EEL 4783: Hardware/Software Co-design with FPGAs

Lecture 1: Introduction*

Prof. Mingjie Lin

* Partial material taken from NSU CS4722 slides
Overview

• What is an embedded system?
• Why HW/SW Co-design?
• Why take this course?
• Class mechanics
 – Administrative issues
 – Lecture topics
 – Assignment and projects
What is an Embedded System?

• ES from 10,000 Feet Above
 – a computer system designed for specific control functions within a larger system
 – often with real-time computing constraints
 – embedded as part of a complete device often including hardware and mechanical parts

• By contrast, a general-purpose computer
 – designed to be flexible and to meet a wide range of end-user needs
Embedded Computing Systems

• Obvious examples:
 – HDTV
 – Washing Machines
 – Microwave
 – Controllers for other household devices such as A/C
 – Digital watches
 – MP3 players

• Not-so-obvious examples:
 – Automobiles
 – Avionics / Flight control
 – Nuclear Power Plants
 – Medical devices
In-Depth Example: Mobile phones

- Multiprocessor
 - 8-bit/32-bit for UI
 - DSP for signals
 - 32-bit in IR port
 - 32-bit in Bluetooth
- 8-100 MB of memory
- All custom chips
- Power consumption & battery life depends on software
But …

• Dual-core A5 chip
 – package on package (PoP) system-on-a-chip (SoC)
 – 45 nm Dual core GPU PowerVR SGX543MP2 clocked at 200 MHz

• 8MP camera and optics
• iOS 5 and iCloud
• Siri
In-Depth Example: Cars

• Multiple processors
 – Upto100
 – Networked

• Multiple networks
 – Body
 – Engine
 – Telematics
 – Media
 – Safety
Cars

• Function diversity
 – ABS: Anti-lock braking systems
 – Airbags
 – Efficient automatic gearboxes
 – Theft prevention with smart keys
 – Blind-angle alert systems

• Device diversity
 – 8-bit – door locks, lights, etc.
 – 16-bit – most functions
 – 32-bit – engine control, airbags
Little-Known Facts about Cars

• Car electronics is an increasingly important market, requiring new design flows
 – Software is important for value addition

• Comments by major manufacturers
 – Daimler Chrysler: More than 90% of the innovation is from the car electronics (and not from the mechanical parts!)
 – BMW: More than 30% of the manufacturing cost of a car is from the electronic components!

• Reliable/robust ES design flows needed!
ES Design Challenges

• Real-time and/or Reactive
 – Often combines hard and soft real-time
 – Timing constraints on the response

• Low power budget
 – Novel architectures etc.

• High code density
 – Aggressive Code compression possible

• Profile driven development all important
Hardware/Software Design Methodology

• System Modeling
 – Irrespective of which parts are implemented in hardware and which parts in software
 – various choices of Models of Computation for reactive real-time systems

• HW/SW Partitioning
 – HW: Can be reconfigurable (FPGA)
 • Soft core or hard core
 • Function blocks
 – SW: Run on micro-controllers or more complex processors.
 • Further allocation needed if multiple processing elements (PEs) are available.
Hardware/Software Design Methodology

- **Compute Scheduling**
 - After allocation of tasks to PEs
 - Determines order in which tasks allocated to the same PE will be invoked so that
 - Performance constraints (deadlines) are met
 - Any dependencies between tasks are preserved
 - Communication/context-switch overheads in execution are minimized if possible

- **Communication synthesis**
 - Simple: Replace shared var. names by appropriate locations
 - Complex: Design interfaces to enable communication among design components
Why This Course?

- Because it is FUN intellectually!
- Because HS-Codesign become increasingly more critical

Aerospace/Defense

Broadcast

Consumer

HPC and storage

Industrial/Scientific/Medical

Wired communication

Wireless communication

Automobile
Class goal

- Learn about basic concept and techniques of hardware/software co-design, ...

- Hands-on class projects
 - Complete FPGA design flow to implement a “real” embedded computing system
 - Improve your HDL programming skills
 - Improve your Software programming skill
 - Learning by doing
Administrative issues

• Fill out the student info sheet
 – Name, status, reason of taking this class, expectations, prior knowledge, …

• Pre-requisites
 – EEL 3342: Digital Logic Design
 – Course self-contained, but logic design and computer architecture knowledge helpful (EEL 4768: Computer Architecture)
 – Willingness to work hard

• Information distribution
Lecture schedule

See Webpage:
www.eecs.ucf.edu/~mingjie/EEL4783_2012
Final issues

• Please fill out the student info sheet before leaving

• Come by my office hours (right after class)

• Any questions or concerns?