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ABSTRACT
Mobile applications often need location data, to update locally rel-
evant information and adapt the device context. While most smart-
phones do include a GPS receiver, its frequent use is restricted due
to high battery drain. We design and prototype an adaptive location
service for mobile devices, a-Loc, that helps reduce this battery
drain. Our design is based on the observation that the required lo-
cation accuracy varies with location, and hence lower energy and
lower accuracy localization methods, such as those based on WiFi
and cell-tower triangulation, can sometimes be used. Our method
automatically determines the dynamic accuracy requirement for
mobile search-based applications. As the user moves, both the
accuracy requirements and the location sensor errors change. A-
Loc continually tunes the energy expenditure to meet the chang-
ing accuracy requirements using the available sensors. A Bayesian
estimation framework is used to model user location and sensor
errors. Experiments are performed with Android G1 and AT&T
Tilt phones, on paths that include outdoor and indoor locations, us-
ing war-driving data from Google and Microsoft. The experiments
show that a-Loc not only provides significant energy savings, but
also improves the accuracy achieved, because it uses multiple sen-
sors.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Probabilistic Algorithms; C.2.4
[Computer-Communication Networks]: Distributed Systems—
Distributed Applications

General Terms
Algorithms, Design, Measurement, Experimentation

1. INTRODUCTION
Mobile applications often need location information and a large

number of methods for mobile device localization have been devel-
oped [23]. With GPS receivers becoming increasingly common-
place in mobile phones and the widespread availability of WiFi
and cell-tower signature based location services from Google [9]
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and other providers, such location information is now becoming
a reality. However, mobile applications still cannot assume con-
tinuous and ubiquitous location access in their design because of
the high energy expense of using the location sensors such as GPS
receivers [12]. The variability in accuracy provided by various lo-
cation sensors and the limits on their coverage areas pose addi-
tional challenges for application developers. Using multiple loca-
tion sensors simultaneously to make up for this variability in accu-
racy would further increase energy use.

Our goal is to develop location as a system service that automat-
ically manages location sensor availability, accuracy, and energy.
From an application developer perspective, this simplifies the use
of the multiple existing, and potentially forthcoming, location tech-
nologies with varying characteristics. From a mobile user experi-
ence perspective, this allows the system to optimize battery life by
intelligently managing the location energy and accuracy trade-offs
based on available sensor capabilities. This is beneficial for mo-
bile platforms that allow several third party applications to run on
the platform, but at the same time must ensure long battery life for
acceptable user experience.

To realize the above goal, we develop an approach based on
two observations. First, location applications do not always need
the highest available accuracy, such as that provided by GPS in
open sky view locations. The accuracy needs vary as the user
moves and we can exploit the slack in required accuracy to save
energy. Second, a phone has multiple modalities to sense location
aside from the GPS: WiFi triangulation [16, 3], cell-tower trian-
gulation [23], Bluetooth vicinity, audio-visual sensing [2], among
others [4]. The availability and accuracy of these modalities vary
as the user moves, and appropriate modalities can be selected to
efficiently meet the location needs at lower energy costs.

As an example scenario, consider a mobile search application
that wishes to display nearby “pizza” stores on the phone screen (or
within its application tile) with latest coupons during meal times.
This application must determine the nearest pizza stores to display.
If the user is in a densely populated area with multiple pizza stores,
a high accuracy is needed to correctly determine the nearest en-
tries. However, if the user is in a remote area with few pizza stores,
knowing the location to the nearest mile may suffice to determine
the correct entry. Clearly, in the latter case, a low energy location
modality, simply based on cell tower association, could be used.
Figure 1 illustrates the accuracy required at different locations in
Portland, if the application was searching for the nearest five pizza
stores. Variable accuracy requirements apply to most search based
scenarios where the mobile application is interested in significant
entities around a user. In many of these applications, the user does
not initiate a search but the application displays information proac-
tively, such as show times for nearest movies or updates on other
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Figure 1: Contour plot of accuracy requirements for finding
nearest five pizza stores in Portland region (darker shades rep-
resent higher accuracy requirement).

location based activities that the user has subscribed to. Another
scenario may involve the mobile device adapting its role based on
the user context where this context is resolved through distinguish-
ing among locations with distinct activities, such as home, office,
shopping mall, beach etc. Again, the required location accuracy de-
pends on the geographical separation among these places. Variable
accuracy needs also emerge for idle screen advertising and social
networking applications [15]. For example, a social networking
application may be interested in alerting the user when friends are
nearby, or sorting the list of friends in the buddy list by their dis-
tance from the user. Here, the accuracy requirement will be higher
when there are many friends nearby. A shopping application, on
the other hand, can notify the user of nearby discounts of items on
the user’s shopping list as the user moves through a shopping area.
Again, the accuracy requirement varies with the variety of items on
the shopping list and the density of stores selling those particular
items in the shopping area. Another mobile location based appli-
cation that is sometimes used on personal navigational devices is
showing users a coupon for a business X when the user is near a
competitor’s business Y. Again the accuracy requirement depends
on the density of competitor businesses. Thus, adapting the lo-
cation accuracy and energy use is beneficial to a wide variety of
applications.

In all of these examples, accuracy requirements vary based on the
density of places of interest. These requirements may vary widely
even on a single application depending on location. Significant sav-
ings can be achieved for long lived applications that use location.
Short-lived high-accuracy tasks such as navigation are clearly not
a candidate for energy savings using this approach.

Previous works have presented effective methods to reduce the
energy overhead of GPS, but they do not fully leverage the energy-
accuracy trade-off. One approach [12] to reduce energy use is to
increase the time for which the GPS remains powered down by
detecting when the user is stationary, using an accelerometer and
predicting how far the user moved based on past speed. However,
when a new location reading is required, the GPS is still used. Our
goal is to further reduce the energy by using lower energy sensors
when appropriate. Location based on WiFi was used in [25] to
reduce reliance on GPS. However, a static model for availability
and accuracy for both WiFi and GPS was used, that is not appli-
cable in all scenarios. Our method uses dynamic models for both
location accuracy requirements as well as the sensor characteris-
tics, and continually tunes the location energy-accuracy trade-off

to satisfy application needs. Specifically, we make the following
contributions:

First, we develop a system service, named a-Loc, that automat-
ically adapts location energy and accuracy based on dynamically
varying sensor characteristics as well as application needs. Our
method can be simply used as a system provided location service
by multiple applications through a standard interface that accepts
the accuracy requirement and returns the location. Internally, a-
Loc minimizes the energy consumed for achieving the specified
accuracy.

Second, we present experimentally measured data that charac-
terizes some of the commonly available location sensors in terms
of their accuracy and energy. We use this data to develop prac-
tical models used in our prototype implementation of a-Loc on a
mobile phone. Bayesian estimation is used as the mathematical
machinery behind our models. The a-Loc framework is extensi-
ble; additional localization techniques may be included by adding
their sensor models. This allows battery performance to improve as
new localization capabilities are added to mobile devices, without
requiring changes to applications.

