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ABSTRACT
Sensor networks have been conventionally defined as a net-
work of sensor motes that collaboratively detect events and
report them to a remote monitoring station. This paper makes
an attempt to extend this notion to the social context by us-
ing mobile phones as a replacement for motes. We envision a
social application where mobile phones collaboratively sense
their ambience and recognize socially “interesting” events.
The phone with a good view of the event triggers a video
recording, and later, the video-clips from different phones are
“stitched” into a video highlights of the occasion. We observe
that such a video highlights is akin to the notion of event
coverage in conventional sensor networks, only the notion of
“event” has changed from physical to social. We have built
a Mobile Phone based Video Highlights system (MoVi) us-
ing Nokia phones and iPod Nanos, and have experimented in
real-life social gatherings. Results show that MoVi-generated
video highlights (created offline) are quite similar to those
created manually, (i.e., by painstakingly editing the entire
video of the occasion). In that sense, MoVi can be viewed as a
collaborative information distillation tool capable of filtering
events of social relevance.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems and
Software; C.2.4 [Computer-Communication Networks]:
Distributed Systems; H.5.5 [Information Interfaces and
Presentations]: Sound and Music Computing

General Terms
Design, Experimentation, Performance, Algorithms

Keywords
Video Highlights, Mobile Phones, Collaborative Sensing, Con-
text, Fingerprinting

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiSys’10, June 15–18, 2010, San Francisco, California, USA.
Copyright 2010 ACM 978-1-60558-985-5/10/06 ...$10.00.

1. INTRODUCTION
The inclusion of multiple sensors on a mobile phone is

changing its role from a simple communication device to
a life-centric sensor. Similar trends are influencing other
personal gadgets such as the iPods, palm-tops, flip-cameras,
and wearable devices. Together, these sensors are beginning
to “absorb” a high-resolution view of the events unfolding
around us. For example, users are frequently taking geo-
tagged pictures and videos [1, 2], measuring their carbon
footprint [3], monitoring diets [4], creating audio journals
and tracking road traffic [5, 6]. With time, these devices are
anticipated to funnel in an explosive amount of information,
resulting in what has been called as an information overload.
Distilling the relevant content from this overload of informa-
tion, and summarizing it to the end user, will be a prominent
challenge of the future. While this challenge calls for a long-
term research effort, as a first step, we narrow its scope to
a specific application with a clearly defined goal. We ask,
assuming that people in a social gathering are carrying smart
phones, can the phones be harnessed to collaboratively create a
video highlights of the occasion. An automatic video highlights
could be viewed as a distilled representation of the social
occasion, useful to answer questions like “what happened
at the party?” The ability to answer such a question may
have applications in travel blogging, journalism, emergency
response, and distributed surveillance.

This paper makes an attempt to design a Mobile Phone
based Video Highlights system (MoVi). Spatially nearby
phones collaboratively sense their ambience, looking for
event-triggers that suggest a potentially “interesting” mo-
ment. For example, an outburst of laughter could be an
acoustic trigger. Many people turning towards the wedding
speech – detected from the correlated compass orientations
of nearby phones – can be another example. Among phones
that detect a trigger, the one with the “best quality” view of
the event is shortlisted. At the end of the party, the individual
recordings from different phones are correlated over time,
and “stitched” into a single video highlights of the occasion.
If done well, such a system could reduce the burden of man-
ually editing a full-length video. Moreover, some events are
often unrecorded in a social occasion, perhaps because no one
remembered to take a video, or the designated videographer
was not present at that instant. MoVi could be an assistive



solution for improved social event coverage1.

A natural concern is: phones are often inside pockets and
may not be useful for recording events. While this is cer-
tainly the case today, a variety of wearable mobile devices
are already entering the commercial market [7]. Phone sen-
sors may blend into clothing and jewelry (necklaces, wrist
watches, shirt buttons), exposing the camera and micro-
phones to the surroundings. Further, smart homes of the
future may allow for sensor-assisted cameras on walls, and
on other objects in a room. A variety of urban sensing applica-
tions is already beginning to exploit these possibilities [8, 9].
MoVi can leverage them too.

Translating this vision into a practical system entails a
range of challenges. Phones need to be grouped by social
contexts before they can collaboratively sense the ambience.
The multi-sensory data from the ambience needs to be scav-
enged for potential triggers; some of the triggers need to be
correlated among multiple phones in the same group. Once a
recordable event (and the phones located around it) is iden-
tified, the phone with the best view should ideally be chosen.

While addressing all these challenges is non-trivial, the
availability of multiple sensing dimensions offers fresh oppor-
tunities. Moreover, high-bandwidth wireless access to nearby
clouds/servers permits the outsourcing of CPU-intensive
tasks [10]. MoVi attempts to make use of these resources
to realize the end-goal of collaborative video recording. Al-
though some simplifying assumptions are made along the
way, the overall system achieves its goal reasonably well.
In our experiments in real social gatherings, 5 users were
instrumented with iPod Nanos (taped to their shirt pock-
ets) and Nokia N95 mobile phones clipped to their belts.
The iPods video-recorded the events continuously, while the
phones sensed the ambience through the available sensors.
The videos and sensed data from each user were transmitted
offline to the central MoVi server.

