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The ubiquity of mobile devices has brought forth the concept of participatory sensing, whereby ordinary
citizens can now contribute and share information from the urban environment. However, such applica-
tions introduce a key research challenge: preserving the privacy of the individuals contributing data. In
this paper, we study two different privacy concepts, k-anonymity and l-diversity, and demonstrate how
their privacy models can be applied to protect users’ spatial and temporal privacy in the context of par-
ticipatory sensing.

The first part of the paper focuses on schemes implementing k-anonymity. We propose the use of mic-
roaggregation, a technique used for facilitating disclosure control in databases, as an alternate to tessel-
lation, which is the current state-of-the-art for location privacy in participatory sensing applications. We
conduct a comparative study of the two techniques and demonstrate that each has its advantage in cer-
tain mutually exclusive situations. We then propose the Hybrid Variable size Maximum Distance to Aver-
age Vector (Hybrid-VMDAV) algorithm, which combines the positive aspects of microaggregation and
tessellation. The second part of the paper addresses the limitations of the k-anonymity privacy model.
We employ the principle of l-diversity and propose an l-diverse version of VMDAV (LD-VMDAV) as an
improvement. In particular, LD-VMDAV is robust in situations where an adversary may have gained par-
tial knowledge about certain attributes of the victim.

We evaluate the performances of our proposed techniques using real-world traces. Our results show
that Hybrid-VMDAV improves the percentage of positive identifications made by an application server
by up to 100% and decreases the amount of information loss by about 40%. We empirically show that
LD-VMDAV always outperforms its k-anonymity counterpart. In particular, it improves the ability of
the applications to accurately interpret the anonymized location and time included in user reports.
Our studies also confirm that perturbing the true locations of the users with random Gaussian noise
can provide an extra layer of protection, while causing little impact on the application performance.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Over the past decade, we have witnessed an explosive growth of
mobile devices that are capable of capturing, processing, and trans-
mitting high fidelity multimedia content. Furthermore, the ad-
vances in positioning technologies and VLSI fabrication processes
make geo-localization an affordable feature in mobile devices.
These have motivated the research community to explore an alter-
native sensing paradigm referred to as participatory sensing [2] or
urban sensing [3], that exploits the unique characteristics of these
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geo-intelligent, sensor-equipped and computationally capable mo-
bile devices. These systems have led to the emergence of several
citizen sensing applications, wherein, mobile phones carried by or-
dinary citizens collect and share information about the urban
landscape.

Cartel [4] is a system that uses mobile sensors mounted on
vehicles to collect information about traffic, quality of en route
Wi–Fi access points, and potholes on the road. A similar system
has been proposed in [5], which exploits sensor-rich smartphones
carried by passengers for monitoring road and traffic conditions.
Micro-Blog [6], on the other hand, is an architecture which facili-
tates real-time recording and sharing of multimedia contents.
Other applications of participatory sensing include, collecting
information about urban air pollution [7], cyclist experience [8],
and diet [9]. Moreover, riding the recent wave of social networks
such as Facebook and MySpace, [10] presents CenceMe, which is
a novel application that exploits the capabilities of mobile phones
to automatically infer people’s sensing presence. In our earlier
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research, we have applied the concept of participatory sensing in
sharing consumer pricing information in offline markets. We have
designed two systems, PetrolWatch [11] and MobiShop [12], which
use mobile camera phones to collect, process and deliver pricing
information from service stations and brick and mortar shops to
potential drivers and buyers.

In a typical participatory sensing application, the sensing data
uploaded by users are invariably tagged with the location (obtained
from the embedded GPS in the phone or using Wi–Fi based localiza-
tion) and time when the readings are recorded, since these provide
important contextual information. This can have serious implica-
tions on user privacy, since the sensor reports uploaded by users
may reveal their locations at particular times. Furthermore, it may
be possible to link multiple reports from the same user and deter-
mine certain private information such as the location of his/her of-
fice and residence. Simple techniques such as using pseudonyms
[13] or suppressing user identity [14] may not always work. For in-
stance, if an adversary has a priori knowledge of a user’s movement
patterns, it is fairly trivial to deanonymize his/her reports. Note that,
participatory sensing relies on the altruistic participation of users for
widespread penetration and successful operation. It is thus impera-
tive that users are assured that their temporal and spatial privacy
will not be violated to encourage sufficient participation.

In recent years, a few methods have been proposed for securing
location privacy in participatory sensing systems. Kapadia et al. in
[16] implemented a novel technique called tessellation, which ad-
dressed the public concern for users’ location privacy in events of
data contribution. In tessellation, a point coordinate is enlarged
to a region, which is referred to as tile, containing at least k users.
Sensor reports uploaded by users contain tile identifiers (tile IDs)
rather than their exact locations.1 The act of transforming a value
from a finer granularity (point in a plane) to a coarser equivalent
(region in a plane) is often called generalization. Generalization is
an important class of implementation techniques for the well-
known k-anonymity concept [17]. k-anonymity is a desirable prop-
erty for reports collected by applications. The collection of reports
received by an application is k-anonymous if it represents groups
of users with the size of each group being at least k. Further, mem-
bers of a group share similar values for some attributes. Tessella-
tion, in line with the above description, is therefore regarded as
an instantiation of the concept of k-anonymity. In this paper, we
argue that the underlying generalization may make tessellation
particularly unsuitable for certain applications which require
fine-grained location information. For example, consider an appli-
cation that collects traffic information from mobile phones carried
by vehicular passengers [5]. If tessellation is employed, a traffic re-
port generated by a user at one particular intersection along a road
will be annotated with the tile ID (which encompasses a large re-
gion), rather than the exact location of the intersection. When this
report is received by the application server, the aggregated location
information represented by tile ID is of little use, since the server
cannot ascertain which road is being referred to in the report.

We suggest a minor modification to tessellation in an attempt
to address the above-mentioned issue. Next, we adopt microaggre-
gation, a commonly used technique to implement k-anonymity for
statistical disclosure control [21,22], as an alternative of tessella-
tion for location privacy in participatory sensing. One of the useful
properties of microaggregation is its ability to operate on continu-
ous-valued numerical attributes. This makes it a good candidate
approach to not only ensure spatial privacy (cf. tessellation) but
also temporal privacy. Similar to tessellation, microaggregation
1 Note that users also do not reveal the precise time of a sensing event. Instead
they report the time interval over which the event takes place. For example, if a
sensing took place at 12:23, the report documenting this event would log the time as
[12:00 –12:30], an interval of 30 min.

2 A group is often referred to as an equivalence class in microaggregation literature
3 Assuming (tile ID = 3) and (tile ID = 7) refer to areas other than the cancer

treatment facility.
,

protects users of participatory sensing applications by creating
groups2 of users from reports stored at application servers. Akin to
tessellation, the resulting groups all have at least k members that
share the same values for some selected attributes, e.g. location
and time. More importantly and distinguishably, the common values
can also assume numerical values, e.g. mean location of a group of
users. Referring to the prior traffic monitoring example, the numer-
ical format of spatial information may offer more contextual insight
for the problem at hand. There are many implementations under the
umbrella of microaggregation (see [21,22] and the references there-
in). In this paper, we apply a particular instance called Variable size
Maximum Distance to Average Vector (VMDAV) algorithm because
of its demonstrated algorithmic efficiency.

This paper focuses on spatial and temporal privacy of users,
which are two universal attributes that are expected to be included
in user reports for all participatory sensing applications. We pre-
sume the existence of an adversary who does not know the true val-
ues of time and location of user reports. However, the adversary has
means to find out the temporal and spatial properties of his victims.
For example, the adversary may overhear the conversation between
Bob and his friend and find out that, Bob is scheduled for a medical
treatment sometime in the afternoon on Wednesday. The goal of
the adversary is to use this prior temporal information to find out
Bob’s medical conditions. More specifically, consider a case in which
the aforementioned adversary is the administrator of a participatory
sensing application, to which Bob has registered as a user. Bob em-
ploys tessellation for his location privacy when interacting with
the application. The adversary is able to exploit his prior knowledge
about Bob to narrow down the search among reports uploaded on
Wednesday afternoon and conclude that Bob was somewhere in re-
gion A, which corresponds to the cancer treatment facility of a hos-
pital. This allows the adversary to infer the fact that Bob is most
likely to have cancer. The above attack is often called background
knowledge attack [30]. The privacy model characterized by k-ano-
nymity is vulnerable to compromise under these attacks. As the
above example shows, even though region A is shared among k
users, the lack of variation exposes Bob to what is referred to as attri-
bute disclosure. One approach to circumvent this problem is to define
a set of exclusion zones [28]. Exclusion zones refer to those sensitive
areas that should not be used to replace users’ true locations. In the
above scenario, the cancer treatment facility constitutes an exclu-
sion zone. The drawback of this idea is that it may reduce the pene-
tration of the application if the envisioned deployment area involves
a substantial amount of exclusion zones.

