Energy-Delay Tradeoffs **Brent Horine** March 28, 2011

Citation

Moo-Ryong Ra, Jeongyeup Paek, Abhishek B. Sharma, Ramesh Govindan, Martin H. Krieger, Michael J. Neely, "Energy-Delay Tradeoffs in Smartphone Applications", In Proc. Of the 8th International Conference on Mobile Systems, Applications, and Services (MobiSys), 2010, pp. 255-270.

Motivation

 Reduce energy consumption of uploading videos in Tomography project, while providing a user controllable tradespace w.r.t. delay

* 5000 videos (as of writing)

<u>http://tomography.usc.edu/</u>

Applications of Tomography

- * Surveillance of transportation hub in LA
- Behavior analysis of developmental disabilities in children
- Document construction in post-Katrina Mississippi for improving zoning regs and ordinances

Example Scenario

Strategies

Link Selection Problem
Minimum Delay (5X energy consumption)
Always use WiFi (2X)
Energy Optimal (1X)

Problem Formulation

- * Link Selection Problem solved with a Lyapunov optimization framework
- Minimizes total energy expenditure subject to keeping the average queue length finite
- Control Algorithm: SALSA (Stable and Adaptive Link Selection Algorithm)

Implementation Details

- Adjust parameter V in Lyapunov control to tune the energy-delay tradeoff
- Derive link rate estimates empirically from RSSI measurements, then learn with use
- Simulated and experimental traces indicate an energy savings (in terms of battery charge life) of 10-40%

Generic Results and Benefits

- Using Lyapunov optimization techniques, they get arbitrarily close to a target Power consumption, while maintaining queue stability
- Cost of reduced power consumption is a larger delay
- * Average queue backlog grows linearly in V
- Does not require prior knowledge of distributions of A[t] and SI[t], except that variances are finite

Time Average Power Consumption and Queue Backlog

 ε > 0 constant describing distance between arrival pattern and the capacity region boundary P^* = theoretical lower bound on time average power consumption B = upper bound on the sum of variance of A[t] and μ [t]

V Parameter Control

- * Although V controls the tradeoff, it is not a simple relationship
- * Let α be slope of time averaged power consumption

$$\frac{d(P^* + B/V)}{dV} = \frac{-B}{V^2} = -\alpha$$
$$\Rightarrow V = \sqrt{\frac{B}{\alpha}}$$

Expressing V in User Units

$$V[t] = \sqrt{\frac{B[t]}{\alpha (D[t]+1)^{\alpha}}}$$

D[t] = instantaneous delay in data transfer (time that the bit at the head of the queue has been resident in queue) B is now time varying $\alpha \rightarrow 0$ for energy efficiency (V[t] decreases slowly) α large for quick transfers (V[t] decreases rapidly)

Assumed Input Data Patterns

Link Availability w/Failure Probability (CDF)

Simulation Results

SALSA Energy Savings and Delay Penalty

Dispersion versus Alpha

Dispersion describes distance from "ideal"

Simulation Results

Figure 10: STATIC-DELAY VS KNOW-WIFI VS SALSA

Scan Interval Comparisons

Experimental Results

Figure 16: Experimental result at Shopping Mall compared to simulation results

Significance of Work

 A user controllable framework with a large tradespace between latency of video upload and battery life

Potential Improvements

- Explore a larger tradespace using the simulator rather than relying upon empirical traces
- Incorporate learning to predict when a repetitive user might arrive near a quality WiFi AP
- * As the authors suggest, continue to work on relating α to user units
- Could use location rate info to guess if user is likely to move into a superior region soon