFOs (First-In, First-Out).
 built-in methods: new(), put(), tryput(), get(), peek(), try_get() and

try_peek().
 Event

 The Verilog "event" type is a momentary flag that has no logic
value and no duration.

 SystemVerilog enhances the event data type by allowing events to
have persistence throughout the current simulation time step. This
allows the event to be checked after it is triggered.

28

Constrained random
values
 adds two random number classes,

"rand" and "randc,"

29

Testbench program block
 Contains a single initial block.
 Executes events in a "reactive phase" of the

current simulation time, appropriately
synchronized to hardware simulation events.

 Can use a special "$exit" system task that
will wait to exit simulation until after all
concurrent program blocks have completed
execution (unlike "$finish," which exits
simulation immediately).

30

Clocking domains
 Clocking domains allow the testbench to be

defined using a cycle-based methodology,
rather than the traditional event-based
methodology of defining specific transition
times for each test signal.

 A clocking domain can define detailed skew
information

 Greatly simplify defining a testbench that
does not have race conditions with the
design being tested.

31

Clocking domains (Cont..)

32

Direct Programming Interface
(DPI)

 To directly call functions written C, C++ or
SystemC, without having to use the complex
Verilog Programming Language Interface (PLI).

 Values can be passed directly to the foreign
language function, and values can be received
from the function.

 The foreign language function can also call Verilog
tasks and functions, which gives the foreign
language functions access to simulation events
and simulation time.

 The SystemVerilog DPI provides a bridge between
high-level system design using C, C++ or SystemC
and lower-level RTL and gate-level hardware
design.

33

Conclusion
 SystemVerilog provides a major set of extensions to the

Verilog-2001 standard. These extensions allow modeling and
verifying very large designs more easily and with less coding.

 SystemVerilog extends the modeling aspects of Verilog, and
adds a Direct Programming Interface which allows C, C++,
SystemC and Verilog code to work together without the
overhead of the Verilog PLI.

 SystemVerilog bridges the gap between hardware design
engineers and system design engineers. SystemVerilog also
significantly extends the verification aspects of Verilog by
incorporating the capabilities of Vera and powerful assertion
constructs.

 Adding these SystemVerilog extensions to Verilog creates a
whole new type of engineering language, an HDVL, or
Hardware Description and Verification Language. This unified
language will greatly increase the ability to model huge
designs, and verify that these designs are functionally correct.

34

References

 An overview of SystemVerilog 3.1
By Stuart Sutherland, EEdesign
May 21, 2003 (4:09 PM)

 System Verilog by Narges
Baniasadi, University of Tehran
Spring 2004

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