Third, we evaluate the effectiveness of the proposed methods
through real-world experiments with an Android G1 phone using
multiple built-in location modalities and the Android OS 1.6 in-
terface to a Google location service for WiFi localization. Addi-
tional experiments are performed in emulation and presented using
a Windows Mobile phone based on Microsoft’s internal WiFi and
cell-tower based war-drive data that allows us to generate several
additional user trajectories, representing different realistic motion
patterns. The performance of a-Loc is compared to existing tech-
niques as well as a method to use multiple location modalities with-
out considering the dynamic variations in sensor availability and
accuracy.

2. RELATED WORK
Many location sensing modalities have been developed for mo-

bile phones [23]. WiFi radios, available on many mobile devices,
have been explored for localization [16, 26, 3] and WiFi war-driving
data for many regions is available commercially. Encoding of loca-
tion in WiFi SSID’s has also been proposed [4]. Additional meth-
ods exist based on cell-tower signal strengths [16, 23] and FM radio
station signal strengths [13]. More recently, the phone’s camera
and microphone have also been used for localization [2, 21, 19].
The focus of this paper is complementary to the above works. The
goal of our system is to use the available location modalities, such
as the above, and provide an energy efficient mechanism to obtain
location to just the required accuracy.

Energy usage of some location modalities was studied before.
In Microblog [6, 8], methods to reduce GPS use by predicting the
user’s path were presented. We add to such methods by explicitly
trading off accuracy and energy. Our framework incorporates user
movement models, sensor characteristics, energy models, shared
real world sensor accuracy data, and methods to automatically de-
termine evolving accuracy needs. Another method to reduce the
energy use of GPS was presented in [12]. Accelerometer data was
used to determine when the user is stationary and power down the
GPS. Further the velocity of the user estimated by the GPS was
used to infer time durations for which the user will stay within
tolerable location error range, and GPS was shut down for those
durations. Another method to reduce GPS energy was considered
in [7], where GPS updates were assumed required only when the
mobile device enters a specified region. Location prediction based
on known mobile device velocity was used to infer time durations
for which the device could not reach the specified region from its
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prior location, and GPS sampling was suppressed for those dura-
tions. In comparison, we use multiple location modalities, account
for their variable accuracies and availability, and allow using en-
hanced user location prediction based on a Hidden Markov Model.
We also incorporate variable location accuracy requirements. Tech-
niques to determine when location data is not needed [12, 7] can of
course be used in addition to our proposed method.

The use of WiFi based location to reduce the reliance on GPS
was also explored in [25]. The focus of the work however was on
road traffic estimation. An initial method for reducing GPS use
was included by reducing GPS sampling to once every k seconds,
and using WiFi for the interim period of k seconds. Energy was
optimized by choosing a value of k that allowed achieving the ac-
curacy constraint. However, static models for GPS and WiFi error
and energy were assumed, which do not apply in general. We use
dynamic models for sensor accuracy that are acquired based on real
world data, and also allow using multiple additional sensors.

Additional techniques to reduce energy usage can also be ap-
plied. For instance, when multiple applications use location sens-
ing, their requests can be aligned within to common temporal up-
date characteristics using methods from [24] to generate minimal
sensor samples for location sensors. Recently, Zhuang et al. [28]
proposed a location-sensing framework that includes four design
principles – accelerometer-based suppression, location-sensing pig-
gybacking, substitution of location-sensing mechanisms, and adap-
tation of sensing parameters when battery is low – to improve the
energy efficiency of localization on smartphones that run multiple
location-based applications. Another work that trades-off location
accuracy for reduced energy use is presented in [18]. It uses a
combination of spatio-temporal location history, user activity, and
celltower-RSS blacklisting to selectively activate GPS only when
necessary to reduce position uncertainty. The paper also proposes
sharing position readings among nearby devices using Bluetooth in
order to further reduce GPS activation.

3. SYSTEM OVERVIEW
As a real-world example that provides a concrete test-case for

a-Loc, we consider mobile search. Mobile search is an important
application for two reasons. First, there is a much larger number
of mobile devices than desktops, and these devices are rapidly be-
coming capable of obtaining information from the Internet, through
either full fledged smart phone browsers such as Mobile Safari or
limited capability browsers using WAP, iMode etc. This has made
mobile search the fastest growing mode of search usage. Secondly,
mobile search is especially important to search service providers
such as Google, Yahoo, and Microsoft because a significant frac-
tion of mobile searches involve searching for local services or prod-
ucts. This type of mobile search is easiest to monetize, not merely
through advertisements accompanying search results but also through
transactions initiated based on those results. This importance is ev-
idenced by the rapid release of search-centric mobile applications
such as Google Mobile 1, competing applications from other search
providers, and voice-based search applications such as GOOG-411
for mobile devices without Internet capabilities.

We assume that location data is needed continually for the dura-
tions that the application is active, and the user has not been clas-
sified as stationary using techniques such as [12]. Search based
applications may display nearest movie show times, nearest deals
and coupons on products the user has expressed an interest in, lo-
cations of other mobile users from the user’s social network, and
contextually relevant idle screen advertisements. Mobile search is

1http://m.google.com

already known to be significantly slower than desktop search [11],
and so it makes sense to not add the additional localization delay
to every user initiated action in the search-based applications. Con-
tinuous access to location is also required for many other mobile
applications, including those that act based on user’s location, to
control home thermostats [10], for instance. All these search-based
applications naturally have a dynamically varying location accu-
racy requirement.

At a high level, a-Loc considers multiple factors that affect lo-
cation estimation, including a prediction of the user’s location, the
error performance of location sensors, energy costs, and applica-
tion accuracy requirements. Figure 2 shows the key components of
our proposed system, and they are discussed below.
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Figure 2: System block diagram.

Dynamic Accuracy Requirement: This block provides the loca-
tion accuracy needed by the applications. For the mobile search-
based applications, we provide a method to compute the accuracy
requirement based on the entities searched (Section 5.2) but in other
cases, the accuracy need may be directly specified by the applica-
tion.

Sensor Energy Model: These models characterize the energy
used by each available location sensor for obtaining location. We
experimentally measure this for the modalities used and also com-
pare the data to similar measurements on other phones in Sec-
tion 4.2. In some cases, the energy spent depends on the location
where the observation is made and we experimentally measure this
effect.

Dynamic Sensor Accuracy Model: This model is developed for
each sensor to characterize the quality of location information that
it offers. A key challenge, not usually addressed in prior work, is
that the availability and accuracy of location sensors varies with
location. For example, the GPS may not work indoors or work
poorly in areas with obstructed satellite view, WiFi triangulation
may work better where the number of access points is high, and so
on. The dynamic sensor model systematically characterizes such
effects. The model is built using past sensor data for each loca-
tion. In a real world deployment, this data, collected by multiple
mobile devices for various regions, may be shared to build up a
model with widespread geographical coverage, and appended to
WiFi war-drive data sets. Much of this sensor data already exists
today from wardriving and user-uploaded content. In our experi-
ments, we learn the models on the mobile device itself. Section 4.1
describes these models in detail.