The server is used to mine the sensed data, correlate them
across different users, select the best views, and extract the
duration over which a logical event is likely to have happened.
Capturing the logical start and end of the event is desirable,
otherwise, the video-clip may only capture a laugh and not
the (previous) joke that may have induced it. Once all the
video-clips have been shortlisted, they are sorted in time, and
“stitched" into an automatic video highlights of the occasion.
For a baseline comparison, we used a manually-created video
highlights; multiple users were asked to view the full length
iPod videos, and mark out events that they believe are worth
highlighting. The union of all events (marked by different
users) were also stitched into a highlights. We observe con-
siderable temporal overlap in the manual and MoVi-created
highlights (the highlights are 15minuteswhile the full length
videos are around 1.5 hours). Moreover, end users responded
positively about the results, suggesting the need (and value)
for further research in this direction of automatic event cov-
erage and information distillation.

The rest of the paper is organized as follows. The overall

1This bears similarity to spatial coverage in sensor networks,
except that physical space is now replaced by a space of social-
events, that must be covered by multiple sensing dimensions.

system architecture is proposed in Section 2, and the individ-
ual design components are presented in Section 3. Section 4
evaluates the system across multiple real-life and mock social
settings, followed by user-surveys and exit-interviews. Sec-
tion 5 discusses the cross-disciplinary related work for MoVi.
We discuss the limitations of the proposed system and future
work in Section 6. The paper ends with a conclusion in Sec-
tion 7.

2. SYSTEM OVERVIEW
Figure 1 shows the envisioned client/server architecture for

MoVi. We briefly describe the general, high level operations
and present the details in the next sections. The descriptions
are deliberately anchored to a specific scenario – a social
party – only to provide a realistic context to the technical
discussions. We believe that the core system can be tailored
to other scenarios as well.

Figure 1: The MoVi architecture.

In general, MoVi assumes that people are wearing a cam-
era and are carrying sensor-equipped mobile devices such
as smart phones. The camera can be a separate device at-
tached on a shirt-button or spectacles, or could even be part
of the wearable phone (like a pocket-pen, necklace, or wrist
watch [11]). In our case, an iPod Nano is taped onto the
shirt pocket, and the phone is clipped to a belt or held in the
hand. Continuous video from the iPod and sensor data from
the phone are sent to the MoVi server offline.

At the MoVi server, a Group Management module analyzes
the sensed data to compute social groupings among phones.
The idea of grouping facilitates collaborativeinferring of so-
cial events; only members of the same social group should
collaborate for event identification. If real time operations
were feasible, the Group Management module could also
load-balance among the phones to save energy. Each phone
could turn off some sensors and be triggered by the server
only when certain events are underway. We are unable to
support this sophistication in this paper – optimizing energy
consumption and duty-cycling is part of our future work. A
Trigger Detection module scans the sensed data from differ-
ent social groups to recognize potentially interesting events.
Once an event is suspected, the data is correlated with the
data from other phones in that same group.

Confirmed of an event, the View Selector module surveys
the viewing quality of different phones in that group, and re-



cruits the one that is “best". Finally, given the best video view,
the Event Segmentation module is responsible for extracting
the appropriate segment of the video, that fully captures the
event. The short, time-stamped video segments are finally
correlated over time, and stitched into the video highlights.

Challenges
The different modules in MoVi entail distinct research chal-
lenges. We briefly state them here and visit them individually
in the next section.

(1) The Group Management module needs to partition
the set of mobile devices based on the social context they are
associated to. A social zone could be a gathering around an
ice-cream corner, a group of children playing a video game,
or people on the dance floor. The primary challenges are in
identifying these zones, mapping phones to at least one zone,
and updating these groups in response to human movement.
Importantly, these social groups are not necessarily spatial –
two persons in physical proximity may be engaged in differ-
ent conversations in adjacent dinner tables.

(2) The Event Detection module faces the challenge of
recognizing events that are socially “interesting", and hence,
worth video recording. This is difficult not only because the
notion of “interesting" is subjective, but also because the space
of events is large. To be detected, interesting events need to
provide explicit clues detectable by the sensors. Therefore,
our goal is to develop a rule-book with which (multi-modal)
sensor measurements can be classified as “interesting". As the
first step towards developing a rule book, we intend to choose
rules shared by different events. Our proposed heuristics aim
to capture a set of intuitive events (such as laughter, people
watching TV, people turning towards a speaker, etc.) that one
may believe to be socially interesting. Details about event
detection will be discussed in Section 3.2.

(3) The View Selection module chooses the phone that
presents the best view of the event. The notion of “best view"
is again subjective, however, some of the obviously poor
views need to be eliminated. The challenge lies in designing
heuristics that can achieve reliable elimination (such as ones
with less light, vibration, or camera obstructions), and choose
a good candidate from the ones remaining. Details regarding
our heuristics will be provided in Section 3.3.

(4) The Event Segmentation module receives a time-
stamped event-trigger, and scans through the sensor mea-
surements to identify the logical start and end of that event.
Each social event is likely to have an unique/complex pro-
jection over the different sensing dimensions. Identifying or
learning this projection pattern is a challenge.

MoVi attempts to address these individual challenges by
drawing from existing ideas, and combining them with some
new opportunities. The challenges are certainly complex, and
this system is by no means a mature solution to generating au-
tomated highlights. Instead it may be viewed as an early ef-
fort to explore the increasingly relevant research space. The
overall design and implementation captures some of the in-
herent opportunities in collaborative, multi-modal sensing,
but also exposes unanticipated pitfalls. The evaluation results
are limited to a few social occasions, and our ongoing work is

focused on far greater testing and refinement. Nevertheless,
the reported experiments are real and the results adequately
promising to justify the larger effort. In this spirit, we de-
scribe the system design and implementation next, followed
by evaluation results in Section 4.

