
CrowdSearch: Exploiting Crowds for Accurate Real-time
Image Search on Mobile Phones

Tingxin Yan, Vikas Kumar, Deepak Ganesan
Department of Computer Science

University of Massachusetts, Amherst, MA 01003
{yan, vikas, dganesan}@cs.umass.edu

ABSTRACT
Mobile phones are becoming increasingly sophisticated with a
rich set of on-board sensors and ubiquitous wireless connectiv-
ity. However, the ability to fully exploit the sensing capabilities
on mobile phones is stymied by limitations in multimedia pro-
cessing techniques. For example, search using cellphone images
often encounters high error rate due to low image quality.

In this paper, we present CrowdSearch, an accurate image
search system for mobile phones. CrowdSearch combines auto-
mated image search with real-time human validation of search
results. Automated image search is performed using a combina-
tion of local processing on mobile phones and backend processing
on remote servers. Human validation is performed using Amazon
Mechanical Turk, where tens of thousands of people are actively
working on simple tasks for monetary rewards. Image search with
human validation presents a complex set of tradeoffs involving
energy, delay, accuracy, and monetary cost. CrowdSearch ad-
dresses these challenges using a novel predictive algorithm that
determines which results need to be validated, and when and
how to validate them. CrowdSearch is implemented on Apple
iPhones and Linux servers. We show that CrowdSearch achieves
over 95% precision across multiple image categories, provides re-
sponses within minutes, and costs only a few cents.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications;
H.4.0 [Information System Applications]: General

General Terms
Algorithms, Human Factors, Performance

Keywords
Crowdsourcing, Human validation, Image search, Real time.

1. INTRODUCTION
Mobile phones are becoming increasingly sophisticated with

a rich set of on-board sensors and ubiquitous wireless con-
nectivity. One of the primary advantages of ubiquitous in-
ternet access is the ability to search anytime and anywhere.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiSys’10, June 15–18, 2010, San Francisco, California, USA.
Copyright 2010 ACM 978-1-60558-985-5/10/06 ...$10.00.

It is estimated that more than 70% of smart phone users
perform internet search [18]. The growth rate in mobile
internet search suggests that the number of search queries
from phones will soon outstrip all other computing devices.

Search from mobile phones presents several challenges due
to their small form-factor and resource limitations. First,
typing on a phone is cumbersome, and has led to efforts to
incorporate on-board sensors to enable multimedia search.
While the use of GPS and voice for search is becoming
more commonplace, image search has lagged behind. Im-
age search presents significant challenges due to variations in
lighting, texture, type of features, image quality, and other
factors. As a result, even state-of-art image search systems,
such as Google Goggle [21], acknowledge that they only work
with certain categories of images, such as buildings. Second,
scrolling through multiple pages of search results is inconve-
nient on a small screen. This makes it important for search
to be precise and generate few erroneous results. Third, mul-
timedia searches, particularly those using images and video
clips, require significant memory, storage, and computing
resources. While remote servers, for example cloud com-
puting infrastructures [6], can be used to perform search,
transferring large images through wireless networks incurs
significant energy cost.

While automated image search has limitations in terms of
accuracy, humans are naturally good at distinguishing im-
ages. As a consequence, many systems routinely use humans
to tag or annotate images (e.g. Google Image Labeler [16]).
However, these systems use humans for tagging a large cor-
pus of image data over many months, whereas search from
phones needs fast responses within minutes, if not seconds.

In this paper, we present CrowdSearch, an accurate im-
age search system for mobile phones. CrowdSearch combines
automated image search with real-time human validation of
search results. Automated image search uses a combination
of local processing on mobile phones and remote processing
on powerful servers. For a query image, this process gener-
ates a set of candidate search results that are packaged into
tasks for validation by humans. Real-time validation uses
the Amazon Mechanical Turk (AMT), where tens of thou-
sands of people are available to work on simple tasks for
monetary rewards. Search results that have been validated
are returned to the user.

The combination of automated search and human vali-
dation presents a complex set of tradeoffs involving delay,
accuracy, monetary cost, and energy. From a crowdsourcing
perspective, the key tradeoffs involve delay, accuracy and
cost. A single validation response is often insufficient since

77

1) humans have error and bias, and 2) delay may be high
if the individual person who has selected the task happens
to be slow. While using multiple people for each valida-
tion task and aggregating the results can reduce error and
delay, it incurs more monetary cost. From an automated
image search perspective, the tradeoffs involve energy, de-
lay, and accuracy. Exploiting local image search on mobile
phones is efficient energy-wise but the resource constraints
on the device limits accuracy and increases delay. In con-
trast, remote processing on powerful servers is fast and more
accurate, but transmitting large raw images from a mobile
phone consumes time and energy.

CrowdSearch addresses these challenges using three novel
ideas. First, we develop accurate models of the delay-accuracy-
cost behavior of crowdsourcing users. This study is a first-
of-its-kind, and we show that simple and elegant models can
accurately capture the behavior of these complex systems.
Second, we use the model to develop a predictive algorithm
that determines which image search results need to be val-
idated, when to validate the tasks, and how to price them.
The algorithm dynamically makes these decisions based on
the deadline requirements of image search queries as well as
the behavior observed from recent validation results. Third,
we describe methods for partitioning of automated image
search between mobile phones and remote servers. This
technique takes into account connectivity states of mobile
phones (3G vs WiFi) as well as search accuracy require-
ments.

The CrowdSearch system is implemented on Apple iPhones
and Linux servers. Our results show that:

� A combination of automated search and human vali-
dation achieves over 95% precision across a range of
image types including faces, flowers, books and build-
ings. These categories cover a spectrum from good to
bad performance for automated search.

� We derive arrival and inter-arrival models that accu-
rately predict the delay of responses from human val-
idators. To our knowledge, this is the first attempt at
modeling delay behavior of a crowdsourcing system.

� CrowdSearch balances accuracy and monetary cost while
achieving user-specified deadlines for responses to search
queries. We show that CrowdSearch 1) saves monetary
cost by up to 50% in comparison with non-adaptive
schemes, 2) incurs only 5-6% larger delay in compar-
ison to a delay-optimal scheme, and 3) provides over
98% search precision across different deadlines.

� We show that dynamic partitioning of search func-
tionality across mobile phones and remote server saves
overall energy consumption up to 70%.

2. SYSTEM ARCHITECTURE
CrowdSearch comprises three components: (i) the mobile

phone, which initiates queries, displays responses, and per-
forms local image processing, (ii) a powerful remote server,
or cloud computing backend, which performs automated im-
age search, and triggers image validation tasks, and (iii) a
crowdsourcing system that validates image search results.

System Operation: CrowdSearch requires three pieces
of information prior to initiating search: (a) an image query,
(b) a query deadline, and (c) a payment mechanism for hu-
man validators. There are several options for each of these
components. An image query may be either a single image

Figure 1: An iPhone interface for CrowdSearch sys-
tem. A building image is captured by user and sent
to CrowdSearch as a search query. Users can specify
the price and deadline for this query.

or accompanied by other modalities, such as GPS location
or text tags. The deadline can be either provided explicitly
by the user using a micro-payment account such as Paypal,
or a search provider, such as Google Goggle, who pays for
human validation to improve performance and attract more
customers. We defer a more detailed discussion of some of
these options to §8. In the rest of this paper, we assume
that a search query comprises solely of an image, and is
associated with a deadline as well as payment mechanism.
Given such a query, CrowdSearch attempts to return at least
one correct response prior to the deadline while minimizing
monetary cost.

The major operations of CrowdSearch comprises of two
steps. The first step is processing the image query using an
automatic image search engine. The search engine searches
through a database of labelled images and returns a ranked
list of candidate results. Despite the fact that search is initi-
ated by images from mobile phones, the database of labelled
images can include images obtained from diverse sources in-
cluding FlickR or Google. The downside of automated image
search is that many results may be incorrect, particularly for
non-planar objects such as faces.