Sensor Selection Algorithm: The sensor selection algorithm de-
termines the location sensor to be used at each time step. The algo-
rithm includes a method to model the user location trajectory and
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uses the sensor data as available to improve the location estimates.
Maintaining a motion model and location estimate allows the algo-
rithm to use the sensor accuracy and energy models in a location
dependent manner. A Bayesian estimation framework is used to
combine the sensor data and predicted location to provide a maxi-
mum likelihood estimate (Section 4.3).

After a location sensor has been selected, energy is spent to use
that sensor, yielding sensor data that is used to generate a location
estimate. The location estimate is output to the client application.
Additionally, the location and sensor data may be used to enhance
the sensor accuracy model.

Discretization: Before we describe the above models and meth-
ods in detail, it is worth noting that both space and time are dis-
cretized in these models. We use discrete probability distributions
in the Bayesian framework. In general, the space discretization
granularity may be set to be smaller than the minimum resolution
provided by any sensor. A-Loc uses a 10m step size for space dis-
cretization. Time granularity depends on the frequency of location
updates. A-Loc uses time granularity of 1 minute, which is the
same order of magnitude as in [12]. These discretization steps are
appropriate for the types of applications mentioned above, though
they are unlikely to work for certain other applications such as
street navigation which require high frequency and high accuracy
location updates.

4. SYSTEM DESIGN
This section describes the key components of a-Loc. We use

the following location modalities that were available on both the
Android G1 and AT&T Tilt phones: GPS, WiFi, Bluetooth, and
cell-tower.

4.1 Accuracy Models
The dynamic sensor models characterize the accuracy and its

variation with location, due to various factors that affect the per-
formance of the sensor. For instance, the WiFi radio may be used
to infer location by matching a list of visible WiFi access points,
referred to as the scan fingerprint, to a database of known locations
and fingerprints. This will yield varying accuracies depending on
the density of access points and the spatial coverage of the database.
Similarly, GPS accuracy varies with availability of line of sight to
satellites.

To facilitate the use of this model in the standard Bayesian frame-
work used in the sensor selection algorithm, we represent the accu-
racy model for modality i using a probability distribution, p (zi(t)|x(t)).
This distribution gives the likelihood that modality i yields ob-
served location zi(t) at time t, when the true (and unknown) lo-
cation is x(t), where i ∈ L and L represents the set of location
modalities available. This distribution depends on location x(t)
and hence captures the variations in accuracy with changing loca-
tion. The form of the distribution is assumed to be a two dimen-
sional Gaussian distribution centered at x(t):

p(zi(t)|x(t)) =
1

σ2
x(t)

√
2π

exp

„
−|zi(t)− x(t)|2

σ2
x(t)

«
Figure 13(b) visually illustrates such a distribution. The sensor

errors in the two spatial dimensions are assumed to be independent
and identically distributed (zero correlation and same variance in
both spatial dimensions).

Here, the standard deviation σx(t) depends on the error for the
sensor at location x(t) and is learned from real world data, as de-
scribed below.

GPS: A GPS receiver typically reports its estimate of error as

horizontal dilution of precision (HDOP). Figure 3 shows the HDOP
achieved with different number of visible satellites. An HDOP of
6 or less implies location error less than 12m [20]. For most out-
door locations in our experiments we observed 4 or more satellites,
yielding an HDOP below 6 (acquisition times varied with location).
We use 10m as the spatial discretization step and so the GPS sensor
model uses σx(t) = 1.2, for locations where GPS is available, and
infinity where unavailable.
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Figure 3: Experimentally measured GPS accuracy.

WiFi: Methods to convert a visible access point list to a location
have been studied in [16, 3, 26]. The error, σx(t), is expressed as a
function of the number of access points, n(t), visible at x(t). Our
experiments use the conversion relation between σx(t) and n(t)
found in one of the prior works [16]. The value of n(t) can easily
be determined at each location when WiFi is used and the conver-
sion relationship provides the σx(t) at that location.

As an alternative, an error estimate for WiFi localization is also
provided by the Google location service used via the Android. This
estimate, for all locations of interest to a mobile device can eas-
ily be cached on the phone. An example of WiFi location errors
observed in our experiments for a sample user path of 0.55km is
shown in Figure 4.
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Figure 4: WiFi location error with Android G1. Errors above
500m are capped to 500m for plotting.

Bluetooth: For Bluetooth, location is based on finding at least
one static Bluetooth device in radio range (a computer mouse in
an office, a Bluetooth advertisement device in a shopping mall [1],
etc.).The error is taken to be the Bluetooth range, nominally set at
10m for the commonly used class 2 Bluetooth devices, implying
σx(t) = 1 based on the spatial discretization step of 10m, where
a static Bluetooth device is visible and infinity at other locations.
Bluetooth localization can be extended to use multiple visible de-
vices, if multiple static devices are indeed visible in a region, but
refining Bluetooth localization methods is beyond the scope of this
work.

Cell-Tower: Most current phones from cellular providers in the
US only allow reading the currently connected cell-tower, even
though the radio stack in the device maintains a larger list that in-
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cludes other cell-towers within range. With only one tower’s iden-
tity, the location error is essentially equal to the size of the cell
within which that tower is likely to be the one with the strongest
signal for a mobile device. We use the cell-size based on typi-
cal cell-tower density for dense urban areas since the experimen-
tation region is a dense urban area. In the future or with certain
cellular providers, if phones do allow reading the list of multiple
visible cell-towers and their signal strengths, localization methods
based on matching the visibility fingerprints or triangulation may
be used [16, 23]. The error value could then be based on observed
error performance of those methods.

4.2 Energy Models
We experimentally measured the energy usage for multiple lo-

cation modalities on an AT&T Tilt (HTC TyTN II) mobile phone.
This phone includes a Qualcomm gpsOne a-GPS, Bluetooth 1.2
and an 802.11 b/g WiFi radio. The phone’s battery was removed
and instead power was supplied from a Monsoon Solutions Power
Monitor that allows logging the power supplied to the phone, at
200 microsecond intervals. Energy was measured using a location
modality and external factors that may affect energy use were var-
ied. All measurements are made based on application layer access
to the underlying sensing modalities. Measurements include the
energy in turning on, reading, and turning off the relevant sensing
modality. The processing of sensor data and the sensor selection
algorithm are not a part of the energy model. The energy model for
modality i is denotedEi(t) and may depend on the location at time
t. Although, we have measured these energy models, it is possible
that future hardware vendors can provide this information to OS
developers. Further measurements of battery rate of drain [12] can
be used to measure the energy usage of various radios on the phone
itself by performing energy measurements when the radios are in
different power states over time.