3. SYSTEM DESIGN AND BASIC RESULTS
This section discusses the four main modules in MoVi.

Where suitable, the design choices are accompanied with
measurements and basic results. The measurements/results
are drawn from three different testing environments. (1) A
set of students gathering in the university lab on a weekend
to watch movies, play video games, and perform other fun
activities. (2) A research group visiting the Duke SmartHome
for a guided-tour. The SmartHome is a residence-laboratory
showcasing a variety of research prototypes and latest con-
sumer electronics. (3) A Thanksgiving dinner party at a
faculty’s house, attended by the research group members and
their friends.

3.1 Social Group Identification
Inferring social events requires collaboration among phones

that belong to the same social context. To this end, the scat-
tered phones in a party need to be grouped socially. Inter-
estingly, physical collocation may not be the perfect solution.
Two people in adjacent dinner tables (with their backs turned
to each other) may be in physical proximity, but still belong
to different social conversations (this scenario can be gener-
alized to people engaging in different activities in the same
social gathering). Thus people should not video-record just
based on spatial interpretation of a social event. In reality, a
complex notion of “same social context” unites these phones
into a group – MoVi tries to roughly capture this by exploiting
multiple dimensions of sensing. For instance, people seated
around a table may be facing the same object in the center of
the table (e.g., a flower vase), while people near the TV may
have a similar acoustic ambience. The group management
module correlates both the visual and acoustic ambience of
phones to deduce social groups. We begin with the descrip-
tion of the acoustic methods.

(1) Acoustic Grouping
Two sub-techniques are used for acoustic grouping, namely,
ringtone and ambient-sound grouping.

Grouping through Ringtone. To begin with an approxi-
mate grouping, the MoVi server chooses a random phone to
play a short high-frequency ring-tone (similar to a wireless
beacon) periodically. The ring-tone should ideally be outside
the audible frequency range, so that it is not interfered by hu-
man voices and also not annoying to people. With Nokia N95
phones, we were able to play narrow-bandwidth tones at the
edge of the audible range and use it with almost-inaudible
amplitude 2. The single-sided amplitude spectrum of the ring-
tone is shown in Figure 2. The target is to make the ringtone
exist only on 3500Hz. This frequency is high enough to avoid
being interfered by indoor noises.

2Audible range differs for different individuals. Our choice of
frequency, 3500Hz, was limited by hardware. However, with
new devices such as the iPhone, it is now possible to generate
and play sounds at much higher frequencies.



Figure 2: Single-sided amplitude spectrum of the ringtone

Phones in the same acoustic vicinity are expected to hear
the ringtone3. To detect which phones overheard this ring-
tone, the MoVi server generates a frequency-domain repre-
sentation of the sounds reported at each phone (a vector,
−→
S , with 4000 dimensions), and computes the similarity of
these vectors with the vector generated from the known ring-
tone (

−→
R ). The similarity function, expressed below, is essen-

tially a weighted intensity ratio after subtracting white noise
(Doppler shifts are explicitly addressed by computing similar-
ity over a wider frequency range).

Similarity =
Max{

−→
S (i)|3450 =< i <= 3550}

Max{
−→
R (i)|3450 =< i <= 3550}

Therefore, high similarities are detected when devices are
in the vicinity of the ringtone transmitter. The overhearing
range of a ringtone defines the auditory space around the
transmitter.

Figure 3 shows the similarity values over time at three
different phones placed near a ring-tone transmitter. The
first curve is the known transmitted ringtone and other three
curves are the ones received. As shown in Figure 3, the
overheard ringtones are in broad agreement with the true
ringtone. All phones that exhibit more than a threshold simi-
larity are assigned to the same acoustic group. A phone may
be assigned to multiple acoustic groups. At the end of this
operation, the party is said to be “acoustically covered".

Grouping through Ambient Sound. Ringtones may not
be always detectable, for example, when there is music in
the background, or other electro-mechanical hum from ma-
chines/devices on the ringtone’s frequency band. An alterna-
tive approach is to compute similarities between phones’
ambient sounds, and group them accordingly. Authors
in [12] address a similar problem – they use high-end, time-
synchronized devices to record ambient sound, and compare
them directly for signal matching. However, we observed
that mobile phones are weakly time-synchronized (in the or-
der of seconds), and hence, direct comparison results will
yield errors. Therefore, we classify ambient sound in stable
classes using an SVM (Support Vector Machine) on MFCC
(Mel-Frequency Cepstral Coefficients), and group phones
that “hear” the same classes of sound. We describe the pro-
cess next.

3We avoid bluetooth based grouping because the acoustic sig-
nals are better tailored to demarcate the context of human
conversations while bluetooth range may not reflect the so-
cial partition among people. However, in certain extremely
noisy places, bluetooth can be used to simplify the implemen-
tation.

Figure 3: Ringtone detection at phones within the acous-
tic zone of the transmitter.

For classification, we build a data benchmark with labeled
music, human conversation, and noise. The music data is
a widely used benchmark from Dortmund University [13],
composed of 9 types of music. Each sample is ten seconds
long and the total volume is for around 2.5 hours. The con-
versation data set is built by ourselves, and consists of 2 hours
of conversation data from different male and female speakers.
Samples from each speaker is around ten minutes long. The
noise data set is harder to build because it may vary entirely
based on the user’s background (i.e., the test may arrive from
a different distribution than the training set). However, given
that MoVi is mostly restricted to indoor usage, we have in-
corporated samples of A/C noises, microwave hums, and the
noise of phone grazing against trousers and table-tops. Each
sample is short in length but we have replicated the samples
to make their size equal to other acoustic data.