The second step in our system is the CrowdSearch algo-
rithm that uses a crowdsourcing system to validate the can-
didate results. In particular, we use the Amazon Mechanical
Turk (AMT), since it has APIs for automatic task posting,
and has a large user base of tens of thousands of people.
Human validation is simple — for each <query image, can-
didate image> pair, a human validator just clicks on YES if
they match and NO if they don’t match. Only thumbnails
of the images are sent for validation to minimize communi-
cation required from the phone. In return for the answer,
the validator is paid a small sum of money as reward (one
or few cents). The CrowdSearch algorithm considers several
tradeoffs while determining how candidate images are vali-
dated. Since human validation consumes monetary cost, it
attempts to minimize the number of human validators that
need to be paid to get a good response for a user query.
However, CrowdSearch also needs to take into account the
deadline requirements as well as the need to remove hu-

78

man error and bias to maximize accuracy. To balance these
tradeoffs, CrowdSearch uses an adaptive algorithm that uses
delay and result prediction models of human responses to ju-
diciously use human validation. Once a candidate image is
validated, it is returned to the user as a valid search result.

3. CROWDSOURCING FOR SEARCH
In this section, we first provide a background of the Ama-

zon Mechanical Turk (AMT). We then discuss several design
choices that we make while using crowdsourcing for image
validation including: 1) how to construct tasks such that
they are likely to be answered quickly, 2) how to minimize
human error and bias, and 3) how to price a validation task
to minimize delay.

Background: We now provide a short primer on the
AMT, the crowdsourcing system that we use in this work.
AMT is a large-scale crowdsourcing system that has tens
of thousands of validators at any time. The key benefit of
AMT is that it provides public APIs for automatic posting
of tasks and retrieval of results. The AMT APIs enable us
to post tasks and specify two parameters: (a) the number of
duplicates, i.e. the number of independent validators who
we want to work on the particular task, and (b) the reward
that a validator obtains for providing responses. A validator
works in two phases: (a) they first accept a task once they
identify that they would like to work on it, which in turn
decrements the number of available duplicates, and (b) once
accepted, they need to provide a response within a period
specified by the task.

One constraint of the AMT that pertains to CrowdSearch
is that the number of duplicates and reward for a task that
has been posted cannot be changed at a later point. We take
this practical limitation in mind in designing our system.

Constructing Validation Tasks: How can we construct
validation tasks such that they are answered quickly? Our
experience with AMT revealed several insights. First, we ob-
served that asking people to tag query images and candidate
images directly is not useful since: 1) text tags from crowd-
sourcing systems are often ambiguous and meaningless (sim-
ilar conclusions have been reported by other crowdsourcing
studies [8]), and 2) tasks involving tagging are unpopular,
hence they incur large delay. Second, we found that having
a large validation task that presents a number of <query
image, candidate image> pairs enlarges human error and
bias since a single individual can bias a large fraction of the
validation results.

We settled on an a simple format for validation tasks.
Each <query image, candidate image> pair is packaged into
a task, and a validator is required to provide a simple YES
or NO answer: YES if the two images are correctly matched,
and NO otherwise. We find that these tasks are often the
most popular among validators on AMT.

Minimizing Human Bias and Error: Human error and
bias is inevitable in validation results, therefore a central
challenge is eliminating human error to achieve high accu-
racy. We use a simple strategy to deal with this problem:
we request several duplicate responses for a validation task
from multiple validators, and aggregate the responses using
a majority rule. Since AMT does not allow us to dynami-
cally change the number of duplicates for a task, we fix this
number for all tasks. In §7.2, we evaluate several aggrega-
tion approaches, and show that a majority of five duplicates

Query Image Candidate Images Duplicate Validation Tasks

54321

YesYesYesResults YesYes

54321

YesYesNoResults NoYes

54321

NoNoNoResults NoNo

54321

YesYesYesResults NoYes

C1

C4

C3

C2

Figure 2: Shown are an image search query, candi-
date images, and duplicate validation results. Each
validation task is a Yes/No question about whether
the query image and candidate image contains the
same object.

is the best strategy and consistently achieves us more than
95% search accuracy.

Pricing Validation Tasks: Crowdsourcing systems allow
us to set a monetary reward for each task. Intuitively, a
higher price provides more incentive for human validators,
and therefore can lead to lower delay. This raises the fol-
lowing question: is it better to spend X cents on a single
validation task or to spread it across X validation tasks of
price one cent each? We find that it is typically better to
have more tasks at a low price than fewer tasks at a high
price. There are three reasons for this behavior: 1) since a
large fraction of tasks on the AMT offer a reward of only one
cent, the expectation of users is that most tasks are quick
and low-cost, 2) crowdsourcing systems like the AMT have
tens of thousands of human validators, hence posting more
tasks reduces the impact of a slow human validator on over-
all delay, and 3) more responses allows better aggregation
to avoid human error and bias. Our experiments with AMT
show that the first response in five one cent tasks is 50 - 60%
faster than a single five cent task, confirming the intuition
that delay is lower when more low-priced tasks are posted.

4. CROWDSEARCH ALGORITHM
Given a query image and a ranked list of candidate im-

ages, the goal of human validation is to identify the correct
candidate images from the ranked list. Human validation
improves search accuracy, but incurs monetary cost and hu-
man processing delay. We first discuss these tradeoffs and
then describe how CrowdSearch optimizes overall cost while
returning at least one valid candidate image within a user-
specified deadline.

4.1 Delay-Cost Tradeoffs
Before presenting the CrowdSearch algorithm, we illus-

trate the tradeoff between delay and cost by discussing post-
ing schemes that optimize one or the other but not both.

Parallel posting to optimize delay: A scheme that op-
timizes delay would post all candidate images to the crowd-
sourcing system at the same time. (We refer to this as par-
allel posting.) While parallel posting reduces delay, it is
expensive in terms of monetary cost. Figure 2 shows an
instance where the image search engine returns four candi-

79

date images, and each candidate image is validated by five
independent validators. If each of these validators is paid a
penny, the overall cost for validating all responses would be
20 cents, a steep price for a single search. Parallel posting
is also wasteful since it ignores the fact that images with
higher rank are more likely to be better matches than those
lower-ranked ones. As a result, if the first candidate image
is accurate, the rest of the candidates need not to be posted.

Serial posting to optimize cost: In contrast to parallel
posting, a scheme that optimizes solely the monetary cost
would post tasks serially. A serial posting scheme first posts
the top-ranked candidate for validation, and waits to see if
the majority of validators agree that it is a positive match. If
so, the process ends and returns a positive match, otherwise
the next candidate is posted, and so on. This scheme uses
the least number of tasks to find the first correct match,
and thus costs considerably less than the parallel posting
scheme. Taking Figure 2 as an example, the serial posting
scheme would just cost five cents, since the first candidate
is a valid match. However, in cases where top-ranked image
is incorrect, serial posting incurs much higher delay than
parallel posting.

Clearly, parallel and serial posting are two extreme schemes
that sacrifice either cost or delay. Instead, we propose an al-
gorithm that achieves a tradeoff between these two metrics.

4.2 Optimizing Delay and Cost
Key Insight: CrowdSearch tries to provide a balance be-
tween serial and parallel schemes. More precisely, the goal
is to minimize monetary cost while ensuring that at least
one valid candidate, if present in the ranked list returned
from the search engine, is provided to the user within a user
specified deadline. If all candidates images are incorrect, no
response is returned to the user. For example, in Figure 2,
candidates C1, C2, and C4 are all valid responses, hence it
is sufficient to validate any one of them and return it as a
response to the mobile user. Intuitively, such an objective
also fits well with image search on mobile phones, where few
good results are more appropriate for display.

To illustrate the main idea in CrowdSearch, consider the
case where we have one query image and five candidate im-
ages returned by the image search engine. Assume that we
posted the top-ranked candidate, C1, as a validation task at
time t = 0 and the user-specified deadline is time t = 2 mins.
At time t = 1 min, say that two responses have been re-
ceived for this task, a Yes and a No (i.e. sequence ‘YN’).
Within the next 1 min, there are multiple possible incoming
responses, such as ‘YY’, ‘YNY’, and others, that can lead
to a positive validation result under majority(5) rule. The
CrowdSearch algorithm estimates the probability that any
one of these valid sequences occurs during the next minute.
This estimation is done by using: 1) models of inter-arrival
times of responses from human validators, and 2) probabil-
ity estimates for each sequence that can lead to a positive
validation result. If the probability of a valid result within
the deadline is less than a pre-defined threshold PTH , for
instance 0.6, CrowdSearch posts a validation task for the
next candidate image to improve the chance of getting at
least one correct match. The above procedure is performed
at frequent time-steps until either the deadline is reached or
all candidates have been posted for validation.