4.2.1 WiFi Triangulation
Using WiFi entails powering up the WiFi radio, scanning2 the

access point identities (SSID’s), and powering down the WiFi ra-
dio. Association with access points is not needed as localization
only requires the SSID’s of the access points.

Figure 5 shows the power drawn for scanning WiFi access points
(obtained by subtracting the baseline power used by the phone when
idle with all sensing modalities powered off from the measured to-
tal power drawn). The graphs shows that there is an initial energy
spurt possibly for initialization, followed by a longer period of en-
ergy usage for the scan itself.
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Figure 5: Measured power profile for WiFi.

One external factor suspected to affect the energy of the scan is
the number of access points visible at a given location. The scan
energy usage for WiFi measured at different locations and aver-

2Active scan is used as it is more energy efficient than a passive
scan due to reduced listening time.

aged for similar number of visible access points, is shown in Fig-
ure 6. The vertical bars represent standard deviation across mea-
surements. Here, the energy cost does not vary significantly with
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Figure 6: Energy usage for WiFi.

number of visible access points. Based on this data, we use the
energy model Ei(t) = 545.07mJ, ∀t, i = WiFi. Part of this cost
is the energy to turn on WiFi, measured to be 115mJ and turn off
WiFi, measured at 65mJ, averaged. If the WiFi radio is already on
for other uses, the power up and down cost may be ignored. The
latency of conducting the scan was 0.7s on an average. Given that
the location update interval is a minute or larger in our scenarios of
interest, this latency is not a concern.

We assume all data for matching the SSID’s or triangulations
is locally available on the phone. The data size required for such
data for one of cities used in our tests was 20MB and this very
reasonable for local storage given the multi-giga-byte flash storage
capacities on most phones. On the other hand, we also measured
the energy used for communicating with a central server, using the
3G radio and its energy overhead (6000mJ-12000mJ depending on
data size, Figure 21) was found to be higher than all the location
modalities. Using server communication for localization would
thus significantly increase energy overheads.

4.2.2 Bluetooth Vicinity
Localization using Bluetooth entails scanning the identities of

Bluetooth devices in vicinity. Since Bluetooth has a short range of
about 10m, visibility of a device suggests a distance of less than
10m from it. Most Bluetooth enabled devices are mobile and their
visibility may not necessarily indicate a fixed location but if a de-
vice with a known static location is found, location can be deter-
mined.

The Bluetooth scan energy for different number of visible de-
vices is shown in Figure 7. At first glance, comparing this energy
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Figure 7: Bluetooth energy usage variation.
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with Figure 6, this data may appear surprising in that Bluetooth
is using more energy than WiFi. However, the power measured
for Bluetooth (Figure 8), was indeed much lower than the WiFi
power draw. The energy use is higher because Bluetooth takes
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Figure 8: Bluetooth power usage during scan.

much longer to perform a scan of visible devices. This is caused by
the complexity of the Bluetooth scan protocol. The multiple steps
and frequency hopping defined in the Bluetooth scan protocol [5]
cause the scan phase to take considerably more time than a WiFi
scan.

The energy does depend on the number of visible devices and
would hence vary with location. Bluetooth scanning can be set to
stop after a fixed number of devices are found, bounding the en-
ergy spent on a scan. The energy to power up and power down
the Bluetooth radio was measured to be 160mJ and 35mJ respec-
tively. Suppose N(t) represents the number of visible Bluetooth
devices at time t. Figure 9 shows linear and quadratic curves fit
to the data. We take the linear model for simplicity, that gives
Ei(t) = 1299.6 ∗N(t) + 558mJ for i = Bluetooth3.
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Figure 9: Linear and quadratic curves fit to measured Blue-
tooth energy.

4.2.3 GPS
The GPS chip on the AT&T Tilt is a Qualcomm gpsOne, an as-

sisted GPS solution, implying that satellite almanac and ephemeris
data is obtained through the cellular data connection rather than
from satellites. This allows for faster fix times, and consequently,
lower energy usage. Once a fix is acquired, GPS uses power at
a steady rate, with intermittent higher usage, presumably due to
almanac and ephemeris acquisition. Figure 10 shows the power
profile for turning on and obtaining location using GPS. For the
Android, the GPS power draw has been measured at 230mW [22].
These numbers are comparable to Nokia N95 [12], that drew 324mW.
GPS energy for the iPhone was measured in [25] but because this
device requires the application to run in the foreground, it includes
the energy use of the entire system with the LCD screen powered
on, making it hard to directly compare the energy numbers. The
current draw estimated from the measured battery life and known
battery capacity is 455mW, including the idle system energy.
3Quadratic fit is Ei(t) = 684N2(t)− 752N(t) + 1242.6mJ .
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Figure 10: Measured GPS power profile.

Our experiments indicated that GPS energy does depend on loca-
tion, as was also noted in [12]. Figure 11 presents GPS energy for a
location fix at three different locations: (1) a road intersection, (2)
a large park with open sky view, and (3) in front of an office build-
ing. The measurements are based on getting a fix with a horizontal
dilution of precision (HDOP) better than 6. Very long fix times as
high as 114s (not shown), were sometimes observed in locations
with poor sky view. The measurements in the figure are from a
cold start of the GPS, assuming no previous almanac or ephemeris
data. With a warm start, the satellite acquisition time dropped to as
low as 5s at some of the locations, with a corresponding reduction
in energy usage.
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Figure 11: GPS energy usage (cold start).

A closed form equation does not exist as usage depends on lo-
cation and time in a complex manner (due to satellite coverage
quality). Instead we use an average energy value for quantifying
GPS energy use, using two separate averaged values for warm and
cold starts: Ei(t) = 1425mJ for i = Warm GPS, and Ei(t) =
5700mJ for i = Cold GPS. We use the warm start energy model
for each time step, when GPS was also selected at the previous time
step, implying a lower cost for GPS when used at consecutive steps.

4.2.4 Cell-Tower Association
A cellphone maintains a list of cell-towers that are visible to its

radio receiver. Based on this, the phone may determine its loca-
tion [16]. The energy to use this location modality is thus negligi-
ble as it only consists of reading data available on the local device.
This energy was measured to be under 20mJ, averaged over multi-
ple readings.

Figure 12 collects the energy spent on various modalities for a
relative view; the maximum and minimum energy measured for
each are plotted. While we use only the above four location modal-
ities, other options have also been proposed, such as using phone’s
camera [2]. The figure includes the energy to capture an image and
save it as a Jpeg file on internal flash. The processing energy for
image based localization, unlike other modalities, may not be neg-
ligible and should be accounted in the energy model. The energy
usage varies by orders of magnitude and hence selecting lower en-
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ergy modalities when feasible is likely to yield significant savings
over naive approaches.

1

10

100

1000

10000

100000

En
er

gy
 (

m
J)

Min Max

Figure 12: Relative energy costs of location modalities.

