
Security and Deployment Issues in a Sensor Network

Mike Chen
mikechen@cs.berkeley.edu

Weidong Cui
wdc@eecs.berkeley.edu

Victor Wen
vwen@cs.berkeley.edu

Alec Woo
awoo@cs.berkeley.edu

11 December, 2000

Abstract

We are facing an growing demand in deploying large
scale sensor networks in the real world. However,
there are still many obstacles before we can proceed.
Security is a major concern as we need to be sure
that the data we receive is authentic and confiden-
tial, and have not been tampered with. This is es-
pecially difficult because sensors have very limited
resources and we cannot guarantee physical security
of the sensors. Limited bandwidth is another prob-
lem as we scale up the number of sensors. We need
to ensure that we achieve fairness and do not starve
any sensors. We present our design and implemen-
tation to address these issues, and describe our de-
ployment of a real sensor network and the problems
that we encountered. Our security protocol works
well on sensors with 8KB of memory and 4MHz 8-bit
Atmel processors. Our adaptive transmission scheme
achieves fairness among sensors in the network and
prevents starvation. We also implemented two appli-
cations: people tracking and light sensing.

1 Introduction

There are several obstacles that impede the success-
ful deployment of large-scale sensor networks in the
real world, especially for sensors that have extremely
limited resources.

Security If we want to trust sensor data that we re-
ceive, we need to be able to authenticate the source
so that bogus and malicious sensors can not inject
false data. We also need to be able to verify data
integrity to detect data modification. In addition,
if we want the data to be confidential, we need to
employ techniques such as encryption so no one else
will be able to read the data. Current security proto-

cols do not extend well to PDAs such as Palm Pilots,
let along sensors which have orders of magnitude less
resources. Our goal is to design an efficient protocol
that provide authentication and confidentiality under
the constraints of code size, CPU, and memory size.

Network bandwidth When scaling up the number of
sensors, it is necessary to use network bandwidth effi-
ciently and fairly. Techniques like aggregation in the
network and compression enable us to get as much
data as possible. Fairness is also important as we
want to collect data from all sensors and avoid star-
vation. It is especially important for sensors near the
base stations, where much network traffic needs to be
routed in addition to the sensor readings from those
sensors.

Power consumption One metric of the usefulness of
a sensor network is its operating lifetime. Obviously,
the longer it operates the better. The wireless inter-
face on the sensors in particular consumes a relatively
large amount of energy. We can minimize its power
consumption by lowering its duty cycle and perform
adaptive power tuning of the radio.

In this paper, we present our approaches to address
these three issues, and discuss our experience in de-
ploying a 15-mote sensor network and building two
sensor applications: people tracking and light sens-
ing. We focus on sensors that have extremely lim-
ited resources: small amount of memory, low com-
putation capability, poor bandwidth, and limited en-
ergy resources. The sensor platform we has 8KB of
flash memory, a 4MHz 8-bit Atmel processor, and a
900MHz radio interface.

In Section 2, we describe our security protocol andits
performance on resource-limited sensors. In Section
3, we present our adaptive networking algorithm. In
Section 4, we discuss the design and implementation
of our people tracking application and the light sens-

1

ing application. In Section 5, we discuss future work
that would further simplify deployment. In Section
6, we state our conclusions.

2 Security

2.1 Motivations

Given that tiny sensors are supposed to be commod-
ity devices, it is potentially easy for malicious at-
tackers to overlay foreign sensor network on top of
existing one. If there is no authentication or confi-
dentiality in communication between motes and base
stations, then there is no mechanism to protect legit-
imate network from being taken over by hostile one
(e.g. a hostile base station could broadcast a better
route thus legitimate sensor nodes will send their data
to the malicious base station).

To secure legitimate sensor network, we propose a
base station-to-mote confidentiality and authentica-
tion protocol, and source authentication protocol
adapted from TESLA [9].

2.2 Protocols

These protocols are based on share-key cryptography
algorithm. It would have been more convenient to
bootstrap with public-key algorithm for symmetric
key setup. However, due to hardware constraint of
our sensor nodes, we chose shared-key cryptography
because it is much much less computational inexpen-
sive. The choice of alogrithm (we chose RC5) and
its implementation is also strongly influenced by the
hardware constraints of the tiny motes.