In light of the type of adversary described above, we view pri-
vacy in participatory sensing from a different perspective. We illus-
trate this using the same example above. Our goal is not to stop the
adversary from knowing which group Bob is placed (via prior tem-
poral knowledge). Instead, we seek to prevent him from acquiring
absolute semantic information about the location of Bob. One way
to achieve this is to ensure that, each group has multiple values for
the location attribute. For example, instead of having (tile ID = 1) as
the only location value, the group to which Bob belongs may have
(tile ID = 1), (tile ID = 3), (tile ID = 7).3 This makes it harder for the
adversary to become aware of the Bob’s medical conditions. This
privacy model is formally characterized by the well-known l-diver-
sity concept [30]. In this paper, we propose an l-diverse version of
VMDAV to address the limitations of k-anonymous privacy methods.

In summary, this paper makes the following specific contri-
butions:
� We demonstrate the limitations of tessellation in providing

contextual support for participatory sensing applications. We then
.
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show how our modified version of tessellation, TwTCR, eliminates
these drawbacks.
�We propose the use of an alternative implementation, VMDAV,

to address location privacy. We compare VMDAV with TwTCR and
demonstrate that each scheme has certain advantages in mutually
exclusive situations. To combine the strengths of these two schemes,
we propose a hybrid approach called, Hybrid-VMDAV.
�We demonstrate that k-anonymous techniques such as TwTCR,

VMDAV, and Hybrid-VMDAV, are insufficient to defend against
attribute disclosure. We therefore propose an l-diversity based
extension of VMDAV. We show how this algorithm prevents attri-
bute disclosure while providing both temporal and spatial privacy.
�We use real-world user traces to evaluate the performances of

proposed privacy-preserving schemes. We first compare the per-
formance among k-anonymous techniques, and show that Hy-
brid-VMDAV achieves twice the percentage of positive
identifications as compared to TwTCR and VMDAV, while reducing
40% of the amount of information loss. Next we demonstrate that
LD-VMDAV can consistently outperform VMDAV and show that it
can prevent attribute disclosure.
� We also propose an enhancement, which perturbs user loca-

tions with random Gaussian noise, as an extra layer of protection.
We demonstrate that this extension has very little impact on the
performance of our proposed schemes.

The rest of the paper is organized as follows. In Section 2, we
present a brief overview of the two central concepts used in this
paper: (1) k-anonymity and (2) l-diversity. We also include in this
Section some prior implementation developments relevant to the
two core concepts. In particular, the techniques of tessellation
and microaggregation are described in more details. Section 3 out-
lines the system model and describes a motivating application. We
introduce our k-anonymous privacy-preserving techniques in
Section 4. Section 4 also explores the viability of introducing
Gaussian input perturbation as an extra layer of privacy protection.
Section 5 is reserved for the study of l-diversity for temporal and
spatial privacy in participatory sensing. A detailed explanation of
the l-diversity algorithm, LD-VMDAV, is also included in Section
5. Section 6 provides results from our evaluations. Finally, Section
7 concludes the paper.

2. Related work

Preserving users’ privacy in participatory sensing is similar to
safeguarding respondents’ privacy in databases, which contain
continuous-valued fields. Therefore, most of the concepts and
methods related to database disclosure control can be potentially
applied to participatory sensing. In particular, k-anonymity [17],
has been widely used for privacy preservation in databases as well
as in participatory sensing systems.

2.1. The concept of k-anonymity

The concept of k-anonymity is easy to understand. A report col-
lected by an application is k-anonymous if it is indistinguishable,
with respect to some chosen attributes, among k� 1 other reports
received by the same application. The indistinguishability is
achieved by replacing the true values of selected attributes with
common ones. In participatory sensing applications, especially
those involving location data, value substitutions are often per-
formed over the sensitive attributes.4 Location is an example of sen-
sitive attribute, since it is commonly perceived by users as
4 On the contrary, the value replacement in conventional databases occur on quasi-
identifiers. These refer to attributes whose values can be obtained elsewhere and used
to identify individuals. Postal code, gender, date of birth are all examples of quasi-
identifier.
confidential information. There are a multitude of algorithms imple-
menting k-anonymity but they can be classified according to the
mechanisms by which the common values are generated [21]. Gen-
eralization refers to the techniques where data granularity is re-
duced, e.g. replacing a street-level location value with a city-level
equivalent. Perturbation, on the other hand, does not reduce data
granularity but artificially changes the attribute values according
to some pre-determined functions, e.g. adding random Gaussian
noise to location coordinates.

2.2. Tessellation: k-anonymity by generalization

Kapadia et al. proposed tessellation, which is a k-anonymous
technique primarily aimed at addressing location privacy in partic-
ipatory sensing applications, as part of the AnonySense architec-
ture in [16]. Tessellation belongs to the generalization category.
It involves partitioning a geographic area into a collection of cells
and amalgamating neighboring cells to form tiles, which users
can use to mask their true positions. In other words, a tile is the
lowest granularity with which users represent their locations. In
their implementation, these cells corresponded to the Voronoi cells
constructed from the locations of Wi–Fi access points (APs) on the
Dartmouth College campus. The user distribution per cell was ob-
tained from historical AP activity records and was used to cluster
cells into tiles. Columns 1–5 of Table 15 show a sample of a 3-anon-
ymous reports based on tessellation. The true time and location (i.e.
columns 2 and 3) are included in the table for references only. In
reality, these are absent from the reports submitted to applications.
In other words, a user report at the application consists of the follow-
ing fields: hUser ID, Anonymized Time, Anonymized Locationi. Fur-
ther details about how the tile IDs are decided are provided in
Section 3.2. Note that, in Table 1, time values are also generalized.
More specifically, time is reported at the granularity of one hour.
For example, 12:31 is represented by the interval 12:00–13:00.

2.3. VMDAV: k-anonymity by Perturbation

Microaggregation [21] is an alternative approach to implement
k-anonymity. Its operation involves creating a set of equivalence
classes, within which members share common values for sensitive
(in the context of participatory sensing) attributes. These common
values are typically the averages of attributes. An equivalence class
refers to the grouping of records6 such that class members are as
similar as possible. Member similarity is often measured by the rel-
ative distances between attribute values, e.g. Euclidean distances be-
tween location coordinates. Microaggregation is an example of
perturbation techniques since, it does not generalize values of the
sensitive attributes but changes them according to the average func-
tion. Many algorithms have been proposed to generate equivalence
classes with maximum within-class similarity [21,23,24]. Maximum
Distance to Average Vector (MDAV) [21] has been widely recognized
as one of the most efficient heuristics to date. However, it has also
been found to perform poorly if the distribution of records exhibited
prominent features. Taking location as an example, such feature may
manifest itself as regions with exceptionally populated users. The
poor performance in these circumstances is due to its inability to
vary the size of the resulting equivalence classes. The variable size
variant of MDAV, which has been termed VMDAV, was later pro-
posed in [24] to ameliorate this shortcoming. The rightmost column
of Table 1 shows the result of applying VMDAV with the location
coordinates of the six users as input. The full algorithmic description
5 A table in this paper refers to a collection of reports submitted by users and stored
y a participatory sensing application.
6 A record refers to an entry of the table stored at an application. It represents a
port from a participating individual.
b

re



Table 1
Example of 3-anonymous reports maintained at the application.

User
ID

Time Location Anonymized time
(generalization)

Tile
ID

Class ID: class
mean

1 12:31 (1.5,
6.0)

(12:00–13:00) 1 Class 1: (4.33,
5.17)

2 12:48 (4.5,
4.0)

(12:00–13:00) 1 Class 1: (4.33,
5.17)

3 12:01 (4.5,
1.0)

(12:00–13:00) 1 Class 2: (6.33,
1.33)

4 17:05 (6.5,
2.0)

(17:00–18:00) 2 Class 2: (6.33,
1.33)

5 17:35 (7.0,
5.5)

(17:00–18:00) 2 Class 1: (4.33,
5.17)

6 17:48 (8.0,
1.0)

(17:00–18:00) 2 Class 2: (6.33,
1.33)
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of VMDAV is provided in Section 4.2.
Domingo-Ferrer proposed a novel protocol, which applied mic-

roaggregation to address location privacy in Location-Based Ser-
vices (LBS) [25]. Their solution assumes a peer-to-peer system. In
their scheme, a user distorts his own location by artificially adding
a Gaussian variable of zero mean and standard deviation r to his
latitude and longitude. The distorted location coordinates are
broadcast to nearby neighbors (i.e. peers) requesting for their
Gaussian-perturbed location readings. Upon receiving the re-
sponses from its peers, the user selects k� 1 other users such that
they collectively span a region delimited by the user’s privacy
requirement. The mean of the group formed by the user and his
k� 1 closest neighbors is then used in all messages sent to the
LBS server. There are still many open problems in distributed (peer
to peer) participatory sensing [16]. Therefore, this scheme cannot
be readily adopted in our context. In this paper, we leverage the cli-
ent–server architecture, albeit the distributed counterparts are
gradually gaining momentum and popularity [27].
2.4. Problems with k-anonymity