The Algorithm Having explained the key insight, we now
present the complete CrowdSearch prediction algorithm as

Algorithm 1 CrowdSearch()

1: Pfail ← 1
2: for each ongoing task Tx do
3: Si ← sequence of results received
4: P+ ← 0
5: for each Sj that starts with Si do
6: Pdelay ← DelayPredict(|Si|, |Sj |)
7: Presults ← ResultPredict(Si, Sj)
8: Pj ← Presults × Pdelay

9: if Majority(Sj) = Y es then
10: P+ ← P+ + Pj

11: end if
12: end for
13: Pfail ← Pfail × (1− P+)
14: end for
15: Psuc ← 1− Pfail

16: if Psuc ≥ PTH then
17: Return True
18: else
19: Return False
20: end if

shown in Algorithm 1. This algorithm handles all the on-
going tasks, each task has received partial results from val-
idators. For each task Tx, let Si denote the partial sequence
received. For instance, in the example above, two results of
‘YN’ have been received. The algorithm computes the prob-
ability that at least one of the ongoing tasks is going to have
a positive answer under the majority(N) rule, where N is
the number of duplicates for each validation task. For each
task Tx, the CrowdSearch algorithm traverses all possible
sequence of results Sj that begin with the received sequence
Si. If the sequence Sj leads to a positive answer, Crowd-
Search predicts the probability that the remaining results
can be received before the deadline, as shown in line 4-6
in algorithm 1. Here CrowdSearch calls two functions, De-
layPredict and ResultPredict. The former function estimates
the probability that sequence Sj will be received before the
deadline, and the latter estimates the probability that the
sequence Sj will occur given that sequence Si has been re-
ceived so far. We assume that these two probabilities are
independent to each other since the delay and content of
a result sequence have no clear causal relation. Thus, the
product of the two, Pj , is the probability that the sequence
Sj is received prior to the deadline. We compute P+, which
is the accumulation of Pj for all cases where the remain-
ing sequence leads to a positive answer. This gives us the
predicted probability that current task can be validated as
positive given Si results are received. Having predicted the
probability for a single validation task, now we consider the
case where multiple validation tasks are concurrently ongo-
ing for a search query. Since our goal is to return at least
one correct candidate image, we first compute Pfail, which
is the probability that none of the ongoing tasks are correct.
Hence Psuc = 1 − Pfail is the probability we want to com-
pute. Pfail is the product of the probability that each of the
ongoing task fails, since all tasks are independent to each
other. We compute Pfail as shown in line 13 in the algo-
rithm 1. If Psuc is less than a pre-defined threshold PTH , we
post the next task, else we wait for current tasks. In the rest
of this section, we discuss DelayPredict and ResultPredict
that are central to our algorithm.

80

4.3 Delay Prediction Model
We now consider the problem of predicting the time that

sequence Sj is received given a partial sequence Si has been
received. This problem can be split into the sum of inter-
arrivals from Si to Si+1, Si+1 to Si+2, and so on till Sj−1 to
Sj . We start with a model of the inter-arrival delay between
any two responses obtained from validators, and then use
the inter-arrival models to determine the overall delay.

4.3.1 Delay modeling
We consider two cases, the first is when no responses have

been received so far i.e. when i = 0, and the second when
one or more responses have been received i.e. when i >
0. The two cases need to be handled differently since in
the former case we model the delay for the arrival of the
first response, whereas in the latter case we model the inter-
arrival times between responses.

Case 1 - Delay for the first response: The delay of
an AMT validator can be separated into two parts: accep-
tance delay and submission delay. Acceptance delay means
the time from the validation task being posted to being ac-
cepted by a validators. Submission delay means the time
from the task being accepted to being submitted by a val-
idator. The total delay is the summation of acceptance delay
and submission delay.

Figure 3(a) shows the complementary cumulative distri-
bution function(CCDF) of our delay measurements over more
than 1000 tasks. Note that the y-axis is in log scale. It
is clear that both acceptance delay and submission delay
follow exponential distributions with a small delay offset.
The exponential behavior follows intuition due to the law
of independent arrivals, and the fact that there are tens of
thousands of individuals on AMT. The offset for acceptance
delay results from delay in refreshing the task on the web
browser, internet connection delays, and time taken by the
validator to search through several thousands of tasks to lo-
cate ours. The offset for working time results from the time
to read the task, input the result, and submit the answer.

Let λa and λs to represent the rate of acceptance and
submissions, and ca and cs represent the offsets of accep-
tances and submissions. Their probability density function,
denoted as fa(t) and fs(t), are

fa(t) = λae−λa(t−ca)

and

fs(t) = λse
−λs(t−cs)

How can we obtain the overall delay distribution, which is
sum of acceptance and submission delay? We first determine
whether the two delays are independent of each other. Intu-
itively, the two should be independent since the acceptance
delay depends on when a validator chanced upon our vali-
dation tasks, whereas submission delay depends on how fast
the validators works on tasks. To confirm independence, we
compute the Pearson’s product-moment coefficient between
the two delays. Our results indicate that the coefficient score
is less than 0.05, which means there is no linear relation be-
tween acceptance and submission delay.

Given independence, the PDF of overall delay can be com-
puted as the convolution of the PDFs of acceptance delay
and submission delay. Let fo(t) denote the PDF of overall

Response
 #5

Y1 Y4Y3Y2Y0

TIMEStart

Current
Time(t)

Deadline(D)

Figure 4: An example of predicting the delay of 5th

response given the time of 2nd response. The delay
is the summation of the inter-submission delay of Y2,
Y3 and Y4.

delay we have:

fo(t) = fa(t) ∗ fs(t)

=

Z t−ca

cs

[λae−λa((t−u)−ca)][λse
−λs(u−cs)]du

=
λaλs

λa − λs
(e−λs(t−(ca+cs)) − e−λa(t−(ca+cs)))

Let c = ca + cs. The above expression can be written as:

fo(t) =
λaλs

λa − λs
(e−λs(t−c) − e−λa(t−c)) (1)

Case 2 - Inter-arrival delay between responses: Fig-

ure 3(b) shows the CCDF of inter-arrival delay between val-
idation tasks. These delays are clearly a set of exponential
distributions with different rates. The constant offsets are
counteracted since we are looking at the difference between
arrivals. Thus, the PDF of inter-arrival time between re-
sponse i and i + 1, denoted as fi(t), can be modelled as an
exponential function:

fi(t) = λie
−λit (2)

4.3.2 Delay Prediction
Given the arrival time for the first response and the inter-

arrival times between responses, we can predict delay as fol-
lows. Consider the example shown in Figure 4. Suppose
we have received two response at 60 seconds, and the cur-
rent time to the origin of the query is 75 seconds. At this
time, we want to predict the probability that five responses
are received within the remaining 45 seconds to the dead-
line. Let Xj denote the time of receiving the jth response,

and X̂i denote the tuple X1, X2, · · · , Xi, and t̂i denote the
tuple t1, t2, · · · , ti, where ti is the time of receiving the ith

response. Let D denote the deadline, t denote the current
time, All times are relative to the beginning of the query.
The probability we want to estimate is:

Pij = P (Xj ≤ D | Xi+1 ≥ t, X̂i = t̂i) (3)

We consider this problem from the perspective of inter-
arrival times between responses. Let Yi,j denote the inter-
arrival time between the response i and j. This inter-arrival
time is the sum of a set of inter-arrival times between adja-
cent responses:

Yi,j =

j−1X
k=i

Yk,k+1

Therefore, Pij can be presented as:

Pij = P (Yi,j ≤ D − ti | Yi,i+1 ≥ t− ti, X̂i = t̂i)

81

 0.001

 0.01

 0.1

 1

 0 50 100 150 200 250 300

C
C

D
F

Time(s)

Acceptance
Acceptance
Submission
Submission

Overall
Overall

(a) Overall delay model

 0.001

 0.01

 0.1

 1

 0 50 100 150 200 250 300

C
C

D
F

Time(s)

Y(1,2)-Model
Y(1,2)-Actual
Y(4,5)-Model
Y(4,5)-Actual

(b) Inter-arrival delay model

Figure 3: Delay models for overall delay and inter-arrival delay. The overall delay is decoupled with acceptance
and submission delay.