2.2.1 Base Station To Mote Confidentiality
and Authentication

Authentication The base station-to-mote authentica-
tion protocol hinges on an 8-byte Message Authen-
tication Code (MAC) included in every packet mote
sends to the base station. The MAC is calculated
based on RC5’s encrypting function and not easily re-
versed. Since, only motei and the base station share
the secret key for motei, the base station can ver-
ify that the message is authenticate from motei by
calculating the MAC of the message and compare it
against with the MAC in the packet. Given this,
the base station can verify that motei is the actual

originator of the message. This protocol gives the
base station some assurance that the message comes
from where it claims. Furthermore, MAC also dou-
bly functions as Cyclic Redundancy Code (CRC). If
MAC check fails, then either the packet was sent ma-
liciously or it suffered bit errors in the channel. In
either case, the payload should not be trusted. In
our design, the RC5 module will pass up the packet
to application with error flag bit set. The applica-
tion will then decide whether to accept the data in
the payload or not.

Confidentiality By running RC5 in output-feedback
mode (OFB), we can also achieve base station-to-
mote confidentiality of communication. Under this
scheme, the mote uses its secret key and some ini-
tialization vector (IV) to calculate a pad. The plain-
text is then XOR’ed with the pad to produce the
ciphertext. One nice feature of OFB is that since it
is stream cipher in nature, the ciphertext is the same
size as plaintext, not some multiple of block size. This
property is nice since the bandwidth is constrained
and mote should send as much useful data in a packet
as possible.

For every packet sent to base station, the actual pay-
load is encrypted (if the application so wishs). This
encrypted payload, along with application handler
ID, sequence number and source ID are then MAC’ed
to provide authentication of the message. The con-
fidentiality and authentication between base station
and mote establishes a secure communication chan-
nel between mote and base station. The protocol for
secure communication channel shown below:

X = {payload, seqno}KM BS

M → BS : X(src, dst, AMhandler,X)KM BS

(. . .) : MAC

{. . .} : Encryption

2.2.2 TESLA: Source Authentication Proto-
col

Overview The basic idea is that the sender first gen-
erates a sequence of secret keys, {Kj} where each
key Kj is an element of a hash chain. By succes-
sively applying a one-way function g (e.g. a crypto-
graphic hash function such as MD5 [11]) to a ran-
domly selected seed, KN , we can obtain a chain of
keys, Kj = g(Kj+1). Because g is a one-way function,
anybody can compute forward (backward in time),
e.g. compute K0, . . . ,Kj given Kj+1, but nobody can

2

compute backward (forward in time), e.g. compute
Kj+1 given only K0, . . . ,Kj , due to the one-way gen-
erator function. This is similar to the S/Key one-time
password system [2].

The time is divided into intervals. Each sender then
associates its key sequence with the sequence of the
time interval, with one key per time interval. In time
interval t, the sender uses the key of the current inter-
val, Kt, to MAC packets in that interval. The sender
will then reveal the key Kt after a delay of δr after the
end of the time interval t. The key disclosure time
delay δr is on the order of a few time intervals, as long
as it is greater than any reasonable round trip time
plus the maximum synchronization error between the
sender and the receivers.

When the receiver receives the packets with the
MAC, it saves the arrival time for each packet. Note
that the receiver and the sender need an approxi-
mate time synchronization. For the purpose of this
approach, the time only needs to be loosely synchro-
nized, e.g. the synchronization error may be on the
order of multiple seconds. This level of approximate
time synchronization is easy to achieve in practice.
Please refer to [4, 9] for more details on time syn-
chronization.

Then after the sender discloses its key for interval
i, the receiver can then authenticate previous saved
packets from the same interval.

Issues There are several issues in implementing Tesla
on motes.

• How do sender (in this case, the base station)
and receiver(s) to share an initial Tesla key?

• Memory is limited on motes for buffering pack-
ets.

The first problem can be solved by having the re-
ceiver(s) sending a message to base station, asking for
the current Tesla key, via the secure channel. Since
the base station’s reply is encrypted (well it doesn’t
need to) and authenticated (very important), the re-
ceiver(s) can bootstrap into the Tesla group.

The second challenge is harder to tackle. We propose
to store the buffered packet to EEPROM on-board.
Thus giving us another 512 bytes of storage. Further-
more, we can fine-tune the Tesla disclosure interval,
δr, so that limited buffering is needed.