In general, k-anonymity protects user privacy by replacing attri-
bute values with those which are common to k records. Even
though this protection model is sufficient to defend against iden-
tity disclosure, it has been discovered by several authors [29,30]
that k-anonymity alone cannot prevent attribute disclosure. Iden-
tity disclosure refers to the case where an individual is linked to a
specific record in the table. Attribute disclosure, on the other hand,
occurs when confidential properties about an individual are ac-
quired from the semantic meaning of an attribute. To elaborate
on these two privacy compromises, we use the cancer treatment
facility example from Section 1 in conjunction with Table 1. We as-
sume that the adversary knows (through mutual conversations)
that his victim’s medical appointment is scheduled at 12:30 p.m.
This prior temporal knowledge does not permit the adversary to
precisely identify which of the first three records is uploaded by
the victim. In other words, identity disclosure is prevented. How-
ever, this knowledge does allow the adversary to unambiguously
conclude that the victim is in (tile ID = 1), which in this scenario
corresponds to the cancer treatment facility. Thus the victim is ex-
posed to location attribute disclosure.

Two types of attack have been identified to cause attribute dis-
closure: (1) background knowledge attack and (2) homogeneity at-
tack [30]. Background knowledge attack refers to the situation,
wherein an adversary eliminates unlikely candidates and learns
information about his victim using some prior knowledge about
the individual. Homogeneity attack, on the other hand, occurs
when an adversary exploits the monotony in attribute values to ac-
quire properties of victims. Both types of attack are used in the
above example to reach attribute disclosure: background knowl-
edge (temporal information) enables the adversary to exclude
the last three records, while homogeneity attack confirms his belief
that the victim has been to the cancer treatment facility and is thus
likely to suffer from cancer.

2.5. The concept of l-diversity

In light of the aforementioned disclosure risks, Machanavajjhala
et al. [30] proposed an ingenious approach, which is now well-
known as l-diversity, to further enhance the privacy of individuals.
Formally a group of reports is l-diverse if these reports contain at
least l well-represented values for sensitive attributes and that, a
table satisfies l-diversity if all constituting groups are l-diverse. In
[30], the authors propose different ways to interpret the term well-
represented, but for simplicity, we explain the most intuitive, dis-
tinctive l-diversity here and use it in our proposed algorithm in Sec-
tion 5. In distinctive l-diversity, the user reports are grouped such
that each group has l distinct values for sensitive attributes. To
illustrate this, we refer the reader to Table 1. Now assume that
users are arranged in groups of 3, e.g. users: 1, 2, 3 and users 4,
5, 6, and ignore the tile ID column. The resulting representation
is an example of a distinctive 2-diverse table. Specifically, users
in the first group (users 1, 2, and 3) have the same time value,
e.g. 12:00–13:00, but two different values for location, e.g. (4.33,
5.17) and (6.33, 1.33). This eliminates the monotony in location
and thus protects users from location attribute disclosure as de-
scribed in Section 2.4. The implementation of l-diversity does not
require the design of new algorithms since, it has been proven in
[30] that any k-anonymity algorithms are l-diversity compatible
with minor changes to test conditions. An example of such an
implementation can be found in Han’s work [31], wherein an l-
diversity version of VMDAV was proposed for statistical disclosure
control.
3. System model and motivating application

In this section, we first present the system model and assump-
tions. Next, we present an example application which demon-
strates the limitations of using tessellation in a location sensitive
participatory sensing application.

3.1. System model and assumptions

3.1.1. System model
We leverage the AnonySense architecture proposed in [15] to

provide participatory sensing infrastructure support, but take a dif-
ferent approach to address the issue of potential disclosure of pri-
vate location information. In particular, we focus on the privacy
protection aspects of the architecture. Fig. 1 gives a pictorial
description of the system architecture.

To assist a participatory sensing application, the architecture
depends on four core services: (1) a collection of mobile nodes
(MNs), (2) a registration authority (RA), (3) a task server (TS),
and (4) a report server (RS). Further, it assumes the existence of
a Mix Network (MIX), which provides a medium for anonymous
communications. MNs are devices with sensing and communica-
tion capabilities and are mostly carried by humans (in some cases,
they are attached to objects such as vehicles). It should be noted
that the participation of MNs in sensing is voluntary. The RA is
the central hub for trust establishment. It verifies the integrity of
other service components and issues certificates and keys so that
they can anonymously authenticate each other. The TS is responsi-
ble for the downward communication between the application and
MNs. It ensures the tasks from the application are genuine and do



Fig. 1. AnonySense architecture.
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not violate MN carriers’ privacy requirements. Its counterpart, RS,
aggregates reports from MNs to provide additional level of protec-
tion and channels the reports to the trusted application. MIX is
used by MNs to de-link their reports before they reach the RS.
The anonymous property of messages traversing inside MIX pre-
vents the message recipient from linking multiple reports to the
same origin.

In their related work [16], the authors proposed tessellation for
providing privacy in the architecture. The operation of tessellation
requires the existence of an additional map server (MS), which is
responsible for the generation of tessellation map (i.e. dividing a
geographic region into tiles). MNs query the MS for the tessellation
map, which allows them to determine the appropriate tiles that
should be reported with sensor readings. In our implementation,
a similar system entity is needed. However, in our case this entity
is also able to execute various microaggregation algorithms (ex-
plained in Section 4) and is referred to as the anonymization server
(AS). The sequence of operations executed when a user contributes
data is as follows: a user collects data demanded by an application
with its mobile device and submits reports when it has network
connectivity (via 3G/Wi–Fi). The user consults the AS prior to sub-
mitting the reports. The AS runs the appropriate microaggregation
algorithm and provides the user with anonymized locations, which
are used to annotate the reports. The application then processes
and interprets the received data using the anonymized locations.

3.1.2. Trust assumption
We make the following assumptions regarding the trust laid

upon system components: (1) the AS is independently owned by
a third-party operator and is isolated from attacks, (2) the AS does
not collude with applications and other system entities, and (3)
users periodically upload their whereabouts to the AS (or when
they submit queries) and trust the server with the confidentiality
of their locations. Note that, in practice it is unrealistic to demand
users to trust a single system entity with their accurate informa-
tion. Hence, we propose a scheme to relax this assumption in Sec-
tion 4.4.

3.1.3. Threat model
We focus on the temporal and spatial information included in

user reports. The threat model presumes the existence of a hostile
adversary, who does not know the true values of time and location
corresponding to the user reports. However, the adversary is as-
sumed to have means to find out the temporal and spatial proper-
ties of his victim, e.g. time of day or the suburb in a city. In this
paper, we assume such an adversary possessing some degree of
temporal knowledge about individuals. For example, he may know
the time period over which certain individuals are more likely to
use PetrolWatch (an example participatory sensing application
used in the rest of the paper and detailed in the next sub-section),
e.g. on their way back home from work. The goal of the adversary,
with this prior temporal knowledge at his disposal, is to either
identify his victim precisely (identity disclosure) or to deduce the
nature of the places that his victim has visited (attribute disclo-
sure). We also assume that the adversary is able to observe submit-
ted reports, which consist of the hUser ID, Anonymized Time,
Anonymized Locationh columns of Table 1. This is possible via
eavesdropping or being a malicious application administrator.

3.2. Motivating application: Petrolwatch

We now present an illustrative example to demonstrate the
drawbacks of using tessellation for location privacy in participa-
tory sensing. In our earlier work [11], we have designed a novel
application, PetrolWatch, which allows users to automatically col-
lect, contribute and share fuel pricing information using camera
phones. Users mount their camera-enabled mobile phones on the
car dashboard. Through the use of GPS and GIS, PetrolWatch knows
when the vehicle is approaching a service station and triggers the
camera automatically. Pictures of fuel pricing billboard are pro-
cessed by computer vision algorithms to extract fuel prices. Fuel
prices are annotated with location coordinates of the service sta-
tion and time at which the capture takes place, and uploaded to
the application server. Users can query the server to locate the
cheapest petrol station in their vicinity.