MFCC (Mel-Frequency Cepstral Coefficients) [14, 15] are
used as features extracted from sound samples. In sound
processing, Mel-frequency cepstrum is a representation of the
short-term power spectrum of a sound. MFCC are commonly
used as features in speech recognition and music information
retrieval. The process of computing MFCC involves four steps:
(1) We divide the audio stream into overlapping frames with
25ms frame width and 10ms forward shifts. The overlapping
frames better capture the subtle changes in sound (leading
to improved performance), but at the expense of higher com-
puting power. (2) Then, for each frame, we perform an FFT
to obtain the amplitude spectrum. However, since each frame
has a strict cut-off boundary, the FFT causes leakage. We em-
ploy the Hann window technique to reduce spectral leakage.
Briefly, Hann window is a raised cosine window that essen-
tially acts as a weighting function. The weighing function is
applied to the data to reduce the sharp discontinuity at the
boundary of frames. This is achieved by matching multiple
orders of derivatives, and setting the value of the derivatives
to zero [16]. (3) We then take the logarithm on the spec-
trum,and convert the log spectrum to Mel (perception-based)
spectrum. Using Mel scaled units [14] is expected to produce
better results than linear units because Mel scale units better
approximate human perception of sound. (4) We finally take
the Discrete Cosine Transform (DCT) on the Mel spectrum.
In [14], the author proves that this step approximates princi-
pal components analysis (PCA), the mathematically standard
way to decorrelate the components of the feature vectors, in



the context of speech recognition and music retrieval.

After feature extraction, classification is performed using a
two-step decision, using support vector machines (SVM), a
machine learning method for classification [17]. Coarse clas-
sification tries to distinguish music, conversation, and ambi-
ent noise. Finer classification is done for classes within con-
versation and music [18]. Classes for conversation include
segregating between male and female voices, which is useful
to discriminate between, say, two social groups, one of males,
another of females. Similarly, music is classified into multi-
ple genres. The overall cross validation accuracy is shown in
Table 1. The reported accuracy is tested on the benchmarks
described before. Based on such classification, Figure 4 shows
the grouping among two pairs of phones –<A,B> and<A,C>
– during the Thanksgiving party. Users of phones A and C are
close friends and were often together in the party, while user
of phone B joined A during some events as in. Accordingly, A
and C are more often grouped as in Figure 4(b) while user A
and B are usually separated (Figure 4(a)).

Table 1: Cross Validation Accuracy on Sound Benchmarks
Classification Type Accuracy

Music, Conversation, Noise 98.4535%
Speaker Gender 76.319%

Music Genre 40.3452%

Figure 4: Grouping based on acoustic ambience: (a) users
A and B’s acoustic ambiences’ similarity. (b) users A and
C’s acoustic ambiences’ similarity.

(2) Visual Grouping
As mentioned earlier, acoustic ambience alone is not a reli-
able indicator of social groups. Similarity in visual ambience,
including light intensity, surrounding color, and objects, can
offer greater confidence on the phone’s context [19]. We
describe our visual grouping schemes here.

Grouping through Light Intensity. In some cases, light in-
tensities vary across different areas in a social setting. Some
people may be in an outdoor porch, others in a well-lit indoor
kitchen, and still others in a darker living room, watching TV.

We implemented light-based grouping using analogous simi-
larity functions as used with sound. However, we found that
the light intensity is often sensitive to the user’s orientation,
nearby shadows, and obstructions in front of the camera. To
achieve robustness, we conservatively classified light inten-
sity into three classes, namely, bright, regular, and dark. Most
phones were associated to any one of these classes; some
phones with fluctuating light readings, were not visually-
grouped at all. Figure 5 illustrates samples from three light
classes from the social gathering at the university.

Figure 5: Grouping based on light intensity – samples
from 3 intensity classes.

Grouping through View Similarity. A second way of vi-
sual grouping pertains to similarity in the images from dif-
ferent phone cameras. Multiple people may simultaneously
look at the person making a wedding toast, or towards an en-
tering celebrity, or just towards the center of a table with a
birthday cake on it. MoVi intends to exploit this opportunity
of common view. To this end, we use an image generaliza-
tion technique called spatiogram [20]. Spatiograms are es-
sentially color histograms encoded with spatial information.
Briefly, through such a representation, pictures with similar
spatial organization of colors and edges exhibit high similar-
ity. The second order of spatiogram can be represented as:

hI(b) = 〈nb, µb, σb〉, b = 1, 2, 3 · · ·B

where nb is the number of pixels whose values are in the
bth bin (each bin is a range in color space), and µb and σb

are the mean vector and covariance matrices, respectively,
of the coordinates of those pixels. B is the number of bins.
Figures 6(a) and (b) show the view from two phones while
their owners are playing a multi-player video-game on a pro-
jector screen. Both cameras capture the screen as the major
part of the picture. Importantly, the views are from different
instants and angles, yet, the spatiogram similarities are high.
Comparing to the top two pictures, the views in Figure 6(c)
and (d) are not facing the screen, therefore exhibiting a much
lower view similarity.

The MoVi server mines through the acoustic and visual
information (offline), and combines them to form a single
audio-visual group. View similarity is assigned highest prior-
ity, while audio and light intensity are weighed with a lower,
equal priority. This final group is later used for collabora-
tively inferring the occurrence of events. Towards this goal,
we proceed to the discussion of event-triggers.

3.2 Trigger Detection
From the (recorded) multi-sensory information, the MoVi

server must identify patterns that suggest events of potential
social interest. This is challenging because of two factors.
First, the notion of interesting is subjective; second, the space



Figure 6: Grouping based on view similarity – top two
phones (a, b) are in the same group watching video
games, while the bottom two (c, d) are in the same room
but not watching the games..

of social events (defined by human cognition) is significantly
larger than what today’s sensing/inferring technology may be
able to discern. We admittedly lower our targets, and try to
identify some opportunities to detect event-triggers. We de-
sign three categories, namely (1) Specific Event Signature,
(2) Group Behavior Pattern, and (3) Neighbor Assistance.