4.3 Selection Algorithm
The goal of the selection algorithm is to determine the most en-

ergy efficient sensor to be used, such that the required location ac-
curacy can be achieved. In addition to the sensor accuracy and en-
ergy models, this algorithm also maintains an estimate of the user’s
location that is based on a prediction of user movements. The pre-
diction helps select the appropriate location for the sensor energy
and accuracy models and may even help avoid sensing when pre-
dicted location has a high confidence.

Location at discretized time t is denoted using a random variable
x(t), that takes values in a two dimensional space. Suppose the
location observation from sensing modality i at time t is denoted
zi(t) as before. Suppose z(t) represents all observations made up
to the time instant t, ie z(t) = {z(t), z(t − 1), ..., z(0)} for any
i. Then, the probability distribution of location at current time t
given all previously made observations and prior models is given
by p(x|z(t− 1)). As an illustration, consider the probability dis-
tribution shown in Figure 13(a), where the example distribution is
uniform over a discretized two dimensional square region, such as
initialized at t = 0.

The prior distribution captures our knowledge about the user lo-
cation up to the time at which the last observation was made. We
use this to predict the location at the current time step. Predic-
tion of user location has been studied extensively in literature and
we use one of the commonly used approaches, based on a Hidden
Markov Model (HMM). Specifically, we use a second order Hidden
Markov Model (HMM) that uses the past two observed locations to
yield a distribution of predicted location, p(x(t)|x(t−1),x(t−2)),
providing a probability distribution of location before spending en-
ergy on sensing at the current time step. A second order model
takes the direction of motion into account, significantly improving
prediction performance over a first order HMM, but higher orders
yield diminishing returns. The transition probabilities between lo-
cations are learned from past user motion and are updated as new
observations are made. Such an approach allows learning an arbi-
trary probability distribution of location transitions. Also, only a
small portion of the learned probabilities corresponding to the re-
gion around the user’s location may be loaded into the memory at
a given time, making the approach highly scalable. If the user is
at a new location with no prior history data, methods such as lin-
ear extrapolation on the past few locations may be applied. Likely
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Figure 13: Illustration of the (discretized) stochastic models:
(a)prior distribution of x(t), (b) sensor model p(zi(t)|x(t)) at
x(t) = [0, 0] with standard deviation = 2, and (c) posterior
distribution p(x(t)|zi(t)) for an observation zi(t) = [9, 9].
Lighter shades represent higher probabilities.

user locations learned from other mobile user locations or even land
use [14] can be employed.

Other location prediction models can of course be used. For in-
stance, a Kalman filter may be employed to predict the next loca-
tion based on past observed locations. However, when past obser-
vations over several days are to be used, the size of the filter and
matrices involved becomes very large and the scalability of the fil-
ter may become a concern. Another possibility is a method based
on Conditional Random Fields that learns the significant places vis-
ited and transportation modes used [17]. This information is then
used to predict future user location. The method relies on detailed
parameter learning.

Since the sensor is to be selected before actually using it, we need
an estimate of sensor accuracy of each sensing modality i at the
predicted user location. Formally, the location estimate after using
modality i is characterized by the posterior probability distribution
p(x(t)|zi(t)). For each sensor modality i, we can use the spread of
the distribution of x(t), given a reading from that modality zi(t),
as a measure of the error in the estimated location. The trace of
the covariance matrix is used to characterize this spread for the
two dimensional distribution, much like variance is used for one
dimensional random variables. The error for modality i given an
observation, denoted ei(t)|zi(t), becomes:

ei(t)|zi(t) = tr {Cov(x(t)|zi(t))}

The computation of the covariance matrix requires the posterior
distribution, which can be computed using the sensor accuracy model
and the prior location distribution, via Bayes rule:

p(x(t)|zi(t)) ∝ p (zi(t)|x(t)) p(x(t)|z(t− 1)) (1)
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As an illustration, with the prior distribution and sensor accuracy
model shown in Figures 13(a) and 13(b) respectively, the posterior
distribution for a potential observation zi(t) = [9, 9], is as shown
in Figure 13(c). The observation has caused the prior distribution
to get concentrated in a smaller region, as expected.

However, since we must compute the error that would result
from using modality i before spending the energy to obtain zi(t),
we compute multiple posteriors p(x(t)|zi(t)) for different possible
zi(t) that may be observed, resulting in a different error estimate
for each of the multiple possible observations, zi(t). We then take
a weighted average of these error estimates, where the weights are
the probabilities of getting different observations zi(t) for modal-
ity i. The probability of getting an observation zi(t) depends on
the current location, and since we do not have the current location,
we use an estimate for the probability of getting observation zi(t).
The probability distribution of the observations is obtained using
the distribution of predicted location as follows:

p̂(zi(t)) =

Z
X
p(zi(t)|x(t))p(x(t))dx(t) (2)

where p(zi(t)|x(t)) comes from the sensor accuracy model, and
p(x(t)) comes from the location prediction. The weighted average
of ei(t)|zi(t) for all the possible observations zi(t) becomes:

êi(t) =

Z
Z|x(t)

p̂(zi(t))tr {Cov(x(t)|zi(t))} dzi(t) (3)

where (Z|x(t)) represents the support of p̂(zi(t)). This êi(t) quan-
titatively characterizes the expected error for modality i at the cur-
rent time step.

Having computed the estimated accuracy êi(t) of sensor i, the
sensor selection problem can be expressed as:

î = arg min
i∈L

Ei(t) Subject to : êi(t) < e2r(t)

where er represents the desired location accuracy, and Ei(t) repre-
sents the energy used by modality i. Square of the desired accuracy
is used since variances and trace of the covariance matrix charac-
terize error as a square of the variable estimated.

This energy minimization problem may be solved using Algo-
rithm 1, shown below.

Algorithm 1. SelectSensor(L,X )

1. Initialize p(x(0)|z(0)), p(zi(0)|x(0)), t = 0, and Λ = φ

2. Obtain er(t). For all i ∈ L:

(a) Compute êi(t)

(b) If êi(t) ≤ e2r(t) then Λ = Λ ∪ i.

3. Among all i ∈ Λ, select i that has minimum Ei(t).

4. Obtain zi(t).

5. Compute p(x(t)|zi(t)) and use it to compute x̂(t) =
E(x(t)|zi(t)). Return x̂(t) as the current location.

6. Set t = t+ 1 for next time step.

7. Update p(x(t)) using location prediction method.

8. Go to Step 2 at next time step.

The initial prior distribution p(x(0)|z(0)) in Step 1 could be set
to a uniform distribution, or initialized based on land use data or
observed mobile phone user locations from shared databases. The

p(zi(0)|x(0)) is initialized based on experimentally measured sen-
sor accuracy models as described in Section 4.1. Λ represents the
set of modalities expected to satisfy the accuracy constraint. The
distributions are maintained only over a small region of k × k grid
cells (k = 100 in our implementation) surrounding the user loca-
tion as the probability values are negligible outside this area. This
means that the memory overhead of this distribution is only 10kB,
acceptable on mobile devices.