Fig. 2 is the pictorial representation of Table 1 and illustrates a
simple distribution of users for PetrolWatch, assuming that tessel-
lation is employed to provide location privacy. There are six users
spread across a region of size 9 km � 7 km (for simplicity we as-
sume a 2D coordinate system). Fig. 2 captures the locations of users
at a particular time instant. Assume that there is a service station
co-located with the current location of each user (i.e. six service
stations in total) and that, a user only records pricing information
of the co-located service station. Now suppose that user 2 is in the
process of uploading fuel pricing information to the application
server. A query is first sent from the user to the AS requesting for
an anonymized location that should be reported. Given the distri-
bution of users, the AS constructs two tiles as shown in Fig. 2 (fol-
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Fig. 2. User distribution in the example application: PetrolWatch.
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lowing the guidelines of tessellation in [16]) assuming the privacy
requirement is k ¼ 3, and advises the user of his anonymized loca-
tion, i.e. tile 1. Consequently, user 2 annotates his report with tile 1
instead of his actual location (4.5, 4). When the report is submitted
to the application, it needs to associate the received report with
one of the three service stations located in tile 1. However, without
additional information, it is unable to confidently determine that
the fuel prices included in the report correspond to the service sta-
tion co-located with user 2. This simple example clearly illustrates
the intrinsic limitation of using tessellation as a means for location
privacy, and serves as the primary motivation for our proposed
schemes in the next Section.

It should be noted that Fig. 2 shows only one possible arrange-
ment for user clustering. It is likely that other viable alternatives
exist, which may potentially have a different impact on the perfor-
mance of the application. A set of general instructions for tile con-
struction is given in [16], but it provides no discussions on the
impact of varying tile configurations.
4. k-anonymous privacy-preserving schemes

In light of the aforementioned limitation, we propose a simple
modification to tessellation and demonstrate how our scheme
solves the problem posed by PetrolWatch. This result is presented
in Section 4.1. In Section 4.2, we investigate how perturbation-
based k-anonymous techniques can be applied as an alternative
approach. In particular, we propose the use of VMDAV for address-
ing privacy issues in participatory sensing. Section 4.3 describes
some important observations from the previous two sub-sections
and introduces Hybrid-VMDAV, which is another alternative
scheme attempting to deliver the benefits of both generalization
(tessellation) and perturbation (VMDAV). Section 4.4 incorporates
a simple input perturbation mechanism with our proposed pri-
vacy-preserving schemes. It represents our attempt to free users
from having their precise location information known to the AS.

Note that in theory, VMDAV can be applied to any numerical
attributes, e.g. location and time. However, since tessellation was
designed primarily to address location privacy in participatory
sensing, we limit the use of VMDAV on the location attribute as
well to facilitate a fair comparison. In other words, the timing
information associated with reports is processed by generalization
as described in Section 2.2. We defer the usage of VMDAV for both
temporal and spatial privacy to Section 5.
4.1. Tessellation with tile center reporting

The example in Section 3.2 shows that the problem with tessel-
lation in providing location privacy is that it uses a region, rather
than a point coordinates, for location anonymization. In this re-
gard, a natural modification to it is to represent each tile by the
coordinates of its center. Hence, we propose a modification, where-
in, a user’s reports are annotated with location coordinates of the
center of the tile in which he is currently observed. This requires
a simple update to the AS, such that it includes the coordinates
of tile centers in the tessellation map. We illustrate the operation
of this scheme by using the same example as depicted in Fig. 2.
With the above change in place, users 1, 2, and 3 anonymize their
positions using (3, 3.5), which is the center of tile 1. Similarly, users
4, 5, and 6 mask their locations with the center of tile 2, (7.25,
3.25). This alteration provides the application with more options
to analyze the data contained in user reports. For example, search-
ing for the shortest Euclidean distances between the anonymized
location reported by user 2 and the positions of the six candidate
service stations reveals that, user 2 was most likely referring to
the one in his vicinity.

We acknowledge here that the method of shortest Euclidean
distance may not be the best strategy for an application to analyze
received positional data. Nonetheless, it adequately demonstrates
one of the advantages of this numerical value driven approach. In
the rest of this paper, we refer to the above alternate tessellation
scheme as TwTCR.
4.2. Location anonymization with microaggregation

Even though TwTCR overcomes the obstacles encountered in
Section 3.2, it should be noted that depending on user density,
some tiles may have considerably large areas. In such cases, report-
ing the center of tiles may lead to data infidelity and cause the
application to erroneously interpret the locations contained in
reports (this point is further elaborated in the evaluations in Sec-
tion 6). We propose the use of microaggregation as an alternative
to achieve location privacy in these situations. In particular, we
adopt the VMDA heuristic proposed in [24]. The pseudo code of
VMDAV is reproduced in Fig. 3 for reference.

We illustrate the outcome of this heuristic using the example
from Table 1 which is depicted in Fig. 2. The AS generates two
equivalence classes: one encompasses users 1, 2, and 5 and the
other includes users 3, 4, and 6. In this approach, user 2 substitutes
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his position with the mean location coordinates of the equivalence
class to which he belongs, i.e. (4.33, 5.17). This anonymization not
only meets 3-anonymity (the size of each equivalence class is 3)
but also ensures that a numeric location value is provided to the
application.

4.3. Location anonymization with hybrid microaggregation

So far, we have introduced two k-anonymous privacy-preserv-
ing schemes, TwTCR and VMDAV. An immediate question at this
point would be if there was any reason to favor one over the other?
To this end, we present two simple examples to demonstrate that
both TwTCR and VMDAV have their advantages in certain mutually
exclusive situations. These observations motivate us to propose a
novel technique that combines the best of both methods.

Let us first consider the example in Fig. 2. Assume that user 6
is in the process of uploading his fuel pricing report to the appli-
cation server. We assume that the server has some background
knowledge regarding this report, e.g. it knows that this report
would not have referred to the service station in the immediate
vicinity of user 4. This is a valid assumption because reports can
often be filtered by other attributes, for example, the brand of
the service station. The location data carried by the report can
be either (7.25, 3.25) if TwTCR was employed or (6.33, 1.33) if
VMDAV was used. Assume that the application server compares
the Euclidean distances of all six service stations to the location
contained in the report, and concludes that the report corresponds
to the service station closest to the reported location. In the case
Fig. 3. Pseudocod
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Fig. 4. An example demonstrating
of TwTCR, the server mistakenly makes the decision that this re-
port referred to the service station co-located with user 5. On
the other hand, with V-MDAV, a correct association can be made
with the chosen service station being located in the vicinity of
user 6.

Let us now consider a different example with a different user
distribution as depicted in Fig. 4. Let us first focus on TwTCR. Ob-
serve that the cell in which users 2, 3, and 4 are located satisfies
the privacy requirement k ¼ 3 on its own and hence, this cell forms
a tile. On the other hand, the cells in which the remaining users are
found need to be merged together according to the rules of tessel-
lation. VMDAV, on the other hand, creates two equivalence classes.
Users 1, 2, and 3 constitute one equivalence class, while the
remaining users are grouped into the other one. Now, assume that
user 4 is to submit his report. He will anonymize his location using
either TwTCR-generated (4, 1.75) or VMDAV-produced (7.17, 5.5).
Note that, these anonymized values are generated by the AS. Using
Euclidean distances for interpretation as in the previous example,
the application server can correctly associate the report submitted
by user 4 with his co-located service station if TwTCR was chosen.
On the contrary, VMDAV would have led to an incorrect association
with the deduced service station being the one near user 5.

The following observations can be made based on the above
examples: (1) VMDAV enables an application to make better deci-
sions when the user distributions across different areas are rela-
tively consistent, as in Fig. 2. (2) On the contrary, in areas with
dense distribution of users, as in Fig. 4, TwTCR performs better. Gi-
ven that the two schemes have their advantages in contrasting sit-
e for VMDAV.
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Table 2
Another example of 3-anonymous reports maintained at the application.

User ID Time Location Anonymized
time

Anonymized
location

11 12:01:31 (0.77, 1.00) 14:07:22 (0.72, 0.78)
7 16:14:21 (1.00, 0.73) 14:07:22 (0.72, 0.78)
6 14:06:15 (0.37, 0.63) 14:07:22 (0.72, 0.78)

8 17:18:32 (0.65, 0.00) 17:18:03 (0.52, 0.27)
1 17:07:30 (0.82, 0.42) 17:18:03 (0.52, 0.27)

12 17:28:07 (0.10, 0.40) 17:18:03 (0.52, 0.27)

2 16:27:57 (0.00, 0.28) 16:55:49 (0.15, 0.55)
5 17:07:55 (0.23, 0.57) 16:55:49 (0.15, 0.55)

10 17:11:34 (0.21, 0.81) 16:55:49 (0.15, 0.55)

9 18:08:45 (0.32, 0.91) 15:33:03 (0.33, 0.73)
3 15:04:08 (0.22, 0.78) 15:33:03 (0.33, 0.73)
4 13:26:15 (0.44, 0.49) 15:33:03 (0.33, 0.73)
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uations, we propose Hybrid-VMDAV, which attempts to combine
the best of both methods. The hybrid scheme adaptively makes a
decision on whether to operate in TwTCR or VMDAV mode. The
operation of Hybrid-VMDAV is quite simple. If a user is in a tile-
forming cell, i.e. the number of users within the cell exceeds k, then
TwTCR is used. Otherwise, the algorithm switches to V-MDAV
mode. If Hybrid-VMDAV was applied to the example in Fig. 4, users
2, 3, and 4 would anonymize their locations using the value sug-
gested by TwTCR, whereas the other users would use VMDAV-gen-
erated value. This overcomes the erroneous association explained
earlier.