2.3 Implementation Challenges and
Implications

We chose RC5 as our basic share-key algorithm be-
cause of its low memory requirement (both code size
and table size) and its relatively high encrypting per-
formance. We looked at and rejected Rijndael (the
new AES standard) [6] because it requires 1.4 KB
of table for an unoptimized version and 14 KB of
table for optimized version. Due to our severely con-
strained mote hardware, it seems RC5 is a better
choice as the cryptography algorithm. Our initial
implementation of RC5 (taken from openssl source
code [7]) resulted in almost 8 KB of program text
size. Thus our mote will be able to perform RC5 and
nothing else. The resulting code size is due in part to
the 8 bit nature of the Atmel processor and generality
in the openssl source 1. Through careful hand opti-
mizations and replacing some critical functions (par-
ticularly the 32-bit rotate function) with hand-coded
assembly, we were able to reduce the code size to 1.6
KB and achieve 10x speed increase. The resulting im-
plementation uses 8-byte key (64 bits, which provides
good security while relatively inexpensive computa-
tionally), and the encryption is limited to 8 rounds
only 2.

For encryption, we implemented OFB mode so that
only encryption routines are needed for confidential-
ity. The encryption key and IV are used to pro-
duce an encryption pad. This pad and the plaintext
are XOR’ed together to produce ciphertext. Since
A ⊕ B ⊕ B = A, the receiver can produce the same
pad, it can recover A by XORing the ciphertext with
the pad.

To perform MAC function, we iteratively encrypts
and XORs chunks of plaintext to produce the final
MAC. This MAC function also bases on the basic en-
cryption routine, further reusing the code and reduce
total code size.

2.4 Performance

2.4.1 Server

The implementation of RC5 on desktop is written in
Java. It is a direct translation of the C implementa-
tion for Mote, with modifications made for the Java

1Many operations in RC5 requires 32-bit quantities. On an
8-bit processor, it would require 4 registers and 4 instructions
(at least) for every equivalent 32-bit operation

2For details of RC5 encryption algorithm, please refer
to [12].

3

Packet Size (byte) MAC (MB/s) Encrypt (MB/s)

8 5.525 4.00
16 11.11 7.69
32 16.67 9.09
64 16.67 10.00
128 20.0 10.00

Table 1: Testing Platform: Pentium III (Coppermine
core) 650MHz, 640MB of RAM, Linux 2.2.14, IBM
JDK 1.3 with JIT enabled.

Packet Size MAC Encrypt Key setup
(byte) (MB/s) (MB/s) (no./s)

15 0.043 0.25 250
16 0.053 0.27 250

Table 2: RC5 operation throughput on Mote.

language. The performance is given in Table 1. Given
that a packet is only 30 bytes long, a typical PC can
authenticate approximately 0.58 million packets per
second. Encryption takes a little bit longer, but the
server can still encrypt (or decrypt) 0.35 million pack-
ets. Thus we imagine that cryptography operations
will not be the scalability bottleneck. Instead, key
lookup and key setup and storage of expanded keys
(which occupies 72 bytes per key)) will be.

2.4.2 Mote

The performance of RC5 on mote is given in Table 2.
Given the radio bandwidth of 10Kbps, the mote can
encrypt (or decrypt) and authenticate every message
it receives. In fact, the limiting factor is not compu-
tation power. Rather it is the memory requirement.
The storage of key and buffering of unauthenticated
messages (for Tesla) will take up to 200 bytes out of
512 bytes of available RAM (refer to Table 3). Stor-
age is the real constraint in our cryptographic proto-
cols.

Module RAM size (bytes)

RC5 80
Tesla 120

Encryption/MAC 20

Table 3: Storage requirements for RC5 and Tesla.

3 Networking Support

The ultimate goal of sensor network is to allow back-
end servers to collect data from sensors, scattered

around an open field or inside a building, and pro-
cess such information to derive interesting applica-
tions like location tracking or environmental control.
In this regime of computing, information flow rather
than information processing is the most critical com-
ponent. In fact, all sensor network applications will
require uses of the network. Unfortunately, the ad-
hoc characteristics and the dynamics of wireless con-
nectivity in sensor network impose great obstacles in
deploying real applications. Therefore, the operating
system should provide a set of adaptive, self config-
urable network protocols for ease of application de-
velopment. Work in TinyOS [3] has provided us
an unreliable data propagation channel called Active
Messages and a simple source based routing frame-
work to create a self-maintaining ad-hoc network.

3.1 Active Messages

An active message simply comprises of the destina-
tion of the message, an identifier for the message
handler at the destination, and the application spe-
cific data unit. A set of error detection and forward
correction schemes can be used to combat for inter-
ference. Such schemes include 16 bit CRC, voting
over redundant data, and single-bit-error-correction
double-bit-error-detection-scheme. Data retransmis-
sion is currently not supported by the system. In
fact, we believe that since traffic in sensor network
is real time information from continuous sampling,
retransmission is often not necessary and may be en-
ergy inefficient.