From our inter-arrival delay model, we know that all inter-
arrival times are independent. Thus, we can present the
probability density function of Yi,j as the convolution of the
inter-arrival times of response pairs from i to j.

Before applying convolution, we first need to consider the
condition Yi,i+1 ≥ t − ti. This condition can be removed
by applying the law of total probability. We sum up all the
possible values for Yi,i+1, and note that the lower bound is
t − ti. For each Yi,i+1 = tx, the rest part of Yi,j , or Yi+1,j ,
should be in the range of D− ti− tx. Thus the condition of
Yi,i+1 can be removed and we have:

Pij =

D−tiX
tx=t−ti

P (Yi,i+1 = tx)P (Yi+1,j ≤ D − ti − tx) (4)

Now we can apply the convolution directly to Yi+1,j . Let
fi,j(t) denote the PDF of inter-arrival between response i
and j. The PDF of Yi+1,j can be expressed as:

fi+1,j(t) = (fi+1,i+2 ∗ · · · ∗ fj−1,j)(t)

Combining this with Equation 4, we have:

Pij =

D−tiX
tx=t−ti

(fi,i+1(tx)

D−ti−txX
ty=0

fi+1,j(ty)) (5)

Now the probability we want to predict has been expressed
in the form of PDF of inter-arrival times. Our delay models
capture the distribution of all inter-arrival times that we
need for computing the above probability: we use the delay
model for the first response when i = 0, and use the inter-
arrival of adjacent response when i > 0. Therefore, we can
predict the delay of receiving any remaining responses given
the time that partial responses are received.

4.4 Predicting Validation Results
Having presented the delay model, we discuss how to

predict the actual content of the incoming responses, i.e.
whether each response is a Yes or No. Specifically, given
that we have received a sequence Si, we want to compute
the probability of occurrence of each possible sequence Sj

that starts with Si, such that the validation result is posi-
tive, i.e., majority(Sj) = Y es.

This prediction can be easily done using a sufficiently large
training dataset to study the distribution of all possible re-
sult sequences. For the case where the number of duplicate
is set to be 5, there are 25 = 32 different sequence combina-
tions. We can compute the probability that each sequence
occurs in the training set by counting the number of their oc-
currences. We use this probability distribution as our model
for predicting validation results. We use the probabilities to
construct a probability tree called SeqTree.

Figure 5 shows an example of a SeqTree tree. It is a binary
tree where leaf nodes are the sequences with length of 5. For
two leaf nodes where only the last bit is different, they have
a common parent node whose sequence is the common sub-
string of the two leaf nodes. For example, nodes ‘YNYNN’
and ‘YNYNY’ have a parent node of ‘YNYN’. The proba-
bility of a parent node is the summation of the probability
from its children. Following this rule, the SeqTree is built,
where each node Si is associated with a probability pi that
its sequence can happen.

Given the tree, it is easy to predict the probability that Sj

occurs given partial sequence Si using the SeqTree. Simply
find the nodes that correspond to Si and Sj respectively,
and the probability we want is pj/pi.

5. IMAGE SEARCH ENGINE
In this section, we briefly introduce the automated image

search engine. Our search engine is designed using image
search methods that have been described in the prior work
including our own [30]. The fundamental idea of the image
search engine is to use a set of compact image representa-
tions called visterms (visual terms) for efficient communica-
tion and search. The compactness of visterms makes them
attractive for mobile image search, since they can be com-
municated from the phone to a remote search engine server
at extremely low energy cost. However, extracting visterms
from images consumes significant computation overhead and
delay at the phone. In this section, we provide an overview of
the image search engine, and focus on explaining the trade-
offs that are specific to using it on resource-constrained mo-
bile phones.

82

root
N Y

YN YY

YNN YNY

YNYN YNYY

YNYNYYNYNN YNYYYYNYYN

0.150.01

0.160.09

0.030.06

0.25

Figure 5: A SeqTree to Predict Validation Re-
sults. The received sequence is ‘YNY’, the two se-
quences that lead to positive results are ‘YNYNY’
and ‘YNYY’. The probability that ‘YNYY’ occurs
given receiving ‘YNY’ is 0.16/0.25 = 64%

5.1 Image Search Overview
The image search process contains two major steps: 1) ex-

tracting features from a query image, and 2) search through
database images with features of query image.

Extracting features from query image: There are many
good features to represent images, such as the Scale-Invariant
Feature Transform (SIFT) [9]. While these features capture
essential characteristics of images, they are not directly ap-
propriate for search because of their large size. For instance,
SIFT features are 128 dimensional vectors and there are sev-
eral hundred such SIFT vectors for a VGA image. The large
size makes it 1) unwieldy and inefficient for search since the
data structures are large, and 2) inefficient for communi-
cation since no compression gains are achieved by locally
computing SIFT features on the phone.

A canonical approach to reduce the size of features is to
reduce the dimensionality by clustering. This is enabled by a
lookup structure called “vocabulary tree” that is constructed
in an a priori manner by hierarchical k-means clustering of
SIFT features of a training dataset. For example, a vo-
cabulary tree for buildings can be constructed by collecting
thousands of training images, extracting their SIFT feature
and using k-means clustering to build the tree. A vocabu-
lary tree is typically constructed for each category of images,
such as faces, buildings, or book covers.

Searching through database images: Once visterms
are extracted from an image, they can be used in a man-
ner similar to keywords in text retrieval [2]. The search
process uses a data structure called the inverted index that
is constructed from the corpus of images in the database.
The inverted index is basically a mapping from each vis-
term to the images in the database containing that visterm.
Each visterm is also associated with a inverted document fre-
quency (IDF) score that describes its discriminating power.
Given a set of visterms for a query image, the search process
is simple: for each visterm, the image search engine looks
up the inverted index and compute an IDF score for each of
the candidate images. The list of candidates are returned
ranked in order of their IDF score.

5.2 Implementation Tradeoffs
There are two key questions that arise in determining how

to split image search functionality between the mobile phone
and remote server. The first question is whether visterm
extraction should be performed on the mobile phone or re-
mote server. Since visterms are very compact, transmit-
ting visterms from a phone as opposed to the raw image
can save time and energy, particularly if more expensive 3G
communication is used. However, visterm computation can
incur significant delay on the phone due to its resource con-
straints. In-order to reduce this delay, one would need to
tradeoff the resolution of the visterms, thereby impacting
search accuracy. Thus, using local computation to extract
visterms from a query image saves energy but sacrifices ac-
curacy. Our system chooses the best option for visterm ex-
traction depending on the availability of WiFi connectivity.
If only 3G connectivity is available, visterm extraction is
performed locally, whereas if WiFi connectivity is available,
the raw image is transferred quickly over the WiFi link and
performed at the remote server.

The second question is whether inverted index lookup
should be performed on the phone or the remote server.
There are three reasons to choose the latter option: 1) since
visterms are already extremely compact, the benefit in per-
forming inverted index lookup on the phone is limited, 2)
having a large inverted index and associated database im-
ages on the phone is often not feasible, and 3) having the
inverted index on the phone makes it harder to update the
database to add new images. For all these reasons, we choose
to use a remote server for inverted index lookup.

6. SYSTEM IMPLEMENTATION
The CrowdSearch system is implemented on Apple iPhones

and a backend server at UMass. The components diagram
of CrowdSearch system is shown in Figure 6.

iPhone Client: We designed a simple user interface for
mobile users to capture query images and issue a search
query. The screenshot of the user interface is shown in Fig-
ure 1. A client can provide an Amazon payments account to
facilitate the use of AMT and pay for validation. There is
also a free mode where validation is not performed and only
the image search engine results are provided to the user.

To support local image processing on the iPhone, we ported
an open-source implementation of the SIFT feature extrac-
tion algorithm [26] to the iPhone. We also implemented a
vocabulary tree lookup algorithm to convert from SIFT fea-
tures to visterms. While vocabulary tree lookup is fast and
takes less than five seconds, SIFT takes several minutes to
process a VGA image due to the lack of floating point sup-
port on the iPhone. To reduce the SIFT running time, we
tune SIFT parameters to produce fewer SIFT features from
an image. This modification comes at the cost of reduced
accuracy for image search but reduces SIFT running time on
the phone to less than 30 seconds. Thus, the overall com-
putation time on the iPhone client is roughly 35 seconds.