(1) Specific Event Signatures
These signatures pertain to specific sensory triggers derived
from human activities that, in general, are considered worth
recording. Examples of interest include, laughter, clapping,
shouting, whistling, singing, etc. Since we cannot enumer-
ate all possible events, we intend to take advantage of col-
laboration using triggers related to group behavior instead of
relying heavily on specific event signatures. Therefore, as a
starting point, we have designed specific acoustic signatures
only for laughter [21] using MFCC. Validation across a sam-
ple of 10 to 15 minutes of laughter, from 4 different students,
offered evidence that our laughter-signature is robust to in-
dependent individuals. Negative samples are human conver-
sation and background noise. Figure 7 shows the distribution
of self-similarity between laughter-samples and cross similar-
ity between laughter and other negative samples. In other
words, the laughter samples and negative samples form dif-
ferent clusters in the 12 dimensional space. We achieved a
cross-validation accuracy of 76% on our benchmark.

(2) Group Behavior Pattern
The second event-trigger category exploits similarity in sen-
sory fluctuations across users in a group. When we observe
most members of a group behaving similarly, or experienc-
ing similar variances in ambience, we infer that a potentially
interesting event may be underway. Example triggers in this
category are view similarity detection, group rotation, and
acoustic-ambience fluctuation.

Unusual View Similarity. When phone cameras are found
viewing the same object from different angles, it could be
an event of interest (EoI). As mentioned earlier, some ex-

Figure 7: The CDFs show the distances between pairs of
laugh samples, and distances between laugh and other
sound samples.

amples are people watching the birthday cake on a table,
paying attention to a wedding toast, or everyone attracted
by a celebrity’s arrival. Recall that view-similarity was also
used as a grouping mechanism. However, to qualify as a trig-
ger, the view must remain similar for more than a threshold
duration. Thus, augmenting the same notion of spatiogram
with a minimum temporal correlation factor, we find good
event-triggers. In Figure 8, each curve shows a pairwise sim-
ilarity between two views in a group. The arrows show the
two time-points at which three (2 pairs) out of four users
are watching the same objects, that is i.e. their views show
higher similarity than the threshold (empirically set as 0.75).
Those three users are all triggered at the two time-points. Of
course, such a trigger may be further correlated with other
similarities in the acoustic and motion domains. Multi-sensor
triggers is a part of our ongoing work.

Figure 8: Pair-wise view similarity, at least among 3
phones, qualifies as a video trigger. Users 3, 1, and 4 are
all above the threshold at around 4100 seconds; users 3,
1, and 2 see a trigger at around 4500 seconds.

Group Rotation. An interesting event may prompt a large
number of people to rotate towards the event (a birthday
cake arrives on the table). Such “group rotation" – captured
through the compasses in several modern phones – can be
used as a trigger. If more than a threshold fraction of the
people turn within a reasonably small time window, MoVi
considers this a trigger for an interesting event. For this, the
compasses of the phones are always turned on (we measured



that the battery consumption is negligible). The compass-
based orientation triggers are further combined with ac-
celerometer triggers, indicating that people have turned and
moved together. The confidence in the trigger can then be
higher. Such a situation often happens, e.g., when a break-
out session ends in a conference, and everyone turns towards
the next speaker/performer.

Ambience Fluctuation. The general ambience of a social
group may fluctuate as a whole. Lights may be turned off
on a dance floor, music may be turned on, or even the whole
gathering may lapse into silence in anticipation of an event.
If such fluctuations are detectable across multiple users, they
may be interpreted as a good trigger. MoVi attempts to make
use of such collaborative sensor information. Different thresh-
olds on fluctuations are empirically set – with higher thresh-
olds for individual sensors, and relatively lower for joint sens-
ing. The current goal is to satisfy a specific trigger density, no
more than two triggers for each five minutes. Of course, this
parameter can also be tuned for specific needs. Whenever any
of the sensor’s reading (or combined) exceed the correspond-
ing threshold, all the videos from the cameras become candi-
dates for inclusion in the highlights. Figure 9 shows an exam-
ple of the sound fluctuation in time domain, taken from the
SmartHome visit. The dark lines specify the time-points when
the average of one-second time windows exceed a threshold.
These are accepted as triggers. The video-clips around these
time-points are eventually “stitched" into the video highlights.
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Figure 9: The fluctuations in the acoustic ambience are
interpreted as triggers (time-points shown in black lines).

(3) Neighbor Assistance
The last category of event-trigger opportunistically uses hu-
man participation. Whenever a user explicitly takes a picture
from the phone camera, the phone is programmed to send an
acoustic signal, along with the phone’s compass orientation.
Other cameras in the vicinity overhear this signal, and if they
are also oriented in a similar direction, the videos from the
camera are recruited as candidates for highlights. The intu-
ition is that humans are likely to take a picture of an interest-
ing event, and including that situation in the highlights may
be worthwhile. In this sense, MoVi brings the human into the
loop.

3.3 View Selection
The view selection module is tasked to select videos that

have a good view. Given that cameras are wearable (taped on
shirt pockets in our case), the views are also blocked by ob-

jects, or pointed towards uninteresting directions. Yet, many
of the views are often interesting because they are more per-
sonal, and captures the perspectives of a person. For this, we
again rely on multi-dimensional sensing.