Briefly, the algorithm is performing the following operations.
For each location modality, the êi(t) is computed using equation
(3). Eligible modalities are added to Λ. Among the modalities in
Λ, the one with the lowest energy is selected 4.

Energy is spent on the selected modality, obtaining zi(t). This
is used to compute p(x(t)|zi(t)), using (1), and allows computing
the estimated location using the expectation:

x̂(t) =

Z
x(t)p(x(t)|zi(t))dx(t)

This is the output provided to the application requesting location.
Moving on to the next time step, the location model is now used

to obtain the prior distribution p(x(t)|x(t− 1)), where t represents
the subsequent time step.

The above algorithm uses er(t) at Step 2b, where er(t) is the
application specified accuracy requirement, obtained for mobile
search based applications as described in Section 5.2.The compu-
tation of er(t) requires the location estimate x̂(t), but since it is
performed before using any sensor the prior estimate is used.

Computational Overhead: The computational overheads for
the location prediction step (a second order HMM), update of the
location and sensor models (incrementing a small set of values),
and comparison of energies are not significant. The dominant over-
head is the computation of the covariance matrix trace, that involves
computing the posterior distribution. The sensor accuracy model
has non-negligible values only in a small region (up to k× k grids)
around the predicted location and the region of predicted locations
is only a small number of grids, n, say. Then, the computation
of one posterior (such as shown in Fig. 13(c)) involves nk2 scalar
multiplications, followed by a computation of the two variances
σ2

x1 and σ2
x2 required for the trace of the covariance matrix. The

number of posteriors computed depend on the size of the support of
p̂(zi(t)) in (2), and is a small multiple of n, say αn. The dominant
computation thus has an overhead O(αn2k2) which for k = 100
as before, n = O(10), and α = O(10), requires only a small frac-
tion of a second on a 100MHz or better processor found on mobile
phones. The overhead of this computation performed once every
location update interval of one minute or more is negligible.

The total compiled code overhead on the mobile device for our
implementation was 32kB and the execution time was extremely
small.

5. EXPERIMENTS AND EVALUATION
We now evaluate the performance of the proposed method in

terms of both the energy savings and the application specified ac-
curacy constraint satisfaction.

5.1 Prototype Implementation
We implemented a-Loc on an Android G1 phone and tested its

operation on a real world path while the phone was carried by a mo-
bile user in a region in San Diego (Figure 14(a)). A location service

4If Λ = φ cell tower based localization may be used as it is almost
free.
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provided by Google, that is accessible through the Android’s Lo-
cationManager API [9] was used. The responses from this service
for various locations along the path were stored locally, using An-
droid’s Sqlite data structure, to realize the equivalent functionality
of locally stored WiFi war-driving data for this region. The energy
use of the network communication was not included since a-Loc as-
sumes the availability of the war-driving data locally as discussed
in Section 4.2.1.

In addition to the real world experiments, we also performed an
emulation. The emulation was based on a war-driving dataset for
the entire city of Portland, Oregon, obtained through Microsoft.
The region covered is shown in Figure 14(b) where the darker shades
represent regions for which data was available. The entire dataset
is only 20MB in size, justifying the assumption that it can be saved
locally on the mobile device. This data allows us to generate arbi-
trary user paths simulating various types of user movement patterns
for a more controlled investigation. In particular, we emulate (i) a
commuter traveling repeatedly between home and work with some
side trips and (ii) a tourist in the city, not repeating any of the routes.

(a) San Diego (b) Portland

Figure 14: Mobile device path regions for evaluations.

In both the real world path and the emulated paths, GPS is not
available when the user is indoors. This causes both the accu-
racy and energy to vary between different location sensor selection
methods. Hence, to perform a comparison where even the naïve
method of using only the GPS can achieve high accuracy, we also
include a completely outdoor path in our comparisons.

Both the Android and Tilt phones have built-in GPS, WiFi, Blue-
tooth, and cellular radios, which were used for the experiments.

5.2 Application Accuracy Requirement
As mentioned before, mobile search is used as the application ex-

ample for deriving the accuracy constraints. For the experiments,
we assume that the application wishes to determine the nearest five
pizza or coffee businesses. The location coordinates for such busi-
nesses in the experimental regions were obtained from available
yellow pages datasets.

The dynamic location accuracy requirement for the example sce-
nario is determined as follows. Suppose the application wants to
search for a list of k entities. Intuitively, the accuracy required de-
pends on the spatial density of the entities being searched around
the user’s location. If the density is high, finer location granularity
is required. We wish to determine the constraint on location accu-
racy such that if the location error is within that constraint, the set
of nearest entities can be correctly determined.

Suppose the true user location is represented by a two dimen-
sional vector x(t). Suppose the nearest k entities are located within
a circle of radius r around x(t). We define the accuracy require-
ment to be the maximum tolerable error in the location estimate

such that the list of k entities nearest to x(t) is produced correctly,
regardless of the order within the list5.

If the true location is known, determining the tolerable error is
straightforward. However, this accuracy requirement must be de-
termined using only the estimated location x̂(t), without knowing
the true x(t). The following theorem provides this accuracy con-
straint:

THEOREM 5.1. Given estimated location x̂(t), the maximum
location error, er(t), that may be tolerated while preserving the
correctness of searched entity list, with respect to true location
x(t), is given by:

er(t) ≤ max


r′k+1 − r′k

2
,∆(t)

ff
(4)

where r′n represents the radius of the smallest circle centered at
x̂(t) enclosing the nearest n entities, and ∆(t) is a threshold on
the smallest error that may ever be requested. 6

The proof is provided in Appendix A.
Thus, if after obtaining the location estimate, the estimation error

is known to be within er(t), then the list produced is same as that
produced by a mobile device which knows the true location. The-
orem 5.1 could be extended for the scenario where the locations
of the entities being searched are not known accurately (eg., in a
social networking scenario displaying a list of nearest k buddies,
where each phone in the group of buddies wishes to save energy).
Here ∆(t) acts as a lower bound on the best error that may be re-
quested. It may be based on the highest accuracy available from
any location sensor, or based on the user preference, such as not
caring about differences in distance less than a certain threshold.

Figure 1 shows the accuracy required across Portland, Oregon
for an application interested in displaying the nearest five pizza
stores during meal times on a phone. The locations of pizza restau-
rants, obtained from a mobile yellow pages database, included 155
pizza places in and around Portland. Darker shades represent higher
accuracy needed. Here, ∆(t) was set to 10% of the distance to the
nearest entity (for instance, if the nearest entity is 10 miles away,
the user may treat two entities at distances 10 miles and 11 miles
equally suitable).

5.3 System Performance
We now evaluate the system to check if the added benefits justify

the increase in complexity, compared to simply using the GPS.
The sensor accuracy models are assumed to be learned before the

performance of the system is measured. In our implementation, the
learning is performed simply using an extra traversal of the user
path. In a real system, the models could be learned for different
regions by different users who happen to reach that region first and
a shared database of the models would be built up.

