3. A typical oscillator block diagram

![Diagram](image)

Frequency Selective Network

(1) When oscillation just starts to set up, we have

\[V_{out}^{(1)} \] from noise. \[U_i^{(1)} = \beta(s) V_{out}^{(1)} \] select frequency

\[V_{out}^{(2)} = A(s) U_i^{(1)} \] amplify

\[V_{out}^{(2)} = A(s) \beta(s) V_{out}^{(1)} \]

Obviously, we need \(|A(j\omega)\beta(j\omega)| > 1\) to set up

oscillation so that \(|V_{out}^{(2)}| > |V_{out}^{(1)}|\), and

further we have \[V_{out}^{(n)} = A(s)\beta(s) V_{out}^{(n-1)} \]

\[|V_{out}| \uparrow \]
(2) But we must control the amplitude also. This needs the circuit to be non-linear or

\[A(j\omega) \beta(j\omega) \text{ is function of amplitude } |V_{\text{out}}| \]

\[|V_{\text{out}}| \uparrow \quad |A(j\omega)\beta(j\omega)| \downarrow \]

until \[|A(j\omega)\beta(j\omega)| = 1 \] to set up stable oscillation.

(3) When oscillation is set up (stable), we have

\[V_{\text{out}} = A(s)\beta(s)\ V_{\text{out}} \]

\[(L(s) - 1)\ V_{\text{out}} = 0 \quad , \quad L(s) = A(s)\beta(s) \]

Because \[V_{\text{out}} \neq 0 \], we have

\[L(s) = 1 \]

For the frequency of oscillation, this means

\[L(j\omega_0) = A(j\omega_0)\beta(j\omega_0) = 1 \]

\[\rightarrow \text{ Barkhausen Criterion} \]

\[\Rightarrow (1) \omega_0 \quad (2) \text{ condition for oscillation to set up} \]
Example 1. (phase-shift oscillator)

\[A(s) = -\frac{R_2}{R} \quad \text{inverting amplifier} \]

\[B(s) = \left(\frac{R}{R + \frac{1}{5C}} \right)^3 \]

\[L(s) = -\frac{R_2}{R} \frac{(SRC)^3}{(1 + SRC)^3} \]

\[L(j\omega) = \frac{R_2}{R} \frac{(j\omega RC)(\omega RC)^2}{(1 - 3\omega^2 R^2 C^2) + j\omega RC \left[3 - \omega^2 R^2 C^2 \right]} \]

At oscillation, \[L(j\omega) = 1 \Rightarrow R_2 (j\omega RC)(\omega RC)^2 = R \left[(1 - 3\omega^2 R^2 C^2) + j\omega RC (3 - \omega^2 R^2 C^2) \right] \]
\[1 - 3\omega^2 R^2 C^2 = 0 \quad \Rightarrow \quad \omega_0 = \frac{1}{\sqrt{3} RC} \]

\[L(j\omega_0) = \frac{R_2}{R} \frac{(\frac{1}{\sqrt{3} RC} R)^2}{3 - (\frac{1}{\sqrt{3} RC})^2 R^2 C^2} \]

\[= \frac{R_2}{R} \frac{\frac{1}{3}}{3 - \frac{1}{3}} = \frac{R_2}{R} \frac{1}{8} = 1 \]

To set up oscillation \[\frac{R_2}{R} \frac{1}{8} > 1 \] or \[\frac{R_2}{R} > 8 \]

Can make \(R_2 \) to be \(R_2 \sqrt{2} \) when \(|V_{i+}| \uparrow \) until \(\frac{R_2}{R} = 0 \) at stable oscillation.