When the client is connected to the server, it also receives
updates, such as an updated vocabulary tree or new deadline
recommendations.

CrowdSearch Server Implementation: The CrowdSearch
Server is comprised of two major components: automated
image search engine and validation proxy. The image search
engine generates a ranked list of candidate images for each

83

Image
Capture

Visterm
Extraction

Automated
Image Search

Posting
Validation Tasks

Validation Tasks
Generator

candidate
images

validation
tasks

Amazon
Mechanical

Turk

Delay
Prediction

Models

Results
Prediction

Models

Retrieve
Validation
Results

Aggregate
Validation
Results

validation
Results

image
search
query

validated
search
results

Validation
Results

Database

Wireless
Transmission

CrowdSearch ServerCrowdSearch
Client

Validation Proxy

Figure 6: CrowdSearch Implementation Components Diagram

search query from iPhone clients. Our current implemen-
tation of the image search engine is about 5000 lines of
C++ code, and we use hierarchical k-means clustering al-
gorithms [13] to build this image search engine. Over 1000
images collected from several vision datasets [13, 11] are used
as the training images, which cover four categories: human
faces, flowers, buildings, and book covers.

The validation proxy is implemented with approximately
10,000 lines of Java and Python code. There are four major
components in validation proxy as shown in Figure 6. The
Validation Task Generator module converts each <query im-
age, candidate image> pair to a human validation task. The
Task Posting module posts validation tasks to AMT using
the Amazon Web Service(AWS) API. The results are re-
trieved by the Retriever module, which also performs some
bookkeeping such as approval of tasks, and payment to the
AMT solvers. These operations are implemented with AWS
API as well. The Result aggregation module generates an
appropriate responses from validators’ answers by using a
majority rule, and returns the final validated search results
back to the mobile user.

7. EXPERIMENTAL EVALUATION
We evaluate CrowdSearch over several thousand images,

many tens of days of traces on the Amazon Mechanical Turk,
and an end-to-end evaluation with a complete system run-
ning on mobile phones and a backend server. We evaluate
four aspects of the performance of CrowdSearch : (a) im-
provement in image search precision, (b) accuracy of the
delay models, (c) ability to tradeoff cost and delay, and (d)
end-to-end system performance.

7.1 Datasets
Three datasets are used in our study.

Image Dataset: Four categories of images, including hu-
man faces, flowers, buildings, and book covers, are chosen
as the dataset in our study. These four categories of images
cover the precision spectrum of image search engines, from
the extremely poor end to the extremely good end. Each
dataset contains two parts: 1) training images that are used
to build the image search engine, and 2) 500 query images
captured by cellphone cameras to evaluate the performance
of the search engine, and to generate human validation tasks
to AMT. Note that query images are completely different
from training images.

Training Dataset: From query images for each category,
we randomly choose 300 images, and package each query im-
age with its candidate results as validation tasks to AMT.
We use only the top-5 candidate images for each query im-
age. Each validation task is a <query image, candidate
image> pair. In other words, we have 300× 5 = 1500 tasks
for each category of images. The queries are posted as a
Poisson process with average interval of five minutes. The
task posting lasts for several days to cover all time points in
a day.

The validation results and the delay traces obtained from
these queries comprise our training dataset. We use this
training dataset to obtain parameters for our delay and re-
sult prediction models, and fix these parameters for all re-
sults in this section.

Testing Dataset: To validate our algorithms, we choose
200 query images from each of the four categories, and pack-
age each query images with its candidate images as vali-
dation tasks to AMT. For each query image, 5 candidate
images are generated by image search engine as well. The
posting process is exactly the same as the training dataset.
The testing dataset is obtained two weeks after the training
dataset to avoid overlap in the validators and to thoroughly
evaluate our models.

The testing dataset provides us with a large set of vali-
dation tasks and the delay for each of the five responses for
the tasks. This allows us to compare different task posting
schemes by just changing the time at which a task is posted.
The delays for responses to a particular task is assumed to
be the same irrespective of when the task is posted. This
assumption is reasonable since validators are independent of
each other, and we find that most responses are from differ-
ent validators.

7.2 Improving Search Precision
Our first series of experiments evaluate the precision of

automated image search, and how much human validation
can improve this precision. Precision is defined as the ratio
of the number of correct results to the total number of results
returned to the user. All four image categories are evaluated
in this experiment.

We first look at the precision of automated search shown
in Figure 7. On the x-axis is the length of the ranked list
obtained from the search engine. The result shows that the
top-ranked response has about 80% precision for categories
such as buildings and books but has very poor precision for

84

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5

P
re

ci
si

on

Length of ranked list

Book Covers
Buildings

Flowers
Human Faces

Figure 7: Precision of automated image search over
four categories of images. These four categories
cover the spectrum of the precision of automated
search.

faces and flowers. The precision drops significantly as the
length of the ranked list grows, indicating that even top-
ranked images suffers from high error rate. Therefore, we
cannot present the results directly to users.

We now evaluate how much human validation can improve
image search precision. Figure 8 plots four different schemes
for human validation: first-response, majority(3), major-
ity(5), and one-veto (i.e. complete agreement among val-
idators). In each of these cases, the human-validated search
scheme returns only the candidate images on the ranked list
that are deemed to be correct. Automated image search
simply returns the top five images on the ranked list.

The results reveal two key observations: First, consider-
able improvement in precision is irrespective of which strat-
egy is used. All four validation schemes are considerably
better than automated search. For face images, even us-
ing a single human validation improves precision by 3 times
whereas the use of a majority(5) scheme improves precision
by 5 times. Even for book cover images, majority(5) still im-
proves precision by 30%. In fact, the precision using human
validators is also considerably better than the top-ranked
response from the automatic search engine. Second, among
the four schemes, human validation with majority(5) is eas-
ily the best performer and consistently provides accuracy
greater than 95% for all image categories. Majority(3) is a
close second, but its precision on face and building images
is less than 95%. The one-veto scheme also cannot reach
95% precision for face, flower and building images. Using
the first response gives the worst precision as it is affected
most by human bias and error. Based on the above obser-
vation, we conclude that for mobile users who care about
search precision, majority(5) is the best validation scheme.

7.3 Accuracy of Delay Models
The inter-arrival time models are central to the Crowd-

Search algorithm. We obtain the parameters of the delay
models using the training dataset, and validate the parame-
ters against the testing dataset. Both datasets are described
in §7.1. We validate the following five models: arrival of the
first response, and inter-arrival times between two adjacent
responses from 1st to 2nd response, to 4th to 5th response
(§4.3.1). In this and the following experiments, we set the

Faces Flowers Buildings Books
0.0

0.3

0.6

0.9

P
re

c
is

io
n Automated Search

First Response

Majority-3

Majority-5

1-Veto

Figure 8: Precision of automated image search and
human validation with four different validation cri-
teria.

threshold to post next task be 0.6. In other words, if the
probability that at least one of existing validation task is
successful is less than 0.6, a new task is triggered.

Figure 9(a) shows the cumulative distribution functions
(CDF) for the first response. As described in §4.3.1, this
model is derived by the convolution of the acceptance time
and submission time distribution. We show that the model
parameters for the acceptance, submission, as well as the to-
tal delay for the first response fit the testing data very well.
Figure 9(b) shows the CDF of two of inter-arrival times be-
tween 1st and 2nd responses, and 3rd and 4th responses.
(The other inter-arrival times are not shown to avoid clut-
ter.) The scatter points are for testing dataset and the solid
line curves are for our model. Again, the model fits the
testing data very well.

While the results were shown visually in Figure 9, we
quantify the error between the actual and predicted distri-
butions using the K-L Divergence metric in Table 1. The
K-L Divergence or relative entropy measures the distance
between two distributions [3] in bits. Table 1 shows the dis-
tance between our model to the actual data is less than 5
bits for all the models, which is very small. These values
are all negative, which indicates that the predicted delay of
our model is little bit larger than the actual delay. This ob-
servation indicates that our models are conservative in the
sense that they would rather post more tasks than miss the
deadline requirement.

The results from Figure 9 show that the model parame-
ters remain stable over time and can be used for prediction.
In addition, it shows that our model provides an excellent
approximation of the user behavior on a large-scale crowd-
sourcing system such as AMT.