4.4. Gaussian input perturbation

All schemes discussed thus far assumed the existence of a
trusted third-party server, which is aware of the true locations of
participating users (recall that a user queries the AS and provides
his current details, each time he needs to upload a report). Clearly,
this architecture is not resilient against a single point of failure
since, if this server was compromised, then user privacy is at risk.
Further, users may not be comfortable with the idea of a system
entity keeping track of their locations. In fact, this may be a turn
off factor for many users and hence, they may be reluctant to par-
ticipate. It is therefore imperative to devise a strategy that does
away with this requirement, without incurring substantial perfor-
mance degradation.

We propose a simple perturbation scheme that artificially dis-
torts a user’s location prior to updating the AS. The artificial distor-
tion is induced by adding a random Gaussian noise with mean l
and standard deviation r to the X and Y coordinates of a user’s
location (we assume that the GPS coordinates are converted to a
planar 2D coordinate system). In other words, if the current loca-
tion of a user is ðx; yÞ, then the user reports its perturbed location
½xþ p� Nðlx;rxÞ; yþ p� Nðly;ryÞ� to the AS. The perturbation
parameters, i.e. l and r, can be estimated from historical AP visi-
tation records.

Assume for now that we know the number of users in each cell
of the Voronoi diagram for the area of interest (we will explain the
construction and property of Voronoi diagram in Section 6). Based
on this information, we can place users at randomly selected loca-
tions within the cell. The mean and standard deviation of these
random coordinates over all cells are used as l and r estimates,
respectively. Since the resulting r is of the same order of magni-
tude as a user’s coordinates, a factor p is introduced as a scaling
factor so that the perturbed value does not deviate significantly
from his true location. p usually takes on a small fractional value
(see evaluations in Section 6).

Note that, the proposed perturbation scheme is the simplest of
its kind. It is introduced for the purpose of investigating the viabil-
ity of user-side pre-processing in the face of a distrustful AS. It has
been shown by several authors [18,19] that, merely adding random
noise to data does not protect privacy. They argue that correlations
among different pieces of data or between data contributors can be
exploited to reconstruct the data, unless the noise is too large to
the extent where data utility is completely removed. For example,
if a user perturbs his location with different Gaussian random
numbers every time he updates the AS, it is possible to track his
locations progressively more accurately by averaging past updates
to cancel out noise. In [20], the authors develops the mathematical
foundations and architectural components to perturb user data
such that, the reconstruction of data from noisy versions is avoided
while still allowing the computation of aggregate information. It is
possible to incorporate the techniques proposed in [20] with our
privacy-preserving techniques for better privacy against the AS.
We do not pursue this topic in this paper but leave it as a potential
future work.
5. From k-anonymity to l-diversity

The privacy protection schemes proposed in Section 4 are based
on k-anonymity. In short, users location privacy are preserved by
ensuring that they anonymize their positions with different coordi-
nates, and those coordinates are shared among a group of users. It
was mentioned in Section 2 that, the level of privacy enabled by k-
anonymity is insufficient to defend against attribute disclosure. In
what follows, we examine if the k-anonymous schemes proposed
in Section 4 lead to attribute disclosure.

Recall that in Section 4, we have assumed that the temporal
information in user reports is generalized by simple techniques
such as increasing the time granularity. Consequently, the discus-
sions in Section 4 omitted temporal privacy and focused exclu-
sively on spatial privacy. In this Section, we consider temporal
and spatial attributes simultaneously since, we expect most prac-
tical participatory sensing applications would involve both of
these in user reports. Correspondingly, users would be concerned
about preserving the privacy of both these attributes. Further, in
line with the threat model as described in Section 3.1.3, we as-
sume one of the attributes is designated as primary, and the other
as secondary depending on users perceived importance. We lever-
age the capability of VMDAV in operating on any numerical
values and anonymize user times (along with locations) using
value perturbations.

This Section is organized as follows: Section 5.1 describes an
example showing that the k-anonymous schemes discussed in
Section 4 are also prone to attribute disclosure. We investigate if
l-diversity can be applied to solve this shortcoming in Section
5.2. Section 5.3 details our VMDAV-inspired l-diversity algorithm,
LD-VMDAV, and points out a few of its attractive features.
5.1. Scenario and attribute disclosure

Consider a 3-anonymous set of PetrolWatch reports shown in
Table 2. Columns 2 and 3 are the actual times and locations of
users, respectively, and are not included in user reports. Columns
4 and 5 contain the values of location and time, respectively, that
are generated by VMDAV at the AS and returned to users for pro-
tecting their temporal and spatial privacy. Note that, since loca-
tion and time attributes are considered simultaneously in this
example, a minor change must be made to the VMDAV algorithm
presented in Section 4.2. In particular, the distance metric used in
step (02) and (05) of Fig. 3 must now refer to the combined spa-
tial and temporal distances (cf. spatial distance used in Section
4). In other words, members of equivalence classes in Table 2
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are similar in terms of location and time (cf. location only in
Table 1).

We now illustrate how elements of homogeneity and back-
ground knowledge attacks described in Section 2.4 can be used
to cause attribute disclosure. Suppose that user 8 in Table 2 has a
fuel pricing report ready for the application server. He uses the
suggested attribute values, i.e. (17:18:03), (0.52, 0.27), from the
AS to maintain his privacy in the report. Based on the threat model
postulated in Section 3.1.3, an adversary is able to deduce that,
user 8 must be the owner of one of the reports in the second equiv-
alence class. Although this observation is insufficient for an exact
identity match (since there are two other users sharing the same
position), it nonetheless reveals the victim’s whereabouts on a
coarser scale. Depending on the context or user preferences, this
coarse locational representation may be undesirable. For example,
[0.52, 0.27] can be mapped to a region of the child care center in
which the victim’s child is placed. The inadvertent release of this
information is an example of attribute disclosure, and can at times
be considered too intrusive. Note that, the above disclosure is
eventuated by (1) the adversary’s background temporal knowledge
and (2) the homogeneity of the anonymized locations in the sec-
ond equivalence class.

5.2. Employing l-diversity in participatory sensing

It was mentioned in Section 2.5 that attribute disclosure could
be effectively avoided if diversity was introduced. In what fol-
lows, we give a conceptual overview of the improvements that
can be achieved by l-diversity. We use the previous example in
Table 2 to illustrate this. For simplicity, distinctive 2-diversity is
used.

Given the example in Table 2, the most intuitive approach to
produce a set of reports satisfying distinctive 2-diversity is to com-
bine two equivalence classes into a group, with group members
sharing a common time. For example, the odd-numbered equiva-
lence classes can be merged to form the first group, wherein mem-
bers replace their actual time with their mean time value, e.g.
(15:31:36). Group 2 can be formed by merging the even numbered
equivalence classes in a similar manner. Table 3 shows the result of
Table 3
An example of 2-diverse reports maintained at the application.

Group
ID

Class
ID

User
ID

Time Location Anonymized
time

Anonymized
location

1 1 11 12:01:31 (0.77,
1.00)

15:31:36 (0.72, 0.78)

1 1 7 16:14:21 (1.00,
0.73)

15:31:36 (0.72, 0.78)

1 1 6 14:06:15 (0.37,
0.63)

15:31:36 (0.72, 0.78)

1 3 2 16:27:57 (0.00,
0.28)

15:31:36 (0.15, 0.55)

1 3 5 17:07:55 (0.23,
0.57)

15:31:36 (0.15, 0.55)

1 3 10 17:11:34 (0.21,
0.81)

15:31:36 (0.15, 0.55)

2 2 8 17:18:32 (0.65,
0.00)

16:25:33 (0.52, 0.27)

2 2 1 17:07:30 (0.82,
0.42)

16:25:33 (0.52, 0.27)

2 2 12 17:28:07 (0.10,
0.40)

16:25:33 (0.52, 0.27)

2 4 9 18:08:45 (0.32,
0.91)

16:25:33 (0.33, 0.73)

2 4 3 15:04:08 (0.22,
0.78)

16:25:33 (0.33, 0.73)

2 4 4 13:26:15 (0.44,
0.49)

16:25:33 (0.33, 0.73)
the above operation. Notice that for reports in Table 3, users in a
group receive the same temporal anonymization but are given
two different anonymized locations. In other words, the set of re-
ports represented by Table 3 is 2-diverse in terms of the location
attribute. For the threat model considered (see Section 3.1.3), the
information carried by the reports in Table 3 reduces the probabil-
ity of attribute disclosure. For example, assuming that using prior
temporal information the adversary can deduce that the victim’s
report belongs to group 1. The adversary is now presented with
two possible locations for the victim. If these locations are
sufficiently apart, then the adversary has difficulty in narrowing
down on the victim’s precise location. The probability of attribute
disclosure is reduced by 50% in this example (cf. 100% for reports in
Table 1).

