EEL 4783: HDL in Digital System Design

Lecture: SystemC Language and Its Usage
Part 2

Prof. Mingjie Lin

UCF

Stands For Opportunity

System Design Methodology

e Current
— Manual Conversionfrom C to HDL Creates Errors

— Disconnect Between System Model and HDL
Model

— Multiple System Tests

* SystemC (Executable-Specification)
— Refinement Methodology
— Written in a Single Language

Current Methodology

-Manual Conversion Creates Errors
—— - Disconnect Between System Model and HDL Model

—> System Level Model [~ _" Multiple System Tests

‘\“‘
Refine
VHDL/Verilog

Result @

SystemC Methodology

Using Executable Specifications

Ensure COMPLETENESS of Specification

— “Create a program that Behave the same way as
the system”

UNAMBIGUOUS Interpretation of the Specification
Validate system functionality before implementation
Create early model and Validate system performance

Refine and Test the implementation of the
Specification

SystemC and User Module

User User User

Module Module Module
#1 #2 #N

FEvent & Signal I'F

C++ Class Library

3=

Hardware Simulation Kernel
(Event Scheduler)

SystemC

Executable Specification

SystemC Highlights (1)

* SystemC2.0 introduces general-purpose
— Events
* Flexible, low-level synchronization primitive
* Used to construct other forms of synchronization
— Channels
* A container class for communication and synchronization
* They implement one or more interfaces
— Interfaces
* Specify a set of access methods to the channel
* Other commé& sync models can be built based on the above primitives
— Examples

* HW-signals, queues (FIFO, LIFO, message queues, etc)
semaphores, memories and busses (both at RTL and
transaction-based models)

SystemC Highlights (2)

* Support Hardware-Software Co-Design
* All constructs are in a C++ environment
— Modules

 Container class includes hierarchical Modules and
Processes

— Processes
* Describe functionality

* Almost all SLDL have been developed based on
some underlying model of network of processes

— Ports
* Single-directional(in, out), Bi-directional mode

A system in SystemC

System

duunnnnnn
llllllll’

cmmult Channel(s)
duunnnnnn
Pmmb Illlllll’

Module

Process

A system in SystemC

Module body
Module instances
concurrent processes

SystemC Highlights (3)

* Constructs in a C++ environment (continued)
— Clocks

* Special signal, Timekeeper of simulation and Multiple clocks,
with arbitrary phase relationship

— Event Driven simulation
* High-SpeedEventDriven simulation kernel
— Multiple abstraction levels

* Untimedfrom high-level functional model to detailed clock cycle
accuracy RTL model

— Communication Protocols
— Debugging Supports
* Run-Time error check
— Waveform Tracing
* Supports VCD, WIF, ISBD

11

Data Types

SystemCsupports

Native C/C++ Types
SystemCTypes

SystemCTypes

Data type for system modeling

2 value (‘0’,"1")logic/logic vector

4 value (‘0’,’1’,’Z’,’X")logic/logic vector
Arbitrary sized integer (Signed/Unsigned)
Fixed Point types (Templated/Untemplated)

12

Communication and Synchronization
(cont’'d)

Interfaces

Events

Ports to Interfaces

13

A Communication Modeling Example:
FIFO

Write Interface

Read Interface

14

FIFO Example:Declaration of Interfaces

class write_if

{
public:
virtual
virtual

class read if :

{
public:
virtual
virtual

: public sc interface

void write (char

) = 0;
volid reset () = 0;

public sc interface

void read (charé&) = 0;
int num available() =

0;

15

Declaration of FIFOchannel

class fifo: public sc channel,
public write 1if,
public read if

private:
enum € {max elements=10};
char data[max elements];
int num elements,

SC event

first;
write event,
read event;

bool fifo empty () {..};
bool fifo full() {..};

public:
fifo() num elements (0),

first (0);

vold write (char c) {
if (fifo full())

walt (read event);

data[<you calculate>]

++num elements;

write event.notify ()

vold read(char &c) {
if (fifo empty())

wait (write event) ;

c = data[first];
——num_elements;
first = ..;

read event.notify();

Cr

16

Declaration of FIFO channel(cont'd)

void reset () {
num slements = first = Q;

}

int num available()
return num_elements;

}

}; A/ end of class declarations

FIFO Example (cont’d)

* Any channel must

be derived from sc_channelclass
be derived from one (or more) classes derived from sc_interface

provide implementations for all pure virtual functions defined in its parent
interfaces

* Note the following wait() callv

— wait(sc_event) => dynamic sensitivity

— wait(time)

— wait(time_out, sc_event)

* Events

are the fundamental synchronization primitive
have no type, no value
always cause sensitive processes to be resumed
can be specified to occur:
* immediately/ one delta-step later/ some specific time later

18

SystemC Highlights (2)

Support Hardware-Software Co-Design
All constructs are in a C++ environment
— Modules

 Container class includes hierarchical Modules and
Processes

— Processes
* Describe functionality

* Almost all SLDL have been developed based on
some underlying model of network of processes

— Ports
* Single-directional(in, out), Bi-directional mode

19

A system in SystemC

System

=
channels
or lt Channel(s)
events |

duunnnnnn
ERERERR] =

<llllllll
llllllll’

Process

Module '

20

A system in SystemC

System

=
channels
or lt Channel(s)
events |

duunnnnnn
ERERERR] =

<llllllll
llllllll’

Process

Module '

A system in SystemC

System

=
channels
or lt Channel(s)
events |

duunnnnnn
ERERERR] =

<llllllll
llllllll’

Process

Module '

22

A system in SystemC

System

=
channels
or lt Channel(s)
events |

duunnnnnn
ERERERR] =

<llllllll
llllllll’

Process

Module '

23

Final iIssues

* Come by my office hours (right after class)

* Any guestions or concerns?

24

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