7.4 CrowdSearch Performance
In this section, we evaluate the CrowdSearch algorithm on

its ability to meet a user-specified deadline while maximizing
accuracy and minimizing overall monetary cost. We com-
pare the performance of CrowdSearch against two schemes:
parallel posting and serial posting, described in §4.1. Paral-
lel posting posts all five candidate results at the same time,

85

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

C
D

F

Time(s)

Model Acceptance
 Actual Acceptance

Model Working
 Actual Working

Model Overall
 Actual Overall

(a) Overall delay models vs. actual values

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

C
D

F

Time(s)

Model interArrival(1,2)
Actual interArrival(1,2)
Model interArrival(3,4)
Actual interArrival(3,4)

(b) Inter-arrival delay model vs. actual values

Figure 9: The inter-arrival delay and overall delay of predicting values and actual values. The rate for the
models of overall, acceptance, working, inter-arrival(1,2) and inter-arrival(3,4) are: 0.008, 0.02, 0.015, 0.012
and 0.007.

Table 1: KL-divergence between delay models and
distribution of testing dataset

Delay KL-Divergence

Delay for the first response -3.44
Inter-arrival Delay for response(1,2) -4.60
Inter-arrival Delay for response(2,3) -1.44
Inter-arrival Delay for response(3,4) -3.12
Inter-arrival Delay for response(4,5) -1.81

whereas Serial posting processes one candidate result at a
time and returns the first successfully validated answer.

We evaluate three aspects: precision, recall, and cost. 1)
Precision is defined as the ratio of the number of correct
results to the total number of results returned to the user. 2)
Recall is defined as the ratio of number of correctly retrieved
results and the number of results that actually correct. 3)
Cost is measured in dollars.

Varying user-specified deadline: To understand how
the CrowdSearch algorithm works for different user-specified
deadlines, we vary the deadline setting for the algorithm,
and evaluate the precision, recall and cost performance of
CrowdSearch. We study the testing trace for the buildings
dataset. When the deadline is too low to receive a major-
ity(5) response, all three algorithms (serial posting, parallel
posting, and CrowdSearch) returns a response based on the
majority of the received results. Thus, these schemes can
provide an answer even if only one or three responses are
received for a task.

Our experiments show that the precision for all three
schemes are higher than 95% irrespective to the deadline
setting. This is because human validation is intrinsically
very good and has high accuracy. While precision is high,
the impact of a short deadline can be observed in the recall
parameter. Short deadlines may be insufficient to obtain
a positive response, leading to the three posting schemes
missing valid candidate images from the search engine.

Figure 10(a) shows the recall as a function of the user-
specified delay. We first consider recall for the serial and

parallel posting schemes. At extremely low deadline (30
sec), neither scheme obtains many responses from human
validators, hence the recall is very poor and many valid im-
ages are missed. The parallel scheme is quicker to recover
as the deadline increases, and recall quickly increases to ac-
ceptable regions of more than 90% at 90 seconds. The serial
scheme does not have enough time to post multiple candi-
dates, however, and is slower to improve. The performance
of CrowdSearch is interesting. For stringent deadlines of
120 seconds or lower, CrowdSearch posts tasks aggressively
since its prediction correctly estimates that it cannot meet
the deadline without posting more tasks. Thus, the recall
follows parallel posting. Beyond 120 seconds, CrowdSearch
tends to wait longer and post fewer tasks since it has more
slack. This can lead to some missed images which leads to
the dip at 180 seconds. Again the recall increases after 180
seconds since the CrowdSearch has better prediction with
more partial results.

Figure 10(b) shows the average price per validation task as
a function of the user-specified delay. When the deadline is
small, CrowdSearch behaves similar to parallel search, thus
the cost of these two schemes are very close. When dead-
line is larger than 120 seconds, the cost of CrowdSearch is
significantly smaller and only 6-7% more than serial search.
In this case, the deadline recommendation provided by the
CrowdSearch system to the user would be 180 or 240 sec-
onds to obtain a balance between delay, cost, and accuracy
in terms of precision and recall.

Breakdown for fixed deadline: To better understand
how CrowdSearch improves over alternate approaches, we
drill down into the case where the delay is fixed at 5 min-
utes (300 seconds). Figure 11(a) and 11(b) show the CDF
of delay for building images and face images respectively. In
both cases, we see that CrowdSearch tracks the serial post-
ing scheme when the overall delay is low, since validation re-
sults are coming in quickly to post one task after the other.
As the delay increases, CrowdSearch tracks the parallel post-
ing scheme since it observes that the deadline is approach-
ing and decides to post multiple tasks in-order to maximize
chances of obtaining at least one valid response. Another
interesting observation is about the case of faces. Crowd-

86

 0

 0.2

 0.4

 0.6

 0.8

 1

 30 60 90 120 180 240 300

R
ec

al
l

Deadline(seconds)

CrowdSearch
Parallel Posting

Serial Posting

(a) Recall

30 60 90 120 180 240 300

Deadline(Seconds)

0.00

0.05

0.10

0.15

0.20

C
o
s
t(
$
D
o
ll
a
r)

Serial

CrowdSearch

Parallel

(b) Monetary Cost

Figure 10: Recall and Cost with different deadlines using building images. The recall of CrowdSearch is close
to parallel, while the cost of CrowdSearch is close to serial.

Search posts more tasks after about 45 seconds, whereas
it waits until about 75 seconds to become more aggressive
in the case of the building dataset. This difference is be-
cause automated image search is more accurate for build-
ings, hence CrowdSearch receives more positive validation
responses and decides to wait longer.

How much cost does CrowdSearch incur? Figure 11(c)
compares the monetary cost of Serial posting and Crowd-
Search for building images and face images respectively. In
these two cases, parallel posting always incurs the highest
cost of 25 cents per query, since it posts all 5 candidate im-
ages at the beginning. For building images, the monetary
cost of CrowdSearch is 50% smaller than the parallel algo-
rithm, and only 10-15% more than serial algorithm, which
has the minimum possible cost. For face images, the differ-
ence between CrowdSearch and parallel algorithm is 10%,
and the difference with serial posting is only 2%.

The above experiments shows that CrowdSearch has delay
performance close to parallel posting, and monetary cost
close to serial posting. Since parallel posting has the lowest
possible delay, and serial posting has lowest possible cost,
CrowdSearch achieves an excellent balance between between
delay and cost.

7.5 Overall Performance
Finally, we evaluate the overall performance of Crowd-

Search system comprising iPhones, a remote server, and
crowdsourcing systems. Our evaluation covers two aspects
of the CrowdSearch system: energy efficiency and end-to-
end delay. In prior work [30], we showed that tuning the
parameters of SIFT processing can reduce image search ac-
curacy by up to 30%. We do not re-evaluate this result here.

Energy Efficiency : We now provide benchmarks for the
energy-efficiency of the image search engine. We consider
two design choices: 1) remote processing where phones are
used only as a query front-end while all search functionality
is at the remote server, and 2) partitioned execution, where
the visterm extraction is performed on the phone and the
search by visterms is done at the remote server. In each
design, we consider the case where the network connection

is via AT&T 3G and WiFi. The query is a VGA resolution
image.

Figure 12(a) shows the average energy consumption for
the four combinations of design and network. The numbers
represent averages over 100 runs. The results show that the
energy consumption of the partitioned scheme is the same
irrespective of 3G or WiFi. This is because visterms are
extremely compact and do not add much to the thumbnail
image that is transmitted to the server for human valida-
tion. The energy-efficiency of the remote processing scheme
greatly depends on the network used. With WiFi connectiv-
ity, remote processing is more efficient than local processing
since transmitting a VGA image only takes a few seconds.
In contrast, communicating the image via 3G is consider-
ably more expensive, as 3G has greater power consumption
and lower bandwidth than WiFi. In this case, partitioned
processing can provide considerable energy gains.

Our results confirm our design choice of using remote pro-
cessing when WiFi is available and local processing when
only 3G is available.

End-to-end Delay: Dynamic partitioning of search func-
tions also leads to different end-to-end delays. In this exper-
iment, we evaluate the end-to-end delay for local and remote
processing under 3G and WiFi. The crowdsourcing aspect
of our system uses a 90 second deadline (although it returns
results earlier if available). The results are averaged over
200 images. Figure 9 shows that local processing can be
a significant fraction of the overall delay. While local pro-
cessing consumes roughly a minute in our implementation,
we believe that there are several optimizations that can be
performed to reduce this delay. Human validation delay is
about 4 times the delay incurred for transmitting the VGA
image over a 3G network. We believe that as crowdsourc-
ing systems increase in the number of validators that they
support, the overall delay can reduce even further.