Four heuristics are jointly considered to converge on the
“best view" among all the iPods that recorded that event.
(1) Face count: views with more human faces are given the
highest priority. This is because human interests are often
focused on people. Moreover, faces ensure that camera is
facing a reasonable height, not to the ceiling or the floor.
(2) Accelerometer reading ranking: to pick a stable view, the
cameras with the least accelerometer variance are assigned
proportionally higher points. More stable cameras are chosen
to minimize the possibility of motion blurs in the video. (3)
Light intensity: to ensure clarity and visibility, we ranked
the views in the “regular" light class higher, and significantly
de-prioritize the darker pictures. This is used only to rule out
extremely dark pictures, which mostly are caused by block-
ing. (4) Human in the loop: finally, if a view is triggered by
“neighbor assistance", the score for that view is increased.

Figure 10 shows two rows corresponding to two examples
of view selection; pictures were drawn from different iPod
videos during the Thanksgiving party. The first view in each
instance is selected and seems to be more interesting than the
rest of views. Figure 11 illustrates the same over time. At each
time-point, the blue circle tags the human selected view while
the red cross tags the MoVi select one. When two symbols
overlap, the view selection achieves right result. The most
common reason that view selection fails is that all four views
exhibit limited quality. Therefore, even for human selection,
the chosen one is only marginally better.

Figure 11: MoVi selects views that are similar to human
selected ones.

3.4 Event Segmentation
The Event Segmentation module is designed to identify the

logical start and end of an event. A clap after the “happy
birthday" song could be the acoustic trigger for video inclu-
sion. However, the event segmentation module should ideally
include the song as well, as a part of the highlights. The same
applies to a laughter trigger; MoVi should be able to capture
the joke that perhaps prompted it. In general, the challenge is
to scan through the sensor data received before and after the
trigger, and detect the logical start and end that may associate
with the trigger.
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Figure 10: View selection based on a multiple sensing dimensions. The first view is chosen for inclusion in the highlights
because of its better lighting quality, more number of distinct human faces, and less acceleration.

For event segmentation, we use the sound state-transition,
computed during the sound classification/grouping phase,
time as clues [6]. For example, when laughter is detected
during conversation, we rewind on the video, and try to iden-
tify the start of a conversation. Gender based voice classifi-
cation offers a finer ability to segment the video – if multiple
people were talking, and a women’s voice prompted the joke,
MoVi may be able to identify that voice, and segment the
video from where that voice started. Figure 12 shows our key
idea for event segmentation.

Figure 12: The scheme for segmenting events.

4. EVALUATION
This section attempts to asses MoVi’s overall efficacy in cre-

ating a video highlight. Due to the subjective/social nature
of this work, we choose to evaluate our work by combining
users’ assessment with metrics from information retrieval re-
search. We describe our experimental set-up and evaluation
metrics next, followed by the actual results.

4.1 Experiment Set-up
Our experiments have been performed in one controlled

setting and two natural social occasions. In each of these
scenarios, 5 volunteers wore the iPod video cameras on their
shirts, and clipped the Nokia N95 phones on their belts.
Figure 13 shows an example of students taped with iPod
Nanos near their shirt pockets. The iPods recorded contin-
uous video for around 1.5 hours (5400 seconds), while the
phones logged data from the accelerometer, compass, and mi-
crophone. In two of the three occasions, a few phone cameras
were strategically positioned on a table or cabinet, to record

the activities from a static perspective. All videos and sen-
sor measurements were downloaded to the (MATLAB-based)
MoVi server. Each video was organized into a sequence of 1
second clips. Together, the video clips from the volunteers
form a 5 × 5400 matrix, with an unique iPod-device number
for each row, and time (in seconds) indexed on each column.
The sensor readings from the phones are similarly indexed
into this matrix. MoVi’s target may now be defined as the
efficacy to pick the “socially interesting" elements from this
large matrix.

Figure 13: Users wearing iPods and Nokia phones.

The MoVi server analyzes the < device, time >-indexed
sensor readings to first form the social groups. During a par-
ticular time-window, matrix rows 1, 2, and 5 may be in the
first group, and rows 3 and 4 in the second. Figure 14(2)
shows an example grouping over time using two colors. Then,
for every second (i.e., along each column of the matrix), MoVi
scans through the readings of each phone to identify event
triggers. Detecting a possible trigger in an element of the ma-
trix, the server correlates it to other members of its group.
If correlation results meet the desired threshold, MoVi per-
forms view selection across members of that group. It is cer-
tainly possible that at time ti, phone 2’s sensor readings match
the trigger, but phone 5’s view is the best for recording this
event(Figure 14(3)). MoVi selects this element <5, ti >, and
advances to perform event segmentation. For this, the system
checks for the elements along the 5th row, and around column
ti. From these elements, the logical event segment is picked



based on observed state-transitions. The segment could be
the elements <5, ti−1 > to <5, ti+1 >, a 3 second video clip
(Figure 14(4)). Many such video clips get generated after
MoVi completes a scan over the entire matrix. These video
clips are sorted in time, and “stitched" into a “movie". Tempo-
ral overlaps between clips are possible, and they are pruned
by selecting the better view.

x x

Figure 14: MoVi operations illustrated via a matrix.

4.2 Evaluation Metrics
We use the metrics of Precision, Recall, and Fall-out for the

two uncontrolled experiments. These are standard metrics in
the area of information retrieval.

