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Moftivation

Reduce energy consumption of uploading
videos in Tomography project, while providing @
user confrollable tradespace w.r.t. delay

5000 videos (as of writing)

hitp://tomography.usc.edu/




Applications of Tomography

Survelllance of transportation hub in LA

Behavior analysis of developmental disabilities in
children

Document construction in post-Katrina Mississippi
for improving zoning regs and ordinances




Example Scenario
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Strategies

Link Selection Problem
Minimum Delay (85X energy consumption)
Always use WiFi (2X)

Energy Optimal (1X)




Problem Formulation

Link Selection Problem solved with a Lyapunov
optimization framework

Minimizes total energy expenditure subject to
keeping the average queue length finite

Conftrol Algorithm: SALSA (Stable and Adaptive
Link Selection Algorithm)




Implementation Details

Adjust parameter V in Lyapunov conftrol to fune
the energy-delay tradeoff

Derive link rate estimates empirically from RSSI
measurements, then learn with use

Simulated and experimental traces indicate an
energy savings (in terms of battery charge life) of
10-40%




Generic Results and Benefits

Using Lyapunov optimization techniques, they
get arbitrarily close to a target Power
consumption, while maintaining queue stabllity

Cost of reduced power consumption is a larger
delay

Average queue backlog grows linearly in V

Does not require prior knowledge of distributions
of A[t] and Sl[t], except that variances are finite




Time Average Power Consumption and
Queue Backlog

B
P = limsup - El*{P[r]}< P + v

B+VP’

U = limsup— El«{U[r]}<
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€ > 0 constant describing distance between arrival pattern and

the capacity region boundary

P* = theoretical lower bound on time average power
consumption

B = upper bound on the sum of variance of A[t] and u [t]




V Parameter Conirol

Although V controls the tradeoft, it is not a simple
relationship

Let o be slope of time averaged power
consumption




Expressing V in User Units

D[t] = instantaneous delay in data transfer (fime that

the bit at the head of the queue has been resident in
queue)

B is now time varying
a =0 for energy efficiency (V[t] decreases slowly)
a large for quick transfers (V[t] decreases rapidly)




Assumed Input Data Patterns

Dist. of the number of videos
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Link Availability w/Failure
Probability (CDF)
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Simulation Results

Performance Comparison

Min-Delay WiFi-Only SALSA with «=0.2
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SALSA Energy Savings and Delay
Penalty
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Dispersion versus Alpho

Dispersion describes distance from “ideal”
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Simulation Results

Dispersion Comparison
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Figure 10: STATIC-DELAY vs KNOW-WIFI vs SALSA




Scan Interval Comparisons

Aggregated WiFi-Scan Cost Average Delay(Hour) Energy Costs(%)
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Experimental Results

Figure 15: Experimental result at the USC Campus compared to simulation results

a=04 .7 o =1.0

Figure 16: Experimental result at Shopping Mall compared to simulation results




Significance of Work

A user controllable framework with a large
tradespace between latency of video upload
and battery life




Potential Improvements

Explore a larger tradespace using the simulator
rather than relying upon empirical fraces

Incorporate learning to predict when a
repetitive user might arrive near a quality WiFi AP

As the authors suggest, continue 1o work on
relating a fo user units

Could use location rate info to guess if user is
likely to move into a superior region soon




