
1

EEL 4783: HDL in Digital System Design

Lecture 2+: Verilog vs. VHDL

Prof. Mingjie Lin

2

VHDL & Verilog

They are Hardware description languages.

They are each a notation to describe the behavioral

and structural aspects of an electronic digital circuit.

3

VHDL Background

VHSIC Hardware Description Language.

VHSIC is an abbreviation for Very High Speed
Integrated Circuit.

Developed by the department of defense (1981)

In 1986 rights where given to IEEE

Became a standard and published in 1987

Revised standard we know now published in 1993 (VHDL
1076-1993) regulated by VHDL international (VI)

4

VHDL

Uses top-down approach to partition design into small

blocks ‘components’

Entity: describes interface signals & basic building blocks

Architecture: describes behavior, each entity can have multiple

Architectures

Configuration: sort of parts list for a design, which behavior to use for

each entity.

Package: toolbox used to build design

5

Verilog Background

Developed by Gateway Design Automation (1980)

Later acquired by Cadence Design(1989) who made it public in 1990

Became a standardized in 1995 by IEEE (Std 1364) regulated by Open

Verilog International (OVI)

6

VERILOG

Verilog only has one building block

Module: modules connect through their port similarly as in VHDL

Usually there is only one module per file.

A top level invokes instances of other modules.

Modules can be specified behaviorally or structurally.
• Behavioral specification defines behavior of digital system

• Structural specification defines hierarchical interconnection of sub modules

7

Similarities

These languages have taken designers from low

level detail to much higher level of abstraction.

In 2000 VI & OVI merged into Accellera

Simulation & synthesis are the two main kinds of

tools which operate on the VHDL & Verilog

languages.

They are not a toolset or methodology they are

each a different language.

However toolsets and methodologies are essential for their

effective use.

http://www.accellera.org/

8

Differences?

There are not many differences as

to the capabilities of each.

The choice of which one to use is

often based in personal preference

& other issues such as availability of

tools & commercial terms.

VHDL is “harder” to learn ADA-like.

Verilog is “easier” to learn C-like.

9

Market analysis

According to Gary Smith, EDA Analyst at Dataquest, he

says that although Verilog is dominating the market, it is

going into the use of a mix of Verilog and VHDL. (report of

march 2000)

But really:

As mentioned above, VHDL has many different complex data types and

users can also define many other complex data types. This also makes

VHDL more verbose than Verilog since Verilog only has 2 major data

types and user-defined data types are not allowed in Verilog.

10

Verilog vs. VHDL

• Verilog is an alternative language to VHDL for

specifying RTL for logic synthesis

• VHDL similar to Ada programming language in

syntax

• Verilog similar to C/Pascal programming language

• VHDL more popular with European companies,

Verilog more popular with US companies.

• VHDL more ‘verbose’ than Verilog.

• Verilog and VHDL do RTL modeling equally well.

11

VHDL vs. Verilog: Process Block

12

VHDL vs. Verilog: Signal Assignment

13

VHDL vs. Verilog: Interface Declaration

14

VHDL vs. Verilog: Busses

15

VHDL vs. Verilog: Busses

16

Verilog Vs. VHDL

• Verilog and VHDL are equivalent for RTL modeling

(code that will be synthesized).

• For high level behavioral modeling, VHDL is better

– Verilog does not have ability to define new data types

– Other missing features for high level modeling

• Verilog has built-in gate level and transistor level

primitives

– Verilog much better than VHDL at below the RTL

level.

• Bottom Line: You should know both!!!!!

17

EDA Tools

Electronic Design Automation Tools

Looking at the market trend and we have to look at
tools that is not just specific to one language but
that can integrate both languages.

Out of all the different tools I’ve seen model SIM by
Model inc, is the one that should be used both
Altera & Xilinx recommend it, and it’s free for
download from their websites.

• Model inc university program

http://www.model.com/
http://www.altera.com/
http://www.xilinx.com/
http://www.mentor.com/

18

EDA Tools

Altera & Xilinx both have their own design environment
Max + Plus II & ISE respectively.

They each have their own board to use with programs. The
boards vary a lot in prices.

I ended using Altera’s environment & board (kit) which can
be purchased at Altera for $150

http://www.altera.com/education/univ/kits/unv-kits.html

19

Simulation of counters

Demonstration of simple verilog & vhdl

20

• LIBRARY IEEE;

• USE IEEE.STD_LOGIC_1164.ALL;

• USE IEEE.STD_LOGIC_ARITH.ALL;

• USE IEEE.STD_LOGIC_UNSIGNED.ALL;

• ENTITY Counter1 IS

• PORT(

• Clock, Reset,UPDOWN : IN STD_LOGIC;

• Max_count : IN STD_LOGIC_VECTOR(7 downto 0);

• Count : OUT STD_LOGIC_VECTOR(7 downto 0)

•);

• END Counter1;

• ARCHITECTURE behaviour OF Counter1 IS

• SIGNAL internal_count : STD_LOGIC_VECTOR(7 downto 0);

• BEGIN

• Count <= internal_count;

• PROCESS(Reset,Clock)

• BEGIN

• IF reset='0' THEN

• internal_count<="00000000";

• ELSIF clock 'EVENT AND clock='0' THEN

• IF updown='0' THEN

• IF internal_count<Max_count THEN

• internal_count<=internal_count+1;

• ELSE

• internal_count<="00000000";

• END IF;

• ELSIF updown='1' THEN

• IF "00000000"<internal_count THEN

• internal_count<=internal_count-1;

• ELSE

• internal_count<=Max_count;

• END IF;

• END IF;

• END IF;

• END PROCESS;

• END behaviour;

21

module counter2 (updown,clock,reset,MaxCount,Count);

output[7:0] Count;

input[7:0] MaxCount;

input clock, reset, updown;

reg[7:0] Cnt;

assign Count=Cnt;

always @ (negedge clock or negedge reset)

begin

if(~reset)

Cnt=8'b0000_0000;

else if(updown)

if (Cnt<MaxCount)

 Cnt=Count+1;

else

 Cnt=8'b0000_0000;

else if(~updown)

if (8'b0000_0000<Cnt)

 Cnt=Cnt-1;

else

 Cnt=MaxCount;

end

endmodule

	Slide 1
	Slide 2: VHDL & Verilog
	Slide 3: VHDL Background
	Slide 4: VHDL
	Slide 5: Verilog Background
	Slide 6: VERILOG
	Slide 7: Similarities
	Slide 8: Differences?
	Slide 9: Market analysis
	Slide 10: Verilog vs. VHDL
	Slide 11: VHDL vs. Verilog: Process Block
	Slide 12: VHDL vs. Verilog: Signal Assignment
	Slide 13: VHDL vs. Verilog: Interface Declaration
	Slide 14: VHDL vs. Verilog: Busses
	Slide 15: VHDL vs. Verilog: Busses
	Slide 16: Verilog Vs. VHDL
	Slide 17: EDA Tools
	Slide 18: EDA Tools
	Slide 19: Simulation of counters
	Slide 20
	Slide 21