8. DISCUSSION
Although our results show that CrowdSearch can provide

significant benefits for image search, there are several possi-

87

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300

C
D

F

Delay(seconds)

parallel
CrowdSearch

serial

(a) Delay of Building Images

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300

C
D

F

Delay(seconds)

parallel
CrowdSearch

serial

(b) Delay of Face Images

0.05 0.1 0.15 0.2 0.25

Monetary Cost($Dollar)

0.2

0.4

0.6

0.8

P
ro

b
a
b
il
it

y

Serial-Building

CrowdSearch-Building

Serial-Faces

CrowdSearch-Faces

(c) Monetary cost compare

Figure 11: Comparison of delay and monetary cost for parallel posting, serial posting, and CrowdSearch. The
comparison covers two set of images: buildings and faces. They represent the good and poor performance of
automated search.

Local+3G Backend+3G Local+WiFi Backend+WiFi
0

5

10

15

20

25

E
n
e
rg
y
(J
)

Computation

Communication

(a) Energy consumption

Local+3G Backend+3G Local+WiFi Backend+WiFi
0

20

40

60

80

100

120

D
e
la
y
(S
e
c
o
n
d
s
)

Computation

Communication

Crowdsourcing

(b) End-to-end delay

Figure 12: Overall energy consumption and end-to-end delay for CrowdSearch system. Overall energy
consumption is comprised of computation and communication. End-to-end delay is comprised of delay caused
by computation, communication and crowdsourcing of AMT.

ble improvements and potential opportunities that we have
not explored in this paper.

Improving CrowdSearch Performance: CrowdSearch
currently incurs a delay of the order of a few minutes, and
incurs a cost of tens of cents. A natural question is whether
further reductions are possible in delay and cost. We believe
that improvements are likely along both axes.

The delay incurred for CrowdSearch will continue to re-
duce as crowdsourcing systems increase in popularity and
scale, as evidenced by the increasing number of crowdsourc-
ing startups that have emerged in recent months [17, 24,
20]. While there is room for improvement, it is not clear
that delay guarantees of under a few tens of seconds are
possible due to the intrinsic overhead for users to search,
accept, visually inspect, and submit a task. Thus, a more
realistic model for such systems may be one where the users
post their queries to CrowdSearch and go offline (shutting
their device, switching to other apps, etc). CrowdSearch
processes the search query and sends the results to the user
via notification, such as iPhone push notification or SMS.

The price of human validation can also be reduced through
further optimization of the task posting scheme used in Crowd-
Search. A simple optimization is to be more adaptive about

how many duplicates are requested for each validation task.
Our current system is limited by the inability to dynamically
change the number of duplicates once a task is posted to the
AMT, hence we chose a fixed threshold of five duplicates per
task. However, this is suboptimal since we see that the first
response is often a strong indicator of the overall validation
result. (For example, if the first response is a YES, then
the validation result is a YES with probability over 85%.)
This observation can be used to adaptively tune the num-
ber of duplicates posted to the AMT, thereby reducing cost
significantly.

Online Training of CrowdSearch Models: While the
models we use in CrowdSearch are derived from a training
dataset, they can be continually updated to reflect changes
over time. Every validation task provides additional in-
formation about delay of responses, and hence inter-arrival
time between responses. This data can be used to update the
delay models to reflect the current behavior of AMT users.
While we observed no time-of-day effects in our datasets,
online training of the models can also help identify such be-
havior if it were to emerge. If so, a simple solution would be
to use delay models with different parameters for different
segments of a day. While any validation task can be used to

88

update delay models, online updates of the prediction tree
requires ground truth information. One approach to update
the prediction tree is to have a“gold standard”dataset where
ground truth is available, and periodically introduce images
from this dataset as validation tasks to the AMT.

Improving Automated Search Performance: In ad-
dition to filtering erroneous results generated by an auto-
mated search engine, CrowdSearch can also be used to im-
prove the performance of the image search engine in terms of
generating correct responses. This can be done by using hu-
man validated responses as feedback to the search engine to
improve the quality of automatic search. One possibility is
to use positive and negative feedback from CrowdSearch to
adjust the scoring mechanism of the automated search. For
instance, sometimes a background image, such as a grassy
lawn can wrongly match several queries. CrowdSearch can
be helpful to detect such background images and assign them
lower weight to reduce false matches.

There are several other approaches to improve automated
search results that we have not explored in this paper, the
most obvious one being to use modalities such as GPS lo-
cation, orientation, or user-provided text tags. A significant
body of work in image search has addressed efficient and
accurate multi-modal search methods (e.g. [31]). Similar
methods can be applied to our search system as well. De-
spite these enhancements, we believe that CrowdSearch is an
essential component to systems that seek to achieve close to
100% search accuracy.

Beyond Image Search: While our focus in this paper is
on enhancing image search using crowdsourcing, we believe
that the techniques are more broadly applicable to other in-
stances of multimedia processing. One example where such
techniques can work well is improving accuracy of audio
transcription or machine translation, where human valida-
tors are used to verify the accuracy of transcription or trans-
lation. There is ample evidence that such audio-based tasks
may be appropriate for crowdsourcing. For example, the
Amazon Mechanical Turk has a significant fraction of tasks
that involve audio to text transcription, and ChaCha [19]
provides audio search that utilize people to answer search
questions provided in the form of audio clips rather than
text. CrowdSearch can be used to optimize the tradeoff of
accuracy, delay, and cost in such audio search services.

CrowdSearch payment models: A practical consid-
eration in deploying CrowdSearch on mobile phones is de-
termining who pays for the cost of human validation. We
envisage two possible payment models. One model is where
the search provider pays for human validation in-order to
provide a more accurate search experience for mobile users.
This may be viable as long as the cost of validation is lower
than the increased revenue to the search provider through
targeted advertisements or user subscription. An example of
a service that uses such a model is Amazon Remembers [27],
which provides an image-to-product matching service that
uses AMT. The price of human validation is small com-
pared to the value of the product that may be purchased
from Amazon by the user. An alternate model is where the
mobile users pay directly for human validation through a
micropayment account such as PayPal. This may be appro-
priate when the search is for something critical to the user,
for example, lost items.

9. RELATED WORK
We now provide an overview of salient related work.

Image Search: Research in image search straddles ad-
vances in image processing and information retrieval. Tech-
niques that we use in our system, such as SIFT, visterm-
extraction using vocabulary trees, and inverted index lookup
are based on state-of-art approaches in this area [9, 13, 5,
12]. In our prior work, we have also applied such tech-
niques in the context of sensor networks [30]. However, a
well-known limitation is that these techniques work best for
mostly planar images such as buildings, and are poor for
non-planar images such as faces. This limitation is a rea-
son why the recently released Google Goggle [21] system is
primarily advertised for building landmarks. While our use
of real-time human validation does not improve the perfor-
mance of an image search engine, it can help filter incorrect
responses to return only the good ones.

Much recent work such as [10, 1] has looked at mobile
sensing and people centric sensing. Of relevance to this pa-
per is the iScope system [31], which is a multi-modal image
search system for mobile devices. iScope performs image
search using a mixture of features as well as temporal or
spatial information where available. While using multiple
features can help image search engine performance, it does
not solve the problem of low accuracy for certain categories.
The crowdsourcing part of CrowdSearch is complementary
to iScope, Google Goggles, or any other image search engine
whose focus is on improving the performance of automated
search. Any of these techniques can be augmented with
CrowdSearch to achieve close to 100% precision at low cost.

Participatory Sensing: Sensing using mobile phones
has become popular in recent years (e.g. Urban sensing [4],
Nokia’s Sensor Planet [22], MetroSense [7]). The emphasis of
such efforts is to utilize humans with mobile phones for pro-
viding sensor data that can be used for applications ranging
from traffic monitoring to community cleaning. Our work is
distinct from these approaches in that we focus on design-
ing human-in-the-loop computation systems rather than just
using phones for data collection.