The HMM for the user motion prediction is unique to the user
and we do not expect the user to train their mobile device before
using any location based application. Hence the HMM parameters
are learned on the fly as the user moves. A uniform distribution is
used to initialize the HMM and for regions where the model has
not been learned.

As reasonable points of comparison for the a-Loc system, we use
the following alternative strategies:

5An extension to preserve the order is straightforward and omitted
for brevity.
6Since the distances r′n are measured from the estimated location,
the true location is not required to be known.
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Static: This method assumes static values for error in location
measured by various modalities, as has been assumed in prior work.
The parameters used are the typical accuracies expected from dif-
ferent sensors: 10m for Bluetooth, 50m for WiFi, 150m for cell-
tower, and 12m for GPS. These do not vary with location of the
mobile device. Unlike previous work, we do allow this method to
also use a dynamic accuracy requirement and provide it the same
energy model for the sensors as used in a-Loc, giving it a fair op-
portunity for saving energy. This method selects the minimum en-
ergy cost sensor that is expected to satisfy the location accuracy
constraint based on the static accuracy models.

Periodic: This method simply uses a single location sensor pe-
riodically, similar to the periodic use of GPS as a base case in [12,
25]. In addition to periodic GPS, we also compare to periodic WiFi,
that is a likely candidate for low energy localization.

Perfect Models: The accuracy models used in our experiments
have been learned by a single mobile device using one path traver-
sal. As the system is used by more and more users, more data may
be collected to refine the accuracy models. Hence we also compare
against a hypothetical case where the system has perfect accuracy
models at all locations for each sensor. This approach is same as
a-Loc in other respects.

The above cases are represented as Static, GPS, WiFi, and Per-
fect respectively, in the results below.

Consider first the real mobile user experiments with an Android
G1 in San Diego. After acquiring the accuracy models, the user
moved on a similar path three times. The HMM was learned on
the fly. The location accuracy requirement for this 0.5km path, for
a search application that wishes to display coupons for the near-
est five coffee shops, is shown in Figure 15. Significant slack in
accuracy exists allowing sensors other than GPS to be used.
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Figure 15: Accuracy requirement on experimental path.

The fraction of the path for which the required location accuracy
constraint is satisfied, denoted accuracy, is plotted in Figure 16 for
this path, labeled Full Path in the figure. The energy consumed is
shown in Figure 17.

Clearly, if we compare the accuracy and energy use for periodic
GPS and a-Loc, we see that a-Loc achieves higher accuracy with
45% lower energy use. The accuracy achieved by a-Loc is very
close to that achieved when using perfect models. The energy use is
also only slightly higher than the system with perfect models. This
shows that not only can a-Loc reduce energy usage by exploiting
the slack in accuracy requirement but also improve the accuracy by
exploiting other location sensors. To make a quantitative compari-
son with GPS in terms of energy saved alone, we also consider the
outdoor portion of the experimental path separately. On this por-
tion, both a-Loc and periodic GPS have near 100% accuracy but
a-Loc uses 35% lower energy.

The behavior of other alternatives is also shown in the above fig-
ures. While the energy use of the static algorithm is lower, its accu-
racy is also significantly worse than a-Loc. The same hold for pe-
riodically using only the WiFi, indicating that the dynamic models
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Figure 16: Fraction of the path for which the accuracy require-
ment is satisfied, in the San Diego experiment.
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Figure 17: Energy consumption in San Diego experiments.

and Bayesian prediction components of a-Loc do indeed provide a
benefit. The fraction of the time steps at which various localiza-
tion modalities were used are shown in Figure 18. The periodic
WiFi and GPS based method only used the single respective sen-
sor. The static approach clearly wastes energy on WiFi even when
that modality is not providing sufficient accuracy because it lacks
the dynamic models to determine when WiFi is a useful alterna-
tive. This region did not have a significant number of known static
Bluetooth devices and we disabled that modality to avoid wastage
of energy in the static method, that would have caused it to perform
even worse.

Next, we consider multiple user motion patterns, using the city-
wide war-drive data for Portland, to simulate common user behav-
iors such as a commuter and a couple of tourists. We also include
the outdoor-only portion of the Tourist-2 path separately, for a com-
parison with GPS where it has high accuracy. The application accu-
racy requirement was as shown in Figure 1 for the five nearest pizza
stores. The satisfaction percentage for accuracy and corresponding
energies used are shown in Figures 19 and 20 respectively. Again,
a-Loc demonstrates a significant energy advantage compared to pe-
riodic GPS and even the system with perfect models, though with a
small reduction in accuracy. The other alternatives perform signifi-
cantly worse on accuracy, and in some cases even use more energy.
Using WiFi periodically for instance, is worse for both energy and
accuracy for some of the paths, compared to a-Loc.

The experiments and simulations that a-Loc performs closer to
the hypothetical perfect algorithm than any of the other alterna-
tives, in terms of both energy and accuracy. The experiments also
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Figure 18: Modalities used by a-Loc and other approaches.
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Figure 19: Accuracy achieved in the Portland.

show that there is significant potential to trade-off accuracy and en-
ergy based on application needs. In general, WiFi is most effective
in urban areas particularly when accuracy requirements are high,
whereas GPS is better in outdoor environments when accuracy re-
quirements are high. However, WiFi achieves better accuracy than
GPS in indoor environments regardless of accuracy requirement.

5.4 Discussion
The design of a-Loc and experiments presented above reveal sev-

eral interesting challenges that are discussed below.
Communication Energy: Our design assumed that all location

modalities used locally stored data. Since flash storage is readily
available, both sensor availability model data as well as databases
of interesting entities, such as mobile yellow pages, can be stored
on the phone itself. Model updates can be uploaded and new shared
data downloaded when the phone is plugged in, reducing the impact
on battery life.

However, for certain applications, communication with the net-
work may be unavoidable. For instance, the social networking sce-
nario [15] requires the mobile devices to share their location data
over a communication network. For certain location modalities,
such as image matching [21] communication to a central server
may be needed. In these cases, the communication energy cost
should be considered in the energy model. For instance, if WiFi is
anyway being used to send location updates, then running a scan of
visible access points may be considered significantly cheaper than
when not using WiFi for any other task.

The amount of data required to be communicated by a location
modality may also be a concern since if only a few bytes are to be
sent, short message service (SMS) may be used at a much lower
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Figure 20: Energy consumption in Portland.

energy cost than using a TCP connection over a 3G cellular data
network. The energy costs for cellular data communication (TCP
over 3G), experimentally measured on the AT&T Tilt phone, are
presented in Figure 21. As a comparison, SMS messages used only
1200mJ on average.
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Figure 21: Communication energy measured for the 3G con-
nection on AT&T Tilt.

These numbers were measured at 100% signal strength. At lo-
cations with weaker signal (as low as 74% could be found around
our campus), the energy usage increased by up to 50%. The en-
ergy usage also increased by up to 30% when measured at different
times of the day, reflecting the effect of varying network conges-
tion. Both TCP over 3G and SMS energies showed similar trends
in variation with signal strength and congestion.

