Problem 1

a) Consider the circuit shown in the following figure. The value of R_1 is reduced to $R_1 = 10K\Omega$ and the cut-in voltage of the diode is $V = 0.7V$. Determine I_D and V_D.

b) Repeat part (a) if $R_1 = 50K\Omega$

![Circuit Diagram](image)

Problem 2

The cut-in voltage of the diode shown in the circuit in the following figure is $V = 0.7V$. The diode is remain biased ‘On’ for a power supply voltage in the range $5\leq V_{ps} \leq 10$ V. The minimum diode current is to be $I_D(\text{min}) = 2$ mA. The maximum power dissipated in the diode is to be no more than 10 mW. Determine appropriate values of R_1 and R_2.

![Circuit Diagram](image)

Problem 3

The diode cut-in voltage is $V = 0.7V$ in the four circuits shown in the following figure. Find I and V_0 in each of the circuits.
Problem 4

a) In the circuit shown in the figure, find the diode voltage V_D and the supply voltage V such that the current $I_D = 0.4\, \text{mA}$. Assume the diode cut-in voltage is $V_\text{C}=0.7\, \text{V}$.

b) Using the results of part (a), determine the power dissipated in the diode.
Problem 5

Assume each diode in the circuit shown in the following figure has a cut-in voltage of $V_\text{r}=0.65\text{V}$.

a) The input voltage is $V_1=5\text{V}$. Determine the value of R_1 required such that I_{D1} is one-half the value of I_{D2}. What are the values of I_{D1} and I_{D2}?

b) If $V_1=8\text{ V}$ and $R_1=2\text{K}\Omega$, determine I_{D1} and I_{D2}.

![Circuit Diagram](image1)

Problem 6

The circuit in the following figure is a complementary output rectifier. If $V_s=26\sin[2\pi(60)t]\text{V}$, sketch the output waveforms v_o^+ and v_o^- versus time, assuming $V=0.6\text{ V}$ for each diode.

![Circuit Diagram](image2)
Problem 7

Sketch v_0 versus time for the circuit in the following figure. The input is a sine wave given by $v_i = 10 \sin \omega t$ V. Assume $V = 0$ V.

![Circuit Diagram](image1)

Problem 8

Consider the circuit in the following figure. Let $V = 0$ V.

a) Plot v_O versus input voltage v_I over the range $-10V \leq v_I \leq 10V$

b) Plot i_I over the same input voltage range as part (a).

![Circuit Diagram](image2)
Problem 9

For the circuit in the following figure,

a) plot v_0 versus input voltage v_I for $0 \leq v_I \leq 15$ V. Assume $V_0 = 0.7$ V. Indicate all breakpoints.

b) Plot i_D over the same range of input voltage.

![Circuit Diagram](image1.png)

Problem 10

The diodes in the circuit in the following figure have piecewise linear parameters of $V = 0.6$ V and $\gamma_f = 0$. Determine the output voltage V_0 and the diode currents I_{D1} and I_{D2} for the following input conditions.

a) $V_1 = 10$ V, $V_2 = 0$ V.

b) $V_1 = 5$ V, $V_2 = 0$ V.

c) $V_1 = 10$ V, $V_2 = 5$ V.

d) $V_1 = 10$ V, $V_2 = 10$ V.

![Circuit Diagram](image2.png)
Problem 11

Consider the circuit in the following figure. The output of a diode OR logic gate is connected to the input of a second diode OR logic gate. Assume $V_\text{ Dropout} = 0.6 \text{ V}$ for each diode. Determine the outputs V_{O1} and V_{O2} for:

a) $V_1 = V_2 = 0$;
b) $V_1 = 5 \text{ V}, V_2 = 0 \text{ V}$;
c) $V_1 = V_2 = 5 \text{ V}$.

What can be said about the relative values of V_{O1} and V_{O2} in their 'high' state?

Problem 12

Consider the circuit in the following figure. The output of a diode AND logic gate is connected to the input of a second diode AND logic gate. Assume $V_\text{ Dropout} = 0.6 \text{ V}$ for each diode. Determine the outputs V_{O1} and V_{O2} for:

a) $V_1 = V_2 = 5 \text{ V}$.
b) $V_1 = 0 \text{ V}, V_2 = 5 \text{ V}$;
c) $V_1 = V_2 = 0$;

What can be said about the relative values of V_{O1} and V_{O2} in their 'low' state?
Problem 13

Sketch the steady-state output voltage v_0 versus time for each circuit with the input voltage shown in the following figure. Assume $V_0 = 0$ V and assume the RC time constant is large.

![Circuit Diagrams](image)

Problem 14

For the circuit in the figure in Problem 13, let $V_i = 1$ V and $v_I = 10 \sin \omega t$ (steady state). Find analytical expression for steady state v_0 versus time and sketch for

a) $V_B = 0$ V

b) $V_B = +3$ V

c) $V_B = -3$ V

Problem 15

Design a diode clamper to generate a steady-state output voltage v_0 from the input voltage v_I shown in Figure P2.33 if $V = 0.7$ V.
Problem 16

a) Consider a pn junction diode biased at $I_{DQ} = 1\text{mA}$. A sinusoidal voltage is superimposed on V_{DQ} such that the peak-to-peak sinusoidal current is $0.05I_{DQ}$. The diode ideality factor $n=1$. Find the value of the applied peak-to-peak sinusoidal voltage.

b) Repeat part (a) if $I_{DQ} = 0.1\text{ mA}$.

Problem 17

The diode in the circuit shown in the following figure is biased with a constant current source I. The diode ideality factor $n=1$. A sinusoidal signal v_s is coupled through R_s and C. Assume that C is large so that it acts as a short circuit to the signal.

a) Show that the sinusoidal component of the diode voltage is given by

$$v_0 = v_s\left(\frac{V_r}{V_r + IR_s}\right)$$

b) If $R_s = 260\ \Omega$, find v_0/v_s, for $I = 1\text{mA}$, $I = 0.1\text{ mA}$, and $I = 0.01\text{ mA}$.