3.2 Ad hoc Routing

The goal of the ad hoc routing protocol is to let each
sensor be capable of discovering a network route to
a nearby base station. The current protocol will at-
tempt to form a minimum spanning tree topology
with the base station being the root of the tree which
periodically broadcasts a one hop route to its nearby
neighbors. Neighboring nodes listening for the broad-
cast will set its route accordingly and can route di-
rectly to the base station. Subsequently, these neigh-
boring nodes will append themselves into the route
and broadcast a two hop route. Nodes that receive
these two hop routes but fail to hear the base sta-
tion broadcast can route packets through these base
station neighbors and they can further extend and
propagate these routes with an addition of to their
neighbors. These route propagations will eventually
flood the entire network and each node will be capa-

4

ble of establishing a route to the base station given it
can hear at least one neighbor. To maintain the min-
imum spanning tree topology, each node, based on
what it can receive, will use route with the minimum
number of hops from the base station. Although base
station is the origin of the tree, each node has no no-
tion of which base station it is routing to. Therefore,
such a scheme can also be deployed in the case of the
presence of multiple base stations.

3.3 Adaptive Transmission Control

Given we are in a multi-hop network, our goal is to
enable global communication from nodes to base sta-
tion with a hope of achieving some degree of fairness
among each node.

A node with a high packet transmission rate will dom-
inant the wireless channel and decrease the chances
of routing its children packets which subsequently
hinders the probability of its children’s packets from
reaching the base station. It also creates an unfair-
ness issue in channel allocation among neighboring
nodes. Therefore, an adaptive scheme must be em-
ployed for a node to control its own transmission
rate to allow its neighbors and its children to achieve
somehow a fair chance of reaching the base station
while maintaining an a moderate level of channel uti-
lization.

The adjustment of transmission rate can be based on
the probability of successful transmission signalled
by acknowledgements. That is, if transmission is
not successful, it is natural to decrease the transmis-
sion rate to allow others to send while a successful
transmission should reinforce an increase to maxi-
mize channel utilization. The adaptation can take a
linear increase and multiplicative decrease approach
based on whether an acknowledgment is received or
not. The upper bound of the transmission rate is the
aggregate transmission rate of all applications on a
node. Packets that are being routed will not follow
this scheme since the goal is to have each node to
adapt to the amount of routing traffic. One interest-
ing characteristics of multi-hop network is that the
action of routing by the parent acts as an acknowl-
edgement to the child. That is, acknowledgments are
free in this regime.

The effectiveness of such an adaptive scheme can be
illustrated by simulating the network topology shown
in Figure 1. The goal is to allow each node in the
network to have a fair chance to communicate to the
base station. The adaptive scheme controls the trans-

Figure 1: A spanning tree topology in which all nodes
are attempting to send packets at a rate of 4 packet/s
to node 0 through the routes denoted by the edges in
the graph.

mission rate by controlling a transmission probability
variable. Setting the transmission probability to 0.5
will set the transmission rate to be 50% of the ag-
gregate send rate of all applications. Therefore, by
increasing the send probability by an amount α, we
can linear increase the send rate. To multiplicative
decrease the transmission rate, we simply decrease
the send probability by a factor β. With an α = 0.03
and β = 2, we arrive with a simulation result sum-
marized in Table 4.

Node Actual Base Station % Received
ID Send Rate Receive Rate By Node 0

(packet/s) (packet/s) %

1 1.725 1.707 99
2 0.935 0.6732 72
3 1.025 0.6765 66
4 1.065 0.6496 61
5 1.28 0.6571 61.7
6 2.84 1.391 49
7 1.355 0.664 49

Table 4: Simulation result for the topology shown in
Figure 1

Given the bandwidth of 10kbps in the simulation and
a packet size of 34 bytes, a node can send only send
at most 11 packets/s after taking acknowledgments
into account. Since the application at each node is
sending at a rate of 4 packets/s, it is clear that none of
the nodes can send to the base station at such a rate.
In Table 4, it is clear that the rate control mechanism
can successfully adapt the transmission rate at each
node to a point where every node, including node
6 and 7 which are far away from the base station,

5

can have some degree of success in reaching the base
station.

4 Applications and Deploy-
ment Issues

4.1 Implementation of Motivating
Applications

To explore possible functionalities of motes, we
implement a couple of prototype applications on
a small sensor network test bed deployed in the
fourth floor of Soda Hall. The first application
is light sensing, which is used to monitor light
strength in several rooms in Soda Hall. The sec-
ond one, object tracking, is aimed at locating ob-
jects within an accuracy of respective rooms. Both
of these applications provide a web interface which
enable users to obtain information on the Internet.
(http://nighthawk.cs.berkeley.edu:8080/tracking/)

4.1.1 System architecture

Considering the scalability of future systems, we de-
sign a system architecture that can support multiple
base stations by decoupling applications from base
stations. The system architecture is shown in Fig-
ure 2.

