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Introduction

 What is Verilog HDL?
 Verilog HDL is a Hardware Description 

Language that can be used to model a 
digital system at various levels of 
abstraction.

 What is SystemVerilog?
 SystemVerilog is an extensive set of 

enhancements to the IEEE 1364 Verilog-
2001 standard.
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A problem that needed 
solving 

 As design sizes have increased, 
several things increased as well:
 Number of lines of RTL design code 

size 
 Verification code size
 Simulation time
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Alternatives to the 
problem
 SystemC:

 modeling full systems at a much higher 
level of abstraction. 

 Hardware Verification Languages (HVLs) 
 Such as Verisity's e and Synopsys' Vera 
 More concisely describe complex 

verification routines 
 Require to work with multiple languages
 Increased simulation time. 



6

SystemVerilog's roots 
 Instead of re-invent the wheel, Accellera 

relied on donations of technology from 
a number of companies. 
 High-level modeling constructs : Superlog 

language developed by Co-Design
 Testbench constructs : Open Vera 

language and VCS DirectC interface 
technology by Synopsys

 Assertions : OVA from Verplex, ForSpec 
from Intel, Sugar (renamed PSL) from IBM, 
and OVA from Synopsys 
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Compatibility with Verilog-
2001 

 fully compatible with the IEEE 1364-
2001 Verilog standard.

 There is one caveat to this backward 
compatibility. SystemVerilog adds 
several new keywords to the Verilog 
language. Identifier maybe used in an 
existing model. Compatibility switches 
can be used to deal with this problem.
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Assertions
 Special language constructs to 

verify design behavior.
 Example: 
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Assertions (Cont..)

 Assertions can be defined outside 
of Verilog modules, and then bind 
them to a specific module or 
module instance. This allows 
verification engineers to add 
assertions to existing Verilog 
models, without having to change 
the model in any way 
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Interfaces
 High level of abstraction for module 

connections.
 Modules can use an interface the same 

as if it were a single port. 
 Can be considered a bundle of wires. 

Interfaces go far beyond just 
representing bundles of interconnecting 
signals, however. An interface 

 Can also include functionality and built-
in protocol checking. 
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Interface Example

interface simple_bus; // Define the 
interface

logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode;
logic start, rdy;
endinterface: simple_bus

module memMod(simple_bus a, // Use 
the simple_bus interface

input bit clk);
logic avail;
// a.req is the req signal in the 

’simple_bus’ interface
always @(posedge clk) a.gnt <= a.req & 

avail;
endmodule

module cpuMod(simple_bus b, 
input bit clk);

...
endmodule

module top;
logic clk = 0;
simple_bus sb_intf; // 

Instantiate the interface
memMod mem(sb_intf, clk); 
cpuMod 

cpu(.b(sb_intf), .clk(clk));
endmodule
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Global declarations

 Allows global variables, type 
definitions, functions and other 
information to be declared, that 
are shared by all levels of 
hierarchy in the design.
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Relaxed data type rules
 Allow variable types to be used in 

almost any context and make it 
much easier to write hardware 
models without concern about 
which data type class to use

 Net data types (such as wire, 
wand, wor) 

 Variables (such as reg, integer)
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Data Types
 Adds several new data types, which allow hardware to be 

modeled at more abstract levels, using data types more 
intuitive to C programmers

 class — an object-oriented dynamic data type, similar to C++ and Java. 
 byte — a 2-state signed variable, that is defined to be exactly 8 bits. 
 shortint — a 2-state signed variable, that is defined to be exactly 16 bits. 
 int — a 2-state signed variable, similar to the "int" data type in C, but 

defined to be exactly 32 bits. 
 longint — a 2-state signed variable, that is defined to be exactly 64 bits. 
 bit — a 2-state unsigned data type of any vector width. 
 logic — a 4-state unsigned data type of any vector width, equivalent to the 

Verilog "reg" data type. 
 shortreal — a 2-state single-precision floating-point variable, the same as 

the "float" type in C. 
 void — represents no value, and can be specified as the return value of a 

function. 
 User defined types 

 Typedef unsigned int uint;
uint a, b;
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Data Types (Cont..)

 Enumerated types
 enum {red, green, blue} RGB;
 Built in methods to work with

 Structures and unions 
Struct {
bit[15:0 ]opcode;
Logic[23:0] address

} IR;
IR.opcode = 1  or IR = {5, 200}; 
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Casting 
 SystemVerilog adds the ability to change the 

type, vector size or "signedness" of a value using 
a cast operation. To remain backward compatible 
with the existing Verilog language, casting in 
SystemVerilog uses a different syntax than C. 
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Arrays
 dynamic arrays

 one-dimensional arrays where the size of the 
array can be changed dynamically

 associative arrays 
 one-dimensional sparse arrays that can be 

indexed using values such as enumerated type 
names. 

 exists(), first(), last(), next(), prev() and 
delete(). 
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Classes
 Can contain data declarations (referred to as "properties")
 Can contain functions for operating on the data (referred to as 

"methods"). 
 Can have inheritance and public or private protection, as in C+

+. 
 Allow objects to be dynamically created, deleted and assigned 

values. 
 Objects can be accessed via handles, which provide a safe form 

of pointers. 
 Memory allocation, de-allocation and garbage collection are 

automatically handled, preventing the possibility of memory 
leaks. 

 Classes are dynamic by nature, instead of static. They are ideal 
for test-bench modeling.  Therefore, they are not considered 
synthesizable constructs.

 Intended for verification routines and highly abstract system-
level modeling. 
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Class example:
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String data type
 Defined as a built-in class. 
 The string data type contains a variable length 

array of ASCII characters. Each time a value is 
assigned to the string, the length of the array 
is automatically adjusted. 