Joint Optimization of Accuracy and Energy: In the problem
formulation considered in the current work, the accuracy require-
ment was treated as a constraint and the problem was to minimize
the energy usage. However, significant energy savings may be
feasible with controlled violations of the accuracy constraints for
limited time durations. A variation of the problem may then be
to maximize accuracy and minimize energy simultaneously. One
technique to solve such joint optimization problems is to consider
a combined objective function, such as a linearly weighted sum of
energy and error, and optimizing the combined objective: C(t) =
E(t)+λe(t), whereC(t) is the objective function to be minimized,
E(t) represents energy used and e(t) represents the location error
achieved. Here, λ is a scalar weight that reflects the relative impor-
tance of energy and accuracy for a given scenario.

Multi-step Optimization: The sensor selection strategy pre-
sented above selects a location sensor for a single time step at a
time. The problem may be extended to optimize energy over mul-
tiple time steps, potentially yielding greater energy savings. For
instance, using a higher energy cost sensing modality at one time
step may help improve the location prediction for multiple future
time steps and avoid sensing energy expenditure in the future. Such
an optimization could be modeled as a Markov Decision Problem
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(MDP) where the energy cost over multiple time steps is repre-
sented as an optimization objective.

Exploration and Exploitation Trade-off: In the current proto-
type, the sensor model was obtained from data that had been pre-
viously collected, either in a training phase or from commercial
providers. Additional sensor data obtained after sensor selection
was used to add to the sensor models but no energy was actively
spent to collect such data. Alternatively, one may actively collect
sensor availability data at run time, especially in sparsely popu-
lated or new areas for which the sensor accuracy data has not been
collected, or for new location sensing modalities [2]. Such data
can help save energy for the current user as well as other users if
shared. In such a scenario, when entering an area not modeled be-
fore, the phones will actively spend energy on multiple location
sensing modalities and use the location obtained from the most ac-
curate modality to learn the availability and accuracy characteris-
tics of other modalities. Data obtained from such probing of extra
sensors, or exploration of the sensor availability and accuracy, can
be shared among all users and exploited at future time steps to save
energy at many phones. Methods to balance between exhaustive
exploration and exploitation of learning data have been studied in
reinforcement learning based systems [27].

6. CONCLUSIONS
We presented the a-Loc system that can automatically tune the

location energy and accuracy trade-off by continually adapting to
the dynamic location sensor characteristics and application needs.
The end result is a system service that can free applications of the
burden of location error and energy management. The structured
approach systematically models multiple factors that influence lo-
cation estimation using a probabilistic framework. The system also
incorporates a prediction mechanism for the user’s location and
a method to extract the dynamic accuracy constraints for mobile
search based applications. The proposed approach provides signif-
icant energy savings that go beyond existing techniques. We also
showed that the a-Loc system is practically implementable on a real
mobile phone with low memory and storage overheads. The design
and prototype effort also revealed several additional research chal-
lenges that may lead to interesting future work.
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APPENDIX
A. SEARCH ACCURACY REQUIREMENT

Theorem 5.1 Proof: The time index is dropped as a single time
instant is involved during this calculation. Locations are denoted
using boldface variables, that represent two dimensional vectors.
∆(t) is ignored in the proof as the other term represents the cor-
rectness constraint with zero tolerance and combining with ∆(t)
only allows tolerating a larger error in location.

We prove the theorem by contradiction. Suppose there exists a
true location x such that the error in estimated location x̂ is less
than er but there exists some entity closer to x than the entities in
the list produced at x̂.

Suppose the entities being searched over are located at locations
yj , where j = {1, ..., k, ...}, arranged in ascending order of their
distances from x̂. The list of nearest k entities produced at x̂ is
{y1, ...,yk}. Suppose some entity not in this list, say the one at
yk+m, should have been in this list, and hence some entity within
the list, say the one at yk−n should not be in the list. Here n is
an integer such that 0 < n < k. Then the distances from the true
location x satisfy:

rk+m < rk−n (5)

Expressing distance as magnitudes of appropriate vector differences,
and taking squares since distances are positive:

|x− yk+m|2 < |x− yk−n|2 (6)

Considering the left hand side first:

|x− yk+m|2 = |x̂− yk+m − x̂ + x|2 (7)
= |(x̂− yk+m)− (x̂− x)|2

= |r′k+m − er|2

where (7) follows by adding and subtracting x̂, r′k+m is used to
denote the vector difference x̂−yk+m, and we define er = (x̂−x).
Given that the square of the magnitude of a vector is equal to its dot

product with itself, we get:

|x− yk+m|2 = (r′k+m − er) · (r′k+m − er)

= |r′k+m|2 + |er|2 − 2|r′k+m||er|cosθ1
≥ |r′k+m|2 + |er|2 − 2|r′k+m||er| (8)

= (|r′k+m| − |er|)2 (9)

In the dot product expansion θ1 represents the angle between vec-
tors r′k+m and er . Also, (8) holds because magnitudes are positive
and hence the smallest value is obtained at cosθ1 = 1.

Similarly, the right hand side of (6) may be expressed as:

|x− yk−n|2 = |x̂− yk−n − x̂ + x|2

≤ (|r′k−n|+ |er|)2 (10)

where r′k−n denotes the vector difference x̂− yk−n.
Combining (6), (9), and (10) we obtain:

(|r′k+m| − |er|)2 < (|r′k−n|+ |er|)2 (11)

Now, take the square root. Since magnitudes are always positive,
the quantity on the right has only one square root. The quantity on
the left has two square roots:

Case 1: |r′k+m| ≥ |er|. Here, (11) yields:

|r′k+m| − |er| < |r′k−n|+ |er|
⇒ er > (r′k+m − r′k−n)/2 (12)
⇒ er > (r′k+1 + δ1 − (r′k − δ2))/2

⇒ er > (r′k+1 − r′k)/2 + (δ1 + δ2)/2 (13)

⇒ er >
r′k+1 − r′k

2
(14)

where (12) holds because the magnitude of er is same as error er ,
and using scalar variables to represent magnitudes. Also, from the
estimated location, since r′k+m is farther off than r′k+1 for anym >
1, we can express r′k+m = r′k+1 + δ1 using a positive quantity
δ1. Similarly, since r′k > r′k−n, the quantity δ2 is also positive,
and hence (14) follows from (13). But (14) is a contradiction, and
hence in this case the theorem holds.

Case 2: |r′k+m| < |er|. Then, (11) yields:

|er| > |r′k+m|
⇒ er > (r′k+1 − r′k)/2 (15)

But (15) is a contradiction, and hence in this case also, the theorem
holds.

The accuracy specified in the theorem is thus sufficient to ensure
correctness. The accuracy shown is also necessary as otherwise
there may exist a true location x for which rk+m < rk−n leading
to an incorrect result, as is easy to prove.2
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