Although the above approach works, its application needs some
careful thought. Consider an alternative grouping of the records in
Table 2, wherein group 1 consists of the first two equivalence clas-
ses while the second group is made of the remaining ones. The
resulting groups of reports are different from those in Table 3
but they are still 2-diverse. However, the anonymized locations
of these two equivalence classes are very close. For example, the
anonymized location coordinates for the reports in this group, i.e.
(0.72, 0.78) and (0.52, 0.27), may be mapped to two different areas
of the same complex, e.g. different facilities in a hospital. This can
neutralize the application of l-diversity if the user considers disclo-
sure of his presence in the hospital to be a violation of privacy.
There is another problem which may not be immediately obvious
from the example in Table 3, but can have a negative implication
on the performance of applications. Consider the first group of re-
ports in Table 3. Observe that a single temporal value (15:31:36) is
used. This may be too coarse-grained for the information to be
meaningful to some applications.

5.3. Implementation of l-diversity for Participatory Sensing

The discussions in Section 5.2 identified two issues which need
to be addressed in any l-diversity implementations: (1) the
semantic relationship between locations and (2) timing accuracy.
In the following, we propose an l-diverse extension of VMDAV
(detailed in Section 4.2) called LD-VMDAV. As in VMDAV, this
algorithm is also executed at the AS (see Section 3.1.1 for detailed
overview of the system). We show that the LD-VMDAV creates a
set of l-diverse reports with significantly reduced spatial correla-
tions and timing errors. The implementation of LD-VMDAV is
based on successive applications of the VMDAV algorithm. The
first pass of VMDAV anonymizes the primary attribute while the
second pass produces anonymized values for secondary attribute.
Application designers can designate the attribute that is the most
important (from the perspective of user privacy) as primary and
less important one as secondary. In the rest of this discussion,
we assume that location is the primary attribute and time is the
secondary attribute. Specifically, LD-VMDAV involves the follow-
ing two steps:

1. VMDAV is first executed over the entire dataset but only with
respect to the primary attribute. The parameter k is set to the
required k-anonymity level, i.e. k ¼ 3 to be consistent with
example in Table 3.

2. VMDAV is executed again over the entire dataset but this time
only with respect to the secondary attribute. The parameter k0 is
set to the product of the required k-anonymity level and the
required l-diversity level, i.e. k0 ¼ k� l ¼ 3� 2 ¼ 6.

Table 4 shows an example of the output of the first step, where
� denotes values yet to be determined. It is clear that each anony-
mized location is shared among at least k ¼ 3 users. The next step



Table 4
Results of first step of LD-VMDAV.

Class
ID

User
ID

Time Location Anonymized
time

Anonymized
location

1 8 17:18:32 (0.65,
0.00)

�� : �� : �� (0.64, 0.30)

1 1 17:07:30 (0.82,
0.42)

�� : �� : �� (0.64, 0.30)

1 4 13:26:15 (0.44,
0.49)

�� : �� : �� (0.64, 0.30)

2 7 16:14:21 (1.00,
0.73)

�� : �� : �� (0.72, 0.78)

2 11 12:01:31 (0.77,
1.00)

�� : �� : �� (0.72, 0.78)

2 6 14:06:15 (0.37,
0.63)

�� : �� : �� (0.72, 0.78)

3 2 16:27:57 (0.00,
0.28)

�� : �� : �� (0.11, 0.41)

3 12 17:28:07 (0.10,
0.40)

�� : �� : �� (0.11, 0.41)

3 5 17:07:55 (0.23,
0.57)

�� : �� : �� (0.11, 0.41)

4 9 18:08:45 (0.32,
0.91)

�� : �� : �� (0.25, 0.82)

4 10 17:11:34 (0.21,
0.81)

�� : �� : �� (0.25, 0.82)

4 3 15:04:08 (0.22,
0.78)

�� : �� : �� (0.25, 0.82)

8 If l ¼ 0, it means the user does not opt for l-diversity level of protection.
9 For TwTCR and Hybrid-VMDAV, only value generalization is available to produce

anonymized time values. On the other hand, value generalization as well as value
perturbation can be used for temporal anonymizations if VMDAV or LD-VMDAV is
used. The default mode of operation for VMDAV and LD-VMDAV is value
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of the algorithm determines the unknown anonymized times and
produces the final output7 as illustrated in Table 5. Observe that
the reports in Table 5 are at least 2-diverse, with group 1 exhibiting
4-diversity and group 2 exhibiting 3-diversity (both with respect to
location).

The independent executions of VMDAV with respect to each
attribute in LD-VMDAV are important because it creates a number
of remarkable features as observed from reports in Table 5. First,
contrary to the intuitive approach in Section 5.2, more than two
equivalence classes constitute a group. Second, even though the
algorithm was designed to meet the user-specified diversity level
(2-diverse in this example), the resulting groups of reports always
exhibit more than the required diversity (diversity level of 4 and 3
in the example in Table 5). Our experiments with the real-world
trace data (in Section 6) suggests that this is a generic property
of the algorithm. This is a highly desirable property from the per-
spective of location privacy since, the more diverse the location
values, the harder it is for an adversary to deduce the true location.
Third, notice that the anonymized locations in a group demon-
strate a reasonable amount of separation, which means the prob-
lem of multiple references to a common sensitive place as
described in Section 5.2 can be avoided. Lastly, the anonymized
times used by reports in Table 5 cause smaller inaccuracy. For
example, the second group in Table 5 uses the anonymized time
of (17:23:44) to represent the actual times, which are all in the
interval from 17:00 to 18:00. The improvement in data accuracy
will be formally quantified in Section 6, where the information loss
and positive identification percentage metrics are defined.

The example in Table 5 shows that LD-VMDAV is able to simul-
taneously account for spatial and temporal privacy, albeit different
protection mechanisms are involved. Spatial privacy for owners of
reports in Table 5 is provided via l-diversity but, k-anonymity is
enforced to guard their temporal privacy. Note that, by interchang-
ing the primary and secondary attributes in the algorithm, it is easy
for LD-VMDAV to swap the protection mechanisms, i.e. l-diversity
7 To maintain a consistent use of terminology, we use Class ID to label the
equivalence classes generated by step 1 and Group ID for those produced by step 2 o
the LD-VMDAV.

perturbation.
10 There are three separate files available for download under the syslog/05_06”

trace; each one of them corresponds to activity records from Cisco APs, Aruba APs
and the combination of Cisco and Aruba APs. For simplicity, we only considered the
records from the Cisco AP file.
f

for temporal privacy and k-anonymity for location. In this case, the
resulting anonymized reports are resilient against temporal attri-
bute disclosure. More specifically, an adversary with spatial prior
knowledge is unable to deduce the time at which his victim has
visited a particular location.
6. Evaluations

We present results from a simulation study that compares the
performance of the proposed privacy-preserving schemes, TwTCR,
VMDAV, Hybrid-VMDAV, and LD-VMDAV. Our evaluation focuses
on their costs, in particular, the errors induced by anonymization
and the accuracy of application decisions are of interests. Section
6.1 describes the simulation setup and the evaluation methodol-
ogy. Section 6.2 introduces the two metrics used to assess the algo-
rithm performance. Simulation results are provided in Section 6.3.

6.1. Overview of simulation setup

6.1.1. Simulation scenario
In the following evaluations, we consider a scenario wherein, a

participatory sensing application similar to PetrolWatch (described
in Section 3.2) has been deployed. We assume that the application
server generates tasks that require users to collect certain contex-
tual information from some points of interest in their immediate
vicinities. Users who agree to participate in the application accept
the tasks, collect sensor data, annotate sensor reports with time
and location, and upload the reports to the server via the architec-
ture described in Section 3.1.1. Prior to generating sensor reports, a
user contacts the AS with his desired privacy parameters ðk; lÞ.8 The
AS in response provides the user with his anonymized time and loca-
tion whose values depend on the privacy algorithm executed, e.g.
TwTCR, VMDAV, Hybrid-VMDAV, or LD-VMDAV.9 The application
is aware of the location coordinates of all points of interest. When
the server receives sensor reports, it applies the method of shortest
Euclidean distance (discussed in Section 4.1) to determine the hpoint
of interest, reporti associations.