 Operations:
 Standard Verilog operators: =, ==, !=, <, <=, >, 

>=, {,}, {{}}. 
 Methods: len(), putc(), getc(), toupper(), tolower(), 

compare(), icompare(), substr(), atoi(), atohex(), 
atooct(), atobin(), atoreal(), itoa(), hextoa(), octtoa(), 
bintoa() and realtoa().
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Operators 

 ++ and -- increment and 
decrement operators

 +=, -=, *=, /=, %=, &=, ^=, |=, 
<<=, >>=, <<<= and >>>= 
assignment operators 
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Unique and priority decision 
statements

 Adds the ability to explicitly specify when 
each branch of a decision statement is 
unique or requires priority evaluation.

 using the keywords "unique" and "priority." 
These keywords affect simulators, synthesis 
compilers, formal verifiers and other tools, 
ensuring that all tools interpret the model 
the same way. 
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Enhanced for loops
 Allow the loop control variable to be declared as part of the for 

loop, and allows the loop to contain multiple initial and step 
assignments.

for (int i=1, shortint count=0; i*count < 125; i++, count+=3) 

 Bottom testing loops
 adds a do-while loop, which tests the loop condition at the end of 

executing code in the loop.
 Jump statements

 adds "break" and "continue" keywords, which do not require the 
use of block names, and a "return" keyword, which can be used to 
exit a task or function at any point.

 Final blocks
 Execute at the very end of simulation, just before simulation exits. 

Final blocks can be used in verification to print simulation results, 
such as code coverage reports.
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Hardware-specific procedures 
 adds three new procedures to explicitly 

indicate the intent of the logic: 
 always_ff — the procedure is intended to 

represent sequential logic
 always_comb —: the procedure is 

intended to represent combinational logic
 always_latch — the procedure is intended 

to represent latched logic.
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Task and function 
enhancements 
 Function return values can have a "void" return type. Void 

functions can be called the same as a Verilog task. 
 Functions can have any number of inputs, outputs and 

inouts, including none. 
 Values can be passed to a task or function in any order, 

using the task/function argument names. The syntax is the 
same as named module port connections. 

 Task and function input arguments can be assigned a 
default value as part of the task/function declaration. This 
allows the task or function to be called without passing a 
value to each argument. 

 Task or function arguments can be passed by reference, 
instead of copying the values in or out of the task or 
function. To use pass by reference, the argument direction 
is declared as a "ref," instead of input, output or inout. 
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Enhanced fork-join 
 Adds fork-join_none, and fork-join_any blocks.

 join_none — statements that follow the fork-
join_none are not blocked from execution while the 
parallel threads are executing. Each parallel thread 
is an independent, dynamic process. 

 join_any — statements which follow a fork-join_any 
are blocked from execution until the first of any of 
the threads has completed execution. 
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Inter-process synchronization 
 semaphore :  

 Serve as a bucket with a fixed number of "keys." 
 Built-in methods for working with semaphores: new(), get(), put() 

and try_get().  
 mailbox 

 Allows messages to be exchanged between processes. A message 
can be added to the mailbox at anytime by one process, and 
retrieved anytime later by another process. 

 Mailboxes behave like FIFOs (First-In, First-Out). 
 built-in methods: new(), put(), tryput(), get(), peek(), try_get() and 

try_peek(). 
 Event

 The Verilog "event" type is a momentary flag that has no logic 
value and no duration.

 SystemVerilog enhances the event data type by allowing events to 
have persistence throughout the current simulation time step. This 
allows the event to be checked after it is triggered. 
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Constrained random 
values 
 adds two random number classes, 

"rand" and "randc,"
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Testbench program block 
 Contains a single initial block. 
 Executes events in a "reactive phase" of the 

current simulation time, appropriately 
synchronized to hardware simulation events. 

 Can use a special "$exit" system task that 
will wait to exit simulation until after all 
concurrent program blocks have completed 
execution (unlike "$finish," which exits 
simulation immediately). 
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Clocking domains 
 Clocking domains allow the testbench to be 

defined using a cycle-based methodology, 
rather than the traditional event-based 
methodology of defining specific transition 
times for each test signal. 

 A clocking domain can define detailed skew 
information 

 Greatly simplify defining a testbench that 
does not have race conditions with the 
design being tested.
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Clocking domains (Cont..)
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Direct Programming Interface 
(DPI)

 To directly call functions written C, C++ or 
SystemC, without having to use the complex 
Verilog Programming Language Interface (PLI). 

 Values can be passed directly to the foreign 
language function, and values can be received 
from the function. 

 The foreign language function can also call Verilog 
tasks and functions, which gives the foreign 
language functions access to simulation events 
and simulation time. 

 The SystemVerilog DPI provides a bridge between 
high-level system design using C, C++ or SystemC 
and lower-level RTL and gate-level hardware 
design. 
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Conclusion
 SystemVerilog provides a major set of extensions to the 

Verilog-2001 standard. These extensions allow modeling and 
verifying very large designs more easily and with less coding. 

 SystemVerilog extends the modeling aspects of Verilog, and 
adds a Direct Programming Interface which allows C, C++, 
SystemC and Verilog code to work together without the 
overhead of the Verilog PLI. 

 SystemVerilog bridges the gap between hardware design 
engineers and system design engineers. SystemVerilog also 
significantly extends the verification aspects of Verilog by 
incorporating the capabilities of Vera and powerful assertion 
constructs. 

 Adding these SystemVerilog extensions to Verilog creates a 
whole new type of engineering language, an HDVL, or 
Hardware Description and Verification Language. This unified 
language will greatly increase the ability to model huge 
designs, and verify that these designs are functionally correct. 
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