Basestation

Basestation

Basestation

Basestation

UDP
�

Server
�

File-based Database
�

Applications

HTTP Server
Browser

Browser

Browser

Figure 2: The architecture of the prototype system

The work process of the system is as follows:

1. motes keep sending packets to base stations over
radio links

2. base stations parse these packets, remove control
bytes (e.g. packet header and tail), then forward
these packets to the UDP server

3. the UDP server analyzes UDP packets and save
data to the file-based database

4. users can visit the applications by submitting
CGI requests to the HTTP server

5. applications access to the file-based database, re-
trieve and process data, and then return corre-
sponding information back to users

Currently, we manually manage part of the file-based
database like naming motes and recording motes dis-
tributed information (i.e., valid mote IDs, mappings
from motes to rooms, mapping from motes to objects,
etc.).

The system is built on FreeBSD 2.2.7 with apache
2.3.14 and is implemented on PERL 5.005.

4.1.2 Light Sensing

Light sensing is used to monitor light strength
changes in a building. The very mechanism can be
applied to temperature sensing as well. Current im-
plementation is only a prototype to evaluate sensor
network’s performance and is built based on the sys-
tem architecture discussed above.

The UDP packet format for light sensing is shown in
Figure 3. Byte 0 is source mote ID. Byte 1 is used to
discriminate packets for different applications. Byte
2 is a cycling number (from 0 to 255) to label the
order of application-specific packets sent from each
mote. Byte 4 is light strength (255: lightest; 0: dark-
est). Byte 3, 5-19 are not used for now. We are
considering the possible mechanism of aggregation to
increase the efficiency of packets without losing real
time property. When UDP server receives a packet,
it will check the application type label first. If it’s
a light sensing packet, then the server will save se-
quence number and light strength as well as a times-
tamp into corresponding log file of that mote.

mote ID not usedlight
strength�not usedseq. #�app type�

0
� 1

9
�5

�
43

�
21

Figure 3: Packet format for light sensing

Right now the light sensing application supports
monitoring of the light strength of a specific room
at any given time point. It provides two granularities
of time intervals for statistics: one is every hour; the
other is every 5 minutes. Figure 4 is a sample demon-
stration, as shown in the browsers, of the statistics
of the light strength of Room 473 in Soda Hall in
both last two hours and last twenty-four hours from

6

Figure 4: An example of the output of light sensing
(This is the graph showing the changes of the light
strength in Room 467 Soda Hall in the last two hours
and last twenty=four hours before 16:45 on 12/10/00.

a given time point. Sharp changes in that figure are
caused either by shutting down the light in that room
in night or by packet errors. One of our future works
is to decrease packet error rates.

4.1.3 Object Tracking

Many people are doing research on in-building peo-
ple/object tracking. [8, 5] Compared to their research,
one of the main features of our work on object track-
ing using motes is the limitations of motes’ func-
tionality. For instance, motes can not measure ra-
dio strength accurately. Orientation effect on motes’
radio propagation is not well studied. On the other
hand, motes are cheaper and can be deployed more
easily than sensors and instruments used in [x] and
[x]. Given these features of motes, we make the goal
of our object tracking application as locating objects
in a scale of different rooms.

The format of the UDP packets for object tracking is
shown in Figure 5. The contents for the first 4 bytes
are the same as those in packets for light sensing.
Routing trace information is saved in bytes 4-8. In
each byte is the ID of the most which is in the route
path from the source mote to the base station. The
following 12 bytes (bytes 9-18) are used to save the
IDs of neighbor motes of the source mote and cor-
responding radio strengths between each neighbor to
the source mote. The neighbors information is col-
lected based on this mechanism. Each mote in the

mote ID neighbor
mote id1�routing tracenot usedseq. #�app type�

0
�

198
�

43
�

21

radio
strengh�

9
�

10

neighbors 2-5's ids and radio
strengths�

1811

not used

Figure 5: Packet format for light sensing

sensor network sends out packets periodically. So for
each mote, it can know who are its neighbors by lis-
tening to packets from other motes. Right now we
just use the neighbors information to infer the lo-
cation of the object that takes the source mote. A
reason why we don’t use the information of radio
strengths is that they are not accurate. They are
always either 255 or 0.