Crowdsourcing: Our system is by no means the first
to exploit crowdsourcing for handling complex computation
tasks. Luis Von Ahn’s pioneering work on reCaptcha [29]
uses humans to solve difficult OCR tasks, thereby enabling
digitization of old books and newspapers. His another work
on the ESP game [28] uses humans for finding good labels for
images, thereby facilitating image search. The two systems
use different incentive models — reCaptcha protects web-
sites against robots, whereas ESP rewards participants with
points if the players provide matching labels. Other popu-
lar crowdsourcing models include the auction-based crowd-
sourcing (e.g. Taskcn [23]), and simultaneous crowdsourcing
contests (e.g. TopCoder [25]). Our work is inspired by these
approaches, but differs in that we focus on using crowdsourc-
ing to provide real-time search services for mobile users. To
our knowledge, this model has not been explored prior to
our work.

Many applications have begun to utilize micro-payment
crowdsourcing systems such as AMT. This includes the use
of crowdsourcing for labelling images and other complex
data items [8, 15, 14]. For example, Sorokin et al. [15]
show that using AMT for image annotation is a quick way
to annotate large image databases. However, this work is

89

done in an offline manner and not in the context of a real-
time search system. We also find that image annotation is
quite noisy in comparison to validation of candidates from
a search engine.

A central contribution of our work is modeling delay from
crowdsourcing of validation tasks. While there have been
several studies to understand quality of results from AMT
solvers [8] [14], we are not aware of any other work that at-
tempts to model delay from the system. We believe that our
models can have broader applicability for other applications
that use crowdsourcing systems.

Amazon Remembers [27] is an application that takes phone-
based queries and uses crowdsourcing for retrieving product
information from the queries. While Amazon Remembers
combines mobile phones with crowdsourcing, CrowdSearch
is considerably more sophisticated in its use of crowdsourc-
ing since it enables real-time responses by specifying dead-
lines and combines automated and human processing.

10. CONCLUSIONS
Multimedia search presents a unique challenge. Unlike

text that provides sufficient context to facilitate search, search
using images is difficult due to the unavailability of clear
features. The explosive growth of camera-equipped phones
makes it crucial to design precise image search techniques.
However, despite significant research in the area, a general
image search system is still far from reality.

In this paper, we propose a new paradigm for real-time
human-in-the-loop image search systems. Humans are ex-
cellent at distinguishing images, thus human validation can
greatly improve the precision of image search. However, hu-
man validation costs time and money, hence we need to dy-
namically optimize these parameters to design an real-time
and cost-effective system. CrowdSearch uses adaptive tech-
niques based on accurate models of delay and accuracy be-
havior of human solvers. Our system is designed on iPhones,
a backend server, and crowdsourcing system, such as Ama-
zon Mechanical Turk. We demonstrate an 95% and above
search precision, while being adaptive to the deadline needs
for queries. Compare to alternative approaches that with
similar search delay, our scheme saves the monetary cost up
to 50%. While our work focuses on image search, our tech-
niques, especially the AMT behavior models and prediction
algorithms, open up a spectrum of possibilities and can be
applied to areas beyond images to any multimedia search
from mobile phones.

Acknowledgements
We are very thankful to Prof. Mark Corner for discussions
on AMT, and to Prof. R. Manmatha for assistance with the
automated image search system. We thank Prof. Romit Roy
Choudhury for shepherding and the anonymous reviewers
for their comments. This research was supported by NSF
grants CNS-0546177, CNS-0546177, and CNS-0910900.

11. REFERENCES
[1] M. Azizyan, I. Constandache, and R. Choudhury.

Surroundsense: mobile phone localization via ambience
fingerprinting. In Proceedings of MobiCom 09, Sep 2009.

[2] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information
Retrieval. ACM Press, 1999.

[3] K. P. Burnham and A. D. R. Model Selection and Multimodel
Inference: A Practical Information-Theoretic Approach,
Second Edition. Springer Science, New York, 2002.

[4] A. T. Campbell, S. B. Eisenman, N. D. Lane, E. Miluzzo, and
R. A. Peterson. People-centric urban sensing. In WICON ’06:
Proceedings of the 2nd annual international workshop on
Wireless internet, page 18, New York, NY, USA, 2006. ACM.

[5] O. Chum, J. Philbin, M. Isard, and A. Zisserman. Scalable near
identical image and shot detection. In Proceedings of CIVR
’07, pages 549–556, New York, NY, USA, 2007.

[6] E. Cuervo, A. Balasubramanian, D. ki Cho, A. Wolman,
S. Saroiu, R. Chandra, and P. Bahl. Maui: Making
smartphones last longer with code offload. In In Proceedings of
ACM MobiSys, 2010.

[7] S. B. Eisenman, N. D. Lane, E. Miluzzo, R. A. Peterson,
G. seop Ahn, and A. T. Campbell. Metrosense project:
People-centric sensing at scale. In In WSW 2006 at Sensys,
2006.

[8] A. Kittur, E. Chi, and B. Suh. Crowdsourcing user studies with
mechanical turk. CHI 2008, Jan 2008. Crowdsourcing applied
to user study.

[9] D. G. Lowe. Distinctive image features from scale-invariant
keypoints, 2003.

[10] H. Lu, W. Pan, N. D. Lane, T. Choudhury, and A. T.
Campbell. Soundsense: scalable sound sensing for
people-centric applications on mobile phones. In MobiSys,
pages 165–178, 2009.

[11] M.-E. Nilsback. An automatic visual Flora - segmentation and
classification of flowers images. PhD thesis, University of
Oxford, 2009.

[12] M.-E. Nilsback and A. Zisserman. Automated flower
classification over a large number of classes. In Proceedings of
the Indian Conference on Computer Vision, Graphics and
Image Processing, Dec 2008.

[13] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman.
Object retrieval with large vocabularies and fast spatial
matching. In CVPR, 2007.

[14] V. S. Sheng, F. Provost, and P. G. Ipeirotis. Get another label?
improving data quality and data mining using multiple, noisy
labelers. In In Proceeding of KDD ’08, pages 614–622, 2008.

[15] A. Sorokin and D. Forsyth. Utility data annotation with
amazon mechanical turk. Computer Vision and Pattern
Recognition Workshops, Jan 2008.

[16] http://images.google.com/imagelabeler/. Google Labeler.

[17] https://www.livework.com/. LiveWork: Outsource Business
Tasks To Teams of On-Demand Workers.

[18] http://www.abiresearch.com/research/1002762-US+Mobile+
Email+and+Mobile+Web+Access+Trends. US Mobile Email and
Mobile Web Access Trends - 2008.

[19] http://www.chacha.com/. ChaCha: Real people answering your
questions.

[20] http://www.crowdspirit.com/. CrowdSpirit: enables businesses
to involve innovators from outside the company directly in the
design of innovative products and services.

[21] http://www.google.com/mobile/products/search.html#p=default.
Goggle: Google image search on mobile phones.

[22] http://www.sensorplanet.org/. Sensor Planet: a mobile
device-centric large-scale Wireless Sensor Networks.

[23] http://www.taskcn.com/. Taskcn: A platform for outsourcing
tasks.

[24] http://www.theextraordinaries.org/crowdsourcing.html. The
Extraordinaries.

[25] http://www.topcoder.com/. www.topcoder.com.

[26] http://www.vlfeat.org/~vedaldi/code/siftpp.html. SIFT++: a
lightweight C++ implementation of SIFT detector and
descriptor.

[27] http://www.wired.com/gadgetlab/2008/12/amazons-iphone/.
Amazon Mobile: Amazon Remember.

[28] L. von Ahn and L. Dabbish. Labeling images with a computer
game. In CHI ’04: Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 319–326, New
York, NY, USA, 2004. ACM Press.

[29] L. von Ahn, B. Maurer, C. Mcmillen, D. Abraham, and
M. Blum. recaptcha: Human-based character recognition via
web security measures. Science, 321(5895):1465–1468, August
2008.

[30] T. Yan, D. Ganesan, and R. Manmatha. Distributed image
search in camera sensor networks. In Proceedings of SenSys
2008, Jan 2008.

[31] C. Zhu, K. Li, Q. Lv, L. Shang, and R. Dick. iscope:
personalized multi-modality image search for mobile devices. In
Proceedings of Mobisys ’09, Jun 2009.

90

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