6.1.2. Data
Our evaluations are based on real-world trace data. In particu-

lar, the Dartmouth College campus traces, which are made publicly
available on CRAWDAD [26], are used. These traces contain log en-
tries collected from Wi–Fi APs deployed around the Dartmouth
College campus. We choose the ‘‘syslog/05_06” trace10 under
‘‘syslog” traceset and ‘‘aplocations” trace under ‘‘movement” traceset
to deduce user distributions and to overlay a Voronoi diagram over
the campus map. Each record in the syslog/05_06” trace logged the
association, re-association or disassociation of a user’s Wi–Fi enabled
device with an AP. The ‘‘aplocations” trace contains a list of APs de-
ployed across the college campus and provides information about
their ðx; yÞ coordinates as well as the floors on which they are
located.

6.1.3. Methodology
The use of TwTCR requires the region of interest, i.e. the college

campus, to be tessellated. In what follows, we describe in detail
,



Table 5
An example of reports generated by LD-VMDAV.

Group
ID

Class
ID

User
ID

Time Location Anonymized
time

Anonymized
location

1 3 2 16:27:57 (0.00,
0.28)

14:33:24 (0.11, 0.41)

1 4 3 15:04:08 (0.22,
0.78)

14:33:24 (0.25, 0.83)

1 1 4 13:26:15 (0.44,
0.49)

14:33:24 (0.64, 0.30)

1 2 11 12:01:31 (0.77,
1.00)

14:33:24 (0.72, 0.78)

1 2 6 14:06:15 (0.37,
0.63)

14:33:24 (0.72, 0.78)

1 2 7 16:14:21 (1.00,
0.73)

14:33:24 (0.72, 0.78)

2 3 12 17:28:07 (0.10,
0.40)

17:23:44 (0.11, 0.41)

2 3 5 17:07:55 (0.23,
0.57)

17:23:44 (0.11, 0.41)

2 4 9 18:08:45 (0.32,
0.91)

17:23:44 (0.25, 0.83)

2 4 10 17:11:34 (0.21,
0.81)

17:23:44 (0.25, 0.83)

2 1 8 17:18:32 (0.65,
0.00)

17:23:44 (0.64, 0.30)

2 1 1 17:07:30 (0.82,
0.42)

17:23:44 (0.64, 0.30)
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how this process is accomplished. There are 623 APs listed in the
‘‘aplocations” trace. In order to simplify the analysis, we perform
planarization and condensation similar to [16]. In the planarization
step, the floor numbers of APs are ignored and all APs are assumed
to be located on floor 0. Furthermore, APs located in the same
building are grouped together and collectively represented by their
mean ðx; yÞ coordinates, this completes the condensation step. The
result of the above simplification is shown pictorially in Fig. 5.
Fig. 5 contains 124 APs and has a set of Voronoi cells overlaid. A
Voronoi cell has the following property: all points within its inte-
rior are closer to its generating point than to any others, e.g. in
our context, the generating points are the positions of APs. This
property allows us to define the boundary of a region in which
users of an AP can be observed. We also normalize the locations
of APs so that they are confined to a region of unit square area.

To estimate user distribution per cell, we consider traces be-
tween 12 p.m. and 6 p.m. over a week period from the 1st of Sep-
tember, 2005 to the 7th of September, 2005. The number of user
0 0.1 0.2 0.3 0.4 0.
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Fig. 5. Tessellation map of t
associations per cell is a threshold value, which represents the
number of users that can be statistically expected in a cell (con-
nected to the cell AP) for 95% of the specified time intervals. In
our evaluations, this interval is 30 min. There are 153 users whose
distributions are marked by asterisks in Fig. 5. The coordinates of
users in a cell are randomly generated, once the threshold value
for that cell is known. Neighboring cells are grouped to form tiles
such that k-anonymity is attained. We use k ¼ 10 in all our simu-
lations, unless otherwise stated. The tiles are shown as colored re-
gions in Fig. 5.

6.2. Metrics

6.2.1. Application accuracy
Collecting sensor readings from participating users is only part

of the objectives of participatory sensing. Eventually, an applica-
tion receiving sensor reports must be able to use the embedded
information as much as possible. In other words, an application
should ideally make hpoint of interest, reporti association decisions
with high accuracy. To this end, we define a metric called Positive
Identification Percentage (PIP) to measure the precision of applica-
tions. Specifically,

PIP¼ total number of correct ðpositiveÞ associations by the application
total number of reports received by the application

;

ð1Þ

Note that, depending on the attribute of interest, there are dif-
ferent ways to define positive association in the numerator of (1).
In terms of location, a positive association refers to the case in
which an application correctly identifies the intended points of
interest from users anonymized locations. If we assume that an
application performs no further processing, e.g. shortest Euclidean
distance calculations, on time but logs its values as specified in
sensor reports. Then, a positive association of time means that
the difference between the time tuple hactual time, anonymized
timei does not exceed the tolerance level specified by the applica-
tion. For example, if an application can operate with a tolerance le-
vel of 30 min, then the time tuple h17:30, 17:10i flags a positive
association in the temporal domain.

6.2.2. Errors induced by anonymization
All the evaluated schemes anonymize users true attribute val-

ues. It is therefore of interest to see how much information is lost
as a result of this process. We adopt the commonly used Informa-
5 0.6 0.7 0.8 0.9 1
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he simulation scenario.
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tion Loss (IL) metric [21] for this purpose. Information Loss is de-
fined as

IL ¼ SSE
SST

; ð2Þ

where

SSE ¼
Xg

j¼1

Xn

i¼1

ðxi � xjÞ2; ð3Þ

and

SST ¼
Xg

j¼1

Xn

i¼1

ðxi � xÞ2; ð4Þ

where xi denotes the ith record in group j, and each of the g groups
containing n records. �xj and �x represent the group mean and the
mean of the entire dataset, respectively. SSE is the sum of squared
errors with respect to class (group) mean while SST is the same
quantity but with respect to the mean of dataset. Note that, SSE
measures the distances between the actual attribute values and
their anonymized versions.

6.3. Simulation results

We conduct a set of simulations to evaluate the PIP and IL
achieved by TwTCR, VMDAV, Hybrid-VMDAV, and LD-VMDAV. Sim-
ilar to the PetrolWatch application described in Section 3.2, we as-
sume that the points of interest are co-located with users. In order
to realistically reflect the real-world usage of applications, we inves-
tigate the impact of varying the proportion of users submitting re-
ports. In particular, we alter the percentage of users reporting data
(active users) from 20% to 100% in 20% increments. All simulations
are repeated for 1000 times and average values are recorded.

The presentation of simulation results is organized as follows:
the first subset compares the performance of privacy-preserving
schemes based on k-anonymity. In particular, TwTCR, VMDAV,
and Hybrid-VMDAV are assessed. The second subset is devoted
to the simulation results for our l-diversity implementation. Specif-
ically, the performance of LD-VMDAV is thoroughly evaluated
against its k-anonymity counterpart, VMDAV. In the last part we
present results that evaluate the impact of additional input pertur-
bation (as described in Section 4.4) on the performance of VMDAV.

6.3.1. Comparison of TwTC, VMDAV, and Hybrid-VMDAV
Recall that, the main motivation behind the design of TwTCR,

VMDAV, and Hybrid-MDAV is to provide alternatives to tessella-
tion for location privacy (see Section 4). Thus this set of simula-
tions are mainly instrumented to compare the relative strengths
of these techniques in relation to location privacy. In other words,
the calculations of PIP and IL are only with respect to location. We
also assume that, there is no difference in the anonymized times
produced by the three techniques, i.e. they all apply value general-
ization on the temporal attribute.

Fig. 6 shows the PIP and IL for k-anonymous schemes over a
range of active users. One can readily observe that the performance
of all three algorithms do not vary significantly with an increase in
the number of users contributing data. In other words, the accu-
racy enabled by the proposed schemes is not affected by an
increasing system load. Hybrid-VMDAV achieves a 40% reduction
in IL as compared to TwTCR. The performance of the hybrid scheme
is marginally better than that of VMDAV. We explain the inferior
performance of TwTCR by using tile 3 in Fig. 5 as an illustrative
example. Observe that the center of tile 3 denoted by a circle is
quite distant from the actual locations of users. Recall that, in
TwTCR, users report the center of tile as their locations. On the con-
trary, with VMDAV and Hybrid-VMDAV the same set of users
would report a much closer square-denoted coordinates in place
of their actual locations. As a result, the SSE is larger with TwTCR
for users within tile 3 (recall that SSE measures inter-class dis-
tances) as compared to the other two alternates. Consequently,
TwTCR produces higher IL. One might argue that the performance
gap can be improved by shrinking the size of tile 3 such that it only
includes those cells in which users are found. This is a valid argu-
ment. However, one must remember the following: (1) the tiles in
Fig. 5 are constructed to fit all user distributions, which also ac-
count for the subsequent Gaussian perturbation extension and
(2) to the best of our knowledge, there is no real-time algorithm
that can produce optimal tessellation maps, which can adapt to
constantly fluctuating user distributions.

