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What is MetroTrack

Mobile Phone Event Tracking System

Tracks moving targets by collaborative sensing
devices.

Predicts future location of a target that may be lost
during tracking.

Does not rely on static networks or backend
computation, but rather mobile users, so 1t 1s
susceptible to spacial density, user participation, and
realtime computation/feedback needs.
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Initial Pros/Cons

Relies on participatory users.
Does not rely on user action.
Needs dense network of users.

Why would someone participate to track someone else's target? Why
participate at all?

Mobility of users is unpredictable and uncontrollable.
Requires common sensors between users.

Requires application to bé running.

Battery consumption?

Does not rely on central nodes.

Does not use node grouping.

No back-end requirements.



Framework

MetroTrack consists of two algorithms

(1) Information-Driven Tracking

The sensor node begins tracking when certain criteria
1s met.

Forwards tracking task to neighboring nodes. '



Framework (cont.)

(2) Prediction-Based Recovery

If a nodes neighbor(s) do not report a tracked event
task, then it is assumed that the target 1s lost.

Recovery 1s based on estimation of the targets |
location and the margin of error associated with the
prediction.



Information-Driven Tracking

User Initiation or Sentry Node Initiation detects a
target.

The node sends a task message to its first nearest
neighbors (one hop away).

A node only forwards a task message 1f it has
recerved a task message AND detects the target.

A node that has detected a target AND sends a task
message listens for the same task message to be sent

back.

If 1t does not receive a task message back from any
of its neighbors, 1t assumes the target 1s lost.
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Prediction-Based Recovery

A target is not lost just because a sensor is not detecting it.

Only 1f a sensor does not receive a responding task message
from a neighboring node, does it infer that the target 1s lost.

Once a node determines that a target 1s lost, 1t broadcasts a
“recovery message’’ that 1s projected to nodes 1n the location
to which the target is likely to move.

This 1s done by a geocast scheme.

If a node that receives the recovery message detects the
target, then recovery 1s complete.

A task message is then sent out, and MetroTrack
begins again at the Information- Drlven Trackmg
phase
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Prediction-Based Recovery

A node that receives the recovery message stays in
the recovery state until it moves outside the
Projection Location or a recovery timer expires.

Once the recovery timer expires and the target 1s not
recovered, then MetroTrack stops tracking the target.

If the target is recovered, the recovery node
broadcasts a suppression message so other nodes
know to quit sending the recovery message and end
the recovery process.



Algorithm Assumptions

In order to develop the prediction algorithm for the
recovery process, the authors make the following
assumptions:

The target velocity 1s comparable to the node
velocities.

Node sampling rate is high enough to detect the
target at the targets given velocity.

The targets velocity 1s represented as a Constant
Velocity model (dynamically changing velocity
with constant known variance).

The target thresholds are unique to that target.



Prediction Algorithm

Kalman Filter is used as a predictor so the process is
represented as a linear state estimator and the
process noise 1s represented as zero-mean Gaussian
white noise. The measurement noise 1s associated
with the prediction of the next step, k.

The variance of the measurement noise dictates the
center and radius of the Projection Location.

The target can then be assumed to be within the
Projection Location with approximately 95%
accuracy. |
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Next Step: Distributed Kalman-
Consensus Filter (DKF)

Each node runs the Prediction Algorithm (Kalman
Filter) with their own locally aggrigated data and
covariance matrices.

Then the state estimates (position and velocity) of
the target are updated.
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Experiment

Implemented a Local Kalman Filter and the
Distributed Kalman Filter as the prediction
mechanisms.

Local Kalman Filter does not implement information
sharing between nodes.

Testbed consisted of Nokia smartphones and a bike
with a boombox on it.

The goal was to track the bike with the music
playing.



Experiment

Constant Pink noise was played
Bike moved at walking speed

Sound was sampled for 0.5 seconds every 2 seconds by 11
phones

WiF1 transmission with a communication range of 25-30
meters.

Localization (trilateration) is used to calculate the location
of the target

Users allowed to move around within 40m of the target and
randomly 1n-and-out of the sensing range of 20m. '
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Results

Loc trace o Loc trace
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Sound was turned off from 37s to 54s to emulate a lost target
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Experiment Critique

Noisy localization said to be caused by noisy RMS estimation of the sound signal and also
GPS positioning error.

Hard to consider the effectiveness of the MetroTrack algorithm when an
experiment is chosen that introduces its own variance and error.,

Standard Deviation of the sound source localization error for DKF must be found
by trial-and-error before use (used for covariance matrix in Kalman Filter).
Applicable to use realtime?

Localization requires sharing of data between users. Is privacy a concern for the users? It can
be compromised.

Localization by trilateration relies on knowing the original volume of the target sound and the
pattern of the sound attenuation over distance (environment affects this as well).

Sound source iS omni-directional, but in realtime would users know if it the target sound is
truly omni-directional or would it miss the target if it was within the sensing range but behind
the target sound?

If sound was only turned off for 16 seconds;, the bike would only have traveled a max of 7
meters.... hardly a viable distance when thereis 11 sensors within a 40 meter radius from the
- bike at all fimes; all having a communication range of 25 meters.



Matlab Simulation

Simulated multiple deployment scenarios with each scenario
run 20 times for 300 seconds each.

Simulation area 1s 1000m x 1000m
Target transmission range of 100m
Sensing ranges of 50m and 100m tested
Timeout for recovery process 1s 20 seconds
Objectives: .
Track the target for as long as possible without losing
it. '
Track the target as long as posmble using recovery
Wlth DKF and LKF.
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Results

No recovery
Fa

¢— Recovery with LKF
—»— Recovery with DKF

50 100 150 200 250 300 350 400
Density (number of sensors / kmz}

(a) Sensing range of 100 m.

Tracking Duration (seconds)

No recovery
—&— Recovery with LKF

—#— Recovery with DKF

100 150 200 250 300 350
Density (number of sensors / kmz]

(b) Sensing range of 50 m.
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