A sample topology of sensor network is shown in Fig-
ure 6. There are two kinds of motes. One is landmark
motes, whose locations are fixed. The other is mov-
ing motes, which are attached to respective objects.
Since base stations are fixed, they also play as land-
marks. Given the goal of object tracking application,
we design an algorithm for inferring the locations of
moving motes, which is sort of straightforward and
intuitive. Generally speaking, for every moving mote,
if we know it is close to some landmark motes, then
we can infer that it should be around a specific lo-
cation. Moreover, if the moving mote does not have
any landmark neighbor but some moving motes, then
we can infer its location by inferring the location of
its moving neighbors. Now we just support two level
recursion for inference, which means that if we can
not infer the location of the moving neighbors of a
given moving mote, then the inference algorithm will
return with a failure.

Figure 6: A sample topology of a sensor network.
Every mote can only receive packets from neighboring
motes which are in its communication range.

According to this algorithm, we can see that commu-
nication range of motes play a very important role.
Actually there is a tradeoff. If we make the com-
munication range very large, then the precision of

7

the inferred location will be very low because each
mote can hear other motes even they are far from
it. On the other hand, if we make the communica-
tion range very small, then the chance that a mote
cannot send packets in the sensor network will be
high. Right now we do some manually tune of the
communication range of moving motes by adjusting
the antenna lengths of them. Adaptive tune of com-
munication ranges of motes in a sensor network to
improve the performance of object tracking is a very
interesting topic for future research. For current ver-
sion of motes, we cannot adaptively tune their radio
strengths to change their communication ranges.

To solve the problem of error packets, we maintain a
log file of valid mote IDs, which can help the infer-
ence algorithm remove error neighbor IDs. For future
work, we would add some rules to locate errors when
some error neighbor IDs happen to be some valid one
but far from the source mote’s real location.

The object tracking application supports tracking of
specific object’s location at any given time point.
Users just need to visit the web page and input the
object’s name (now it is a person’s name) and a time,
and then they will get the location information of
that object at that time. However, we implement a
simple mechanism to do access control for protecting
privacy. For some specific objects, only people who
know these objects’ control numbers can track them.
When this mechanism is applied to the real world, it
can support the case like only your boss and project
partners can track you.

4.2 Deployment Issues

4.2.1 Development Platform

The networked sensor prototypes, designed and de-
veloped by the Smartdust [10] and TinyOS [3] re-
search group, have provided us a valuable testbed
for real deployment of our applications. We believe
these prototypes are very representative since they
entail typical networked sensor constraints of limited
computation power, storage, and energy. The pro-
cessor is an ATMEL [1] 4MHz, 8 bit microprocessor
with 8kB of program and 512 byte of data memory.
The radio is a single channel RF transceiver oper-
ating at 916MHz. They are power limited by the
attached battery and consumes in an order of 10mA
in its active state. With hardware analog to digi-
tal conversion built into the processor and software
I2C [13] support, a heterogenous set of sensors such
as light, temperature, humidity, pressure, accelera-

tion, and magnetic field can be integrated into these
prototypes.

Application development on networked sensors has
been greatly simplified by the component based de-
sign in TinyOS and networking support discussed in
3. An application comprises a tree of components,
with each levels in the tree constitutes an abstraction
down to the hardware. A rich set of components for
accessing the network and sensors has already been
provided by TinyOS. Therefore, application author
simply composes a tree of components that it needs
(e.g. networking, light sensor) for its application and
concentrates on implementing the application itself.
Since TinyOS takes an event driven programming ap-
proach, each components is capable of issuing events
and accepting commands. An application should also
follow this state machine model by processing events
such as incoming messages or incoming requested sen-
sor readings and issuing commands to send messages
or request sensor readings. The path of event and
command propagations are defined by the tree of
components. Any computations such as averaging
can be done by posting a task which is non-blocking
and runs to completion. Our experience suggests that
most applications under TinyOS can be accomplished
in less than one hundred lines of code.

4.2.2 Energy Consumption

Energy is probably the most precious resource on a
networked sensor. Table 5 shows the current con-
sumption of various components on our sensor proto-
type. [3]

Component Active Idle Inactive
(mA) (mA) (µA)

MCU core (AT90S8535) 5 2 1
MCU pins 1.5 - -
LED (each) 4.6 - -
Photocell .3 - -
Radio (RFM TR1000) 12 tx - 5
Radio (RFM TR1000) 4.5 rx - 5
Temp (AD7416) 1 0.6 1.5
Co-proc (AT90LS2343) 2.4 .5 1
EEPROM (24LC256) 3 - 1

Table 5: Current per hardware component of our
sensor prototype.