Precision =
|{Human Selected ∩MoVi Selected}|

|{MoVi Selected}| (1)

Recall =
|{Human Selected ∩MoVi Selected}|

|{Human Selected}| (2)

Fall − out = |{Non-Relevant ∩MoVi Selected}|
|{Non-Relevant}| (3)

The “Human Selected” parts are obtained by requesting a
person to look through the videos and demarcate time win-
dows that they believe are worth including in a highlights.
To avoid bias from a specific person, we have obtained time-
windows from multiple humans and also combined them (i.e.,
a union operation) into a single highlight4. We will report re-
sults for both cases. “Non-Relevant” moments refer to those
not selected by humans. The “MoVi Selected” moments are
self evident.

4.3 Performance Results
(1) Controlled Experiment
The aim of the controlled experiment is to verify whether all
the components of MoVi can operate in conjunction. To this
end, a weekend gathering is planned with pre-planned activ-
ities, including watching a movie, playing video-games, chat-
ting over newspaper articles, etc. This experiment is assessed
rather qualitatively, ensuring that the expected known excit-
ing events are captured well. Table 2 shows event-detection
4For each experiment, one human reviewer has watched one
full video from one camera, which lasts for more than an hour.
All video sources from all cameras are covered.

results. The first two columns show the designed events and
their occurrence times; the next two columns show the type of
triggers that detected them and the corresponding detection
times. Evidently, at least one of the triggers were able to cap-
ture the events, suggesting that MoVi achieves a reasonably
good event coverage. However, it also included a number of
events that were not worthy of recording (false positives). We
note that the human-selected portions of the video summed
up to 1.5 minutes (while the original video was for 5 min-
utes). The MoVi highlights covered the full human-selected
video with good accuracy (Table 3), and selected an addi-
tional one minute of false positives. Clearly, this is not a fair
evaluation, and will be drastically different in real occasions.
However, it is a sanity check that MoVi can achieve what it
absolutely should.

Table 2: Per-Trigger results in single experiment (false
positives not reported)

Event Truth Time Trigger Det. Time
Ringtone 25:56 RT, SF 25:56

All watch a game 26:46 IMG 27:09
Game sound 26:58 SF 27:22

2 users see board 28:07 IMG 28:33
2 users see demo 28:58 SF 29:00

Demo ends 31:18 missed
Laughing 34:53 LH, SF 34:55
Screaming 36:12 SF 36:17

Going outside 36:42 IMG, LI 37:18
RT:ringtone SF:sound fluctuation LI:light intensity

IMG:image similarity LH:fingerprint

Table 3: Average Trigger Accuracy and Event Detection
latency (including false positives)

Triggers Coverage Latency False Positive.
RT 100% 1 second 10%

IMG 80% 30 seconds 33%
LH 75% 3 seconds 33%
LI 80% 30 seconds 0%
SF 75% 5 second 20%

(2) Field Experiment: Thanksgiving Party
The two field experiments were performed to understand
MoVi’s ability to create a highlights in real social occasions.
This is significantly more challenging in view of a far larger
event space, potentially shaking cameras from real excite-
ment, greater mobility within the party, background music,
other noise in the surroundings, etc. The first experiment was
at a Thanksgiving party, attended by 14 people. Five atten-
dants were instrumented with iPods and phones. After the
party, videos from the five cameras were distributed to five
different people for evaluation. Manually selecting the high-
lights from the full-length video was unanimously agreed to
be a difficult and annoying task (often done as a professional
service). However, with help from friends, we were able to
obtain the Human Selected moments. The MoVi generated
highlights were also generated, and compared against the
manual version.

Figure 15 shows the comparative results at the granularity
of one second. The X-axis models the passage of time, and the



 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000

C
um

ul
at

iv
e 

H
ig

hl
ig

ht
s T

im
e

Time (Seconds)

MoVi Captured and Human Selected
MoVi Selected Moments

Human Selected Moments
Non-Overlap Part

Figure 15: Comparison between MoVi and human identified event list (Thanksgiving)

Figure 16: Zoom in view for two parts of Figure 15. Dark gray: MoVi, light gray: human selected

Y-axis counts the cumulative highlights duration selected until
a given time. For instance, Y-axis = 100 (at X-axis = 1200)
implies that 100 seconds of highlights were selected from the
first 1200 seconds of the party. Figure 16 presents a zoom-in
view for the time windows 2700-3500 and 1000-1400 sec-
onds. We observe that the MoVi highlights reasonably tracks
the Human Selected (HS) highlights. The curve (composed of
triangles) shows the time-points that both MoVi and HS iden-
tified as interesting. The non-overlapping parts (i.e., MoVi
selects that time, but HS does not) reflect the false positives
(curve composed of squares).

Based on this evaluation, we computed the overall Pre-
cision to be 0.3852, Recall to be 0.3885, and Fall-out to be
0.2109. Notice that the overall precision is computed by using
the union of all human selected video as the retrieval target.
Therefore, if a moment is labeled as interesting by one user,
it is considered interesting. We also compared the improve-
ment over a random selection of clips (i.e., percentage of
MoVi’s overlap with human (MoH) minus percentage of Ran-
dom’s overlap with Human (RoH), divided by RoH). MoVi’s

improvement is 101% on average.

In general, the false positives mainly arise due to two rea-
sons: (1) Falsely detected triggers: since the sensor-based
event detection method cannot achieve 100% accuracy, false
positives can occur. Since we assign more weight to infre-
quently happening triggers such as laughter, we trade off
some precision for better recall. (2) Subjective choice: the
user reviewing the video may declare some of the events
(even with triggers) as not interesting. Since this is a subjec-
tive judgment, false positive will occur.

Table 4 shows the per-user performance when the MoVi
highlights is compared with individual user’s selections. Since
each user only selects a very small portion of the entire video,
according to equation 1, the computed precision is expected
to be low. As a result, Recall and performance gains over the
Random scheme are more important metrics in this case. The
average improvement proves to be 101%.