Fig. 6 also suggests that there exists an inverse relationship be-
tween PIP and IL. For instance, TwTCR, which has the highest IL re-
sults in the lowest PIP. Similarly, Hybrid-VMDAV, which achieves
the highest PIP, has the lowest IL. Observe that, Hybrid-VMDAV
improves the positive identifications made by the server by more
than 100%, in comparison with TwTCR. The significant improve-
ment achieved by Hybrid-VMDAV over VMDAV can be explained
by considering cell 15 in Fig. 5, which accommodates 20 users.
According to the rules of Hybrid-VMDAV, these 20 users replace
their locations with the center of cell 15. Since these users are all
located near the cell center, the application server can interpret
the true locations with high accuracy. On the other hand, VMDAV
separates these users by grouping some of them with those in cell
41 in an attempt to lower IL while keeping the size of equivalence
class in check, i.e. between 10 and 19.11 The result is a reported
location somewhere in between cells, which is not close to the
users and the point of interest to which their reports refer. Hence,
the application server tends to make wrong associations resulting
in a lower positive identification rate. It should be noted that, even
the best performing Hybrid-VMDAV only allows an application to
achieve a moderate level of accuracy. This is because the simplistic
Euclidean estimation technique is employed for making the hpoint
of interest, reporti associations. We intend to investigate alternate
techniques in our future work.

6.3.2. VMDAV and LD-VMDAV
This part of the simulation compares the performance of k-

anonymous and l-diverse versions of VMDAV. Contrary to the loca-
tion-only analysis in the previous sub-section, both temporal and
spatial privacy are considered here. To this end, random times
are generated for the 153 users in Fig. 5 in addition to their existing
random locations. Further, to establish a consistency between time
and location attributes, VMDAV uses value perturbation (see Sec-
tion 5.1) to generate anonymized times (cf. value generalization
in previous sub-section) as well as locations.

Fig. 7 shows the IL and PIP produced by VMDAV and LD-VMDAV
for an anonymity level of 10 and a diversity level of 2, i.e.
ðk; lÞ ¼ ð10;2Þ, and over a range of active users. Note that, with
k ¼ 10 and l ¼ 2, LD-VMDAV creates groups of equivalence classes
with 20 users (see Section 5.3), therefore, an anonymity level
k0 ¼ 20 is required for VMDAV to facilitate a fair comparison. Note
that, we use the prime notation to differentiate the anonymity lev-
els input to VMDAV and LD-VMDAV. Recall that, two parameters
are required for LD-VMDAV, e.g. k and l, while a single parameter
is sufficient for VMDAV. We refer to k0 as the equivalent anonymity
for VMDAV.

Similar to earlier results shown in Fig. 6, varying the number
of active users does not affect the IL and PIP achieved by LD-
VMDAV. Also note that, IL with respect to location and time
are separately presented in Fig. 7a and b, respectively. As one
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can readily observe, LD-VMDAV outperforms VMDAV by reducing
the amount of information loss. In particular, the IL for the loca-
tion and time attribute is reduced by 40% and 75%, respectively.
The improvement in location errors is not surprising since, in
VMDAV a larger number of users, e.g. 20, are grouped to form
equivalence classes. The resulting means of the location coordi-
nates are thus expected to deviate more from the true user
values. The huge reduction in timing errors is largely due to
the de-coupling of location and time anonymizations built in
LD-VMDAV. In VMDAV, no such separation exists and member
similarity is measured by the combined location and time dis-
tances. Note that, users who are similar in terms of location
may not necessarily have close time values.

In terms of PIP, it can be seen from Fig. 7a that LD-VMDAV en-
ables an application to make much more accurate spatial decisions
in comparison with VMDAV for an equivalent anonymity, i.e. k0.
Observe also that the PIP values for LD-VMDAV in Fig. 7a are iden-
tical to those for VMDAV in Fig. 6. This is not an unexpected result
since, the PIP metric used in this set of simulation measures the
ability of the application to establish correct location associations.
Now recall that, VMDAV and LD-VMDAV use the same mechanism
to anonymize user locations. Hence, with the same parameter va-
lue (k ¼ 10 for VMDAV in Fig. 6 and k ¼ 10 for LD-VMDAV in
Fig. 7), both algorithms should produce the same outcome.
Fig. 8 shows the impact of varying the diversity level on IL for
LD-VMDAV. Since the anonymity level remains unchanged at
k ¼ 10, there is no difference in the location IL (Fig. 8a) for
LD-VMDAV. However, increasing the level of diversity causes a
proportional increase in the equivalent anonymity for VMDAV.
As a result, the location IL for VMDAV increases. In addition, since
VMDAV factors in location and time distances simultaneously, it is
also subjected to increased timing errors as shown in Fig. 8b.
Increasing the diversity level also has a negative impact on the
temporal errors introduced by LD-VMDAV as seen in Fig. 8b. A lar-
ger diversity value creates a larger group of equivalence classes. As
a result, reports with greater temporal disparity are merged in the
same group, thus increasing the temporal IL. However, LD-VMDAV
consistently outperforms VMDAV. The improvement achieved
reduces slightly from 75% for l ¼ 2% to 55% for l ¼ 4.

6.3.3. Impact of Gaussian input perturbation
The last part of our simulation focuses on investigating the im-

pact of Gaussian input perturbation on the performance of TwTCR,
VMDAV, and Hybrid-VMDAV. Recall that in Section 4.4, users do
not report their true locations to the AS in this enhancement. In-
stead, a random Gaussian noise is added to the true location prior
to updating the AS. The simulations are run for different values of
p, which range from 0.02 to 0.2 in increments of 0.02. Recall also
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that, p is the scaling factor used for controlling the amount of per-
turbation on user locations (see Section 4.4). The larger the value of
p, the greater is the deviation from the true value.
Fig. 8. Impact of varying th
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Figs. 9 and 10 illustrate the impact of Gaussian input perturba-
tion on TwTCR, VMDAV, and Hybrid-VMDAV when 40% and 80% of
users contribute reports. Since the results exhibit some fluctua-
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tions, we fit them with polynomials of degree 1 to reveal the gen-
eral trends. As in the previous simulations, the percentage of active
users has negligible impact on the performance. Furthermore, the
additional input perturbation degrades the performance of all
three k-anonymous schemes. The level of performance degradation
is more substantial for larger values of p. These results are ex-
pected since users are increasingly distorting their locations regis-
tered with the AS. Fig. 10 reveals that the performance gain of
Hybrid-VMDAV gradually diminishes as p increases. Increasing
the value of p implies that the resulting user distribution is more
sparse, i.e. fewer cells are sufficient to provide the required level
of anonymity on their own. Therefore, the VMDAV component of
the hybrid algorithm tends to dominate. As a result, the perfor-
mance of these two schemes converge. The results depicted in
Fig. 10 also indicate that it is possible to guarantee satisfactory per-
formance, without requiring users to reveal their true locations to
the third party AS. As long as the perturbation parameters are ade-
quately chosen, the performance degradation can be limited. For
example, we only observe a 5% loss when p ¼ 0:06 with Hybrid-
VMDAV. This achieves a good balance between user privacy and
system performance.
7. Conclusions

This paper addresses user privacy in participatory sensing sys-
tems. The k-anonymity and l-diversity privacy models were thor-
oughly investigated. In the first part of this paper, we proposed
TwTCR and VMDAV to overcome the shortcomings of the current
state-of-the-art tessellation in securing location privacy of users
in participatory sensing. We showed that these algorithms
achieved better results in two contrasting situations and proposed
Hybrid-VMDAV to take advantage of both schemes. The second
part of this paper focused on demonstrating the inability of k-
anonymous schemes in preventing attribute disclosure. Based on
our threat model, we then proposed LD-VMDAV, a two-stage appli-
cations of VMDAV, to enhance user privacy. LD-VMDAV is based on
the concept of l-diversity. We showed that, LD-VMDAV strength-
ens users location privacy by diversifying values for anonymized
location while ensuring k-anonymity for anonymized times.

Our evaluations based on real-world data traces showed that
Hybrid-VMDAV improved the percentage of positive identifica-
tions made by an application server by up to 100% and decreased
the amount of information loss by about 40%, in comparisons with
TwTCR. Our simulation results also indicated that LD-VMDAV out-
performed its k-anonymous counterpart in terms of IL and PIP,
while providing better privacy for users. Lastly, our studies sug-
gested that perturbing user locations with random Gaussian noises
can provide users with an extra layer of protection with a minimal
impact on system performance.
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