At peak load, the entire system consumes about
19.5mA of current. With our prototype powered by
a lithium battery rated at around 575mAh, it is ex-
pected to run for about 30 hours. Our experience

8

from real experiment suggests that it actually run for
about 20 hours as the processor fails to operate at a
voltage below 2.7V which constitutes about 80% of
the battery capacity. With two AA alkaline batter-
ies rated at 2850mAh each, it is expected to run for
300 hours or 12.5 days. If every components stays
in idle mode, the system can extend to run for 120
days. Therefore, the operation duty cycle for each
component must be tuned in order to achieve a right
balance between application demand and life time of
the device. At the current implementation, we tune
the radio duty cycle to be 10% while it is sampling
for the preamble of a packet and resumes to 100%
once it has sensed an incoming packet.

5 Future Work

Our deployment experience has opened up lots of in-
teresting issues that we are motivated to continue ex-
ploring:

1. Authenticated Data Aggregation An interesting
challenge arises when data aggregation is per-
formed in the intermediate nodes of the routing
tree. Since the intermediate nodes does not have
the shared-key to validate data from their chil-
dren, it cannot authenticate the message and ag-
gregate the data. We believe this problem can be
solved by public-key cryptography system. With
public-key system, the authentication problem
reduces to validating the certificates of children
nodes via a trusted third party.

2. Secure Peer-to-Peer Communication Under our
current scheme, communications between peer-
ing motes are not secure. To establish peer-to-
peer secure channel, we believe well-known so-
lution such as Kerberos [14] is suffice to setup
shared secret between the communicating parties
and enable secure communication. Although we
have not encountered applications that require
this capability, as the need arises, such scheme
can be implemented.

3. Life Monitoring Capability Having the battery
life monitoring capability is probably one of the
most useful feature in the case of deployment.
It is not possible to rely solely on the analog
to digital converter inside the processor since its
reading is relative to the power supply voltage.
We are currently looking to use an adjustable
band-gap voltage reference device to implement
this task.

4. Data Aggregation To deploy a scalable sensor
network, some form of application dependent
data aggregation should be done along routes to
the base station while maintaining a certain de-
gree of error tolerance. Though data aggregation
may not be applicable in all cases, some variants
of packet concatenation along routes to the base
station may as well achieve similar aggregation
behavior.

5. Adaptive Radio Transmission Range Control
Physical node placement to achieve desirable
node density without any dead spot can be ex-
tremely tedious, especially for large scale deploy-
ment. Having the ability for each node to adapt
its transmission signal strength based on a desir-
able node density rather than careful placement
of nodes by human would be yet another desir-
able feature. Most importantly, when nodes fail,
the same mechanism can be used for neighboring
nodes to increase their transmission strength to
route over failure nodes to achieve a self healing
effect.

6. Location Based Addressing with Random MAC
ID Our current deployment of 15 nodes is not
a large scale study. In fact, our MAC identifier
for each sensor node only allows 255 different
nodes. Thousands of sensors may each require a
unique identifier if deployment is done this way.
An interesting approach is to use location based
address combined with a small random identi-
fier. For example, most applications may only
need temperature reading in a specific location
and do not care which particular sensor is report-
ing the reading. Such a scheme also naturally
provides a hierarchical addressing scheme based
on geographical scope. Since radio transmission
range is relatively small, a small random identi-
fier is adequate for a low probability of identifier
conflict within a local region.

7. Security of sending packets from base stations to
the UDP server Now the packets from base sta-
tions to the UDP server are in the clear. Since
some information in the packets are related to
privacy, e.g. the packets for object tracking, we
are thinking about encrypting these packets in
the future.

8. Improvement of current inference algorithm
Learning algorithms are widely applied to ap-
plications in sensor networks. The current ver-
sion of our inference algorithm for object track-
ing is kind of simple. As the functionalities of
motes are getting stronger and stronger, we can

9

collect more information from different perspec-
tives, e.g., radio strength, antenna orientation,
etc. Then, we can import Kalman Filter al-
gorithm to improve the performance of object
tracking.

9. Database optimization Now we implement these
applications by using file-based database and
PERL. The speed of these applications is not im-
pressive. As the size of the sensor network grows
larger, we need to optimize the structure of the
database to increase the applications’ speed.

6 Conclusion

Security and deployment issues are critical in real-
world large scale sensor networks. We have designed
and implemented a security protocol that provides
confidentiality and authentication using only RC5
shared key decryption primitive. Our results show
that code size is 1.6KB and performance is adequate
even for a mote with only 8KB of memory and a
4MHz 8-bit processor.

We have also designed and implemented an adaptive
transmission and routing scheme to address fairness
in the network, so we can better scale up the number
of motes without starvation.

Our two demo application are people tracking and
light sensing, and we can successfully track people
at room-level resolution and can monitor light levels.
The application have web-based query interface to
make them easier to use.

In terms of deploying the actual sensor network, we
used AA batteries instead of the small lithium but-
ton batteries for better battery life, and we slowed
down the send rate to reduce energy consumption.
We also manually tuned the transmission range of
the motes to give the tracking application better res-
olution. We believe that using combinations of self-
monitoring and adaptive algorithms will further sim-
plify the deployment process.

From our experience in setting up a real sensor net-
work in our building, we learned that the solutions
that we have used are helpful, but are only a tip of
the iceberg (no pun intended). There is still much re-
search that we need to work on to be able to deploy
a large scale sensor network.

References

[1] Atmel, Inc. At90s4434/ls4434/s8535/ls8535

Preliminary (Complete) Datasheet.

[2] Neil M. Haller. The S/KEY one-time password
system. In ISOC, 1994.

[3] Jason Hill, Robert Szewczyk, Alec Woo, Seth
Hollar, David Culler, Kristofer Pister. Sys-
tem architecture directions for networked sen-
sors, 2000.

[4] David L. Mills. Network Time Protocol (Version
3) Specification, Implementation and Analysis.
Internet Request for Comments, March 1992.
RFC 1305.

[5] Anit Chakraborty N. B. Priyantha and Hari Bal-
akrishnan. The cricket location-support system.
In Proceedings of ACM MOBICOM, pages 32–
43, 2000.

[6] NIST. Advanced encryption standard (aes)
development effort. http://csrc.nist.gov/
encryption/aes/, October 2000.

[7] OpenSSL. The OpenSSL project. http://www.
openssl.org/, 2000.

[8] V. N. Padmanabhan P. Bahl. Radar: An in-
building rf-based user location and tracking sys-
tem. In Proceedings of IEEE Infocom, pages 775–
784, 2000.

[9] Adrian Perrig, Ran Canetti, J.D. Tygar, and
Dawn Xiaodong Song. Efficient authentication
and signing of multicast streams over lossy chan-
nels. In IEEE Symposium on Security and Pri-
vacy, May 2000.

[10] K. S. J. Pister, J. M. Kahn, and B. E. Boser.
Smart dust: Wireless networks of millimeter-
scale sensor nodes, 1999.

[11] Ronald L. Rivest. The MD5 message-digest al-
gorithm. Internet Request for Comments, April
1992. RFC 1321.

[12] Bruce Schneier. Applied Cryptography (Second
Edition). John Wiley & Sons, 1996.

[13] Philips Semiconductors. The I2C-
bus specification, version 2.1. http:
//www-us.semiconductors.com/acrobat/
various/I2C_BUS_SPECIFICATION_%3.pdf,
2000.

10

http://csrc.nist.gov/encryption/aes/
http://csrc.nist.gov/encryption/aes/
http://www.openssl.org/
http://www.openssl.org/
http://www-us.semiconductors.com/acrobat/various/I2C_BUS_SPECIFICATION_% 3.pdf
http://www-us.semiconductors.com/acrobat/various/I2C_BUS_SPECIFICATION_% 3.pdf
http://www-us.semiconductors.com/acrobat/various/I2C_BUS_SPECIFICATION_% 3.pdf

[14] Jennifer G. Steiner, Clifford Neuman, and Jef-
frey I. Schiller. Kerberos: An authentication ser-
vice for open network systems. pages 191–202,
Winter 1988.

11

	1 Introduction
	2 Security
	2.1 Motivations
	2.2 Protocols
	2.2.1 Base Station To Mote Confidentiality and Authentication
	2.2.2 TESLA: Source Authentication Protocol

	2.3 Implementation Challenges and Implications
	2.4 Performance
	2.4.1 Server
	2.4.2 Mote

	3 Networking Support
	3.1 Active Messages
	3.2 Ad hoc Routing
	3.3 Adaptive Transmission Control

	4 Applications and Deployment Issues
	4.1 Implementation of Motivating Applications
	4.1.1 System architecture
	4.1.2 Light Sensing
	4.1.3 Object Tracking

	4.2 Deployment Issues
	4.2.1 Development Platform
	4.2.2 Energy Consumption

	5 Future Work
	6 Conclusion