The results are clearly not perfect, however, we believe, are
quite reasonable. To elaborate on this, we make three obser-
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Figure 17: Comparison between MoVi and human identified event list (SmartHome)

vations. (1) We chose a strict metric wherein MoVi-selected
clips are not rewarded even if they are very close (in time)
to the Human Selected clips. In reality, social events are not
bounded by drastic separations, and are likely to “fade away"
slowly over time. We observed that MoVi was often close to
the human selected segments; but was not rewarded for it.
(2) We believe that our human selected videos are partly bi-
ased – all users enthusiastically picked more clips towards the
beginning, and became conservative/impatient over time. On
the other hand, MoVi continued to automatically pick videos
based on pure event-triggers. This partly reduced perfor-
mance. (3) Finally, we emphasize that “human interest” is
a sophisticated notion and may not always project into the
sensing domains we are exploring. In particular, we observed
that humans identified a lot of videos based on the topics of
conversation, based on views that included food and decora-
tive objects, etc. Automatically detecting such interests will
perhaps require sophisticated speech recognition and image
processing. In light of Google’s recent launch of the Google
Goggles, an image search technology, we are considering its
application to MoVi. If MoVi searches its camera pictures
through Google Goggles, and retrieves that the view is of a
wedding dress, say, it could be a prospective trigger. Our cur-
rent triggers are unable to achieve such levels of distinction.
Yet, the MoVi-generated highlights was still interesting. Sev-
eral viewers showed excitement at the prospect that it was
generated without human intervention.

Table 4: Per-user performance (Thanksgiving party)
User Precision Recall Fall-out Over Random

1 21% 39% 23% 51%
2 5% 33% 12% 162%
3 9% 37% 25% 46%
4 18% 74% 20% 222%
5 4% 22% 17% 26%

Field Experiment: SmartHome Tour
The Duke SmartHome is a live-in laboratory dedicated to in-
novation and demonstration of future residential technology.
Eleven members of our research group attended a guided tour
into the SmartHome. Five users wore the iPods and carried
the N95 phones. Figure 17 shows the results.

In this experiment, the human highlights creator did not
find too many interesting events. This was due to the aca-
demic nature of the tour with mostly discussions and refer-
ences to what is planned for future. The human selected
moments proved to be very sparse, making it difficult to cap-
ture them precisely. MoVi’s Precision still is 0.3048, Recall is
0.4759, and Fall-out is 0.2318. Put differently, MoVi captured
most of the human selected moments but also selected many
other moments (false positives). Compared to Random (dis-
cussed earlier), the performance gain is 102% on average.
Table 5 shows the performance when manual highlights was
created from the union of multiple user-selections.

In summary, we find that inferring human interest (espe-



Table 5: Per-user performance (SmartHome)
User Precision Recall Fall-out Over Random

1 21% 62% 23% 124%
2 19% 45% 25% 67%
3 6% 50% 22% 116%

cially semantically defined ones) is hard. Although this is
a current limitation, MoVi’s trigger mechanism can capture
most events that have an explicit sensor clue. The highlighted
video is of reasonably good quality in terms of camera-angle,
lighting, and content. Although not a human-videographer
replacement, we believe that MoVi can serve as an additional
tool to complement today’s methods of video-recording and
manual editing.

5. RELATED WORK
The ideas, algorithms, and the design of MoVi is drawn

from a number of fields in computer science and electrical
engineering. Due to limited space, it is difficult to discuss
the entire body of related work in each of these areas. We
discuss some of the relevant papers from each field, followed
by works that synthesize them on the mobile computing plat-
form.

Wearable Computing and SenseCam. Recent advances
in wearable devices are beginning to influence mobile com-
puting trends. A new genre of sensing devices is beginning
to blend into the human clothing, jewelry, and in the so-
cial ambience. The Nokia Morph [11], SixthSense camera-
projectors [9], LifeWear, Kodak 1881 locket camera [22],
and many more are beginning to enter the commercial mar-
ket. A large number of projects, including MIT GroupMedia,
Smart Clothes, AuraNet and Gesture Pendant [23–25] have
exploited these devices to build context-aware applications.
Microsoft Research has recently developed SenseCam, a wear-
able camera equipped with multiple sensors. The camera
takes a photo whenever the sensor readings meet a specified
degree of fluctuations in the environment (e.g., change in
light levels, above-average body heat). The photos are later
used as a pictorial diary to refresh the user’s memory, perhaps
after a vacation [7]. MoVi draws from many of these projects
to develop a collaborative sensing and event-coverage system
on the mobile phone platform.

Computer Vision. Researchers in Computer Vision have
studied the possibility of extracting semantic information
from pictures and videos. Of particular interest are works
that use audio-information to segment video into logical
events [26,27]. Another body of work attempts scene under-
standing and reconstruction [28, 29] by combining multiple
views of the same scene/landmark to a iconic scene graph.
On a different direction, authors in [30] have investigated the
reason for longer human-attention on certain pictures; the
study helps in developing heuristics that are useful to short-
list “good" pictures. For instance, pictures that display greater
symmetry, or have a moderate number of faces (identifiable
through face recognition), are typically viewed longer [31].
Clearly, MoVi is aligned to take advantage of these findings.
We are by no means experts in Computer Vision, and hence,
will draw on the existing tools to infer social events and select
viewing angles. Additional processing/algorithms will still be

necessary over the other dimensions of sensing.

Information Retrieval. Information retrieval (IR) [32]
deals with the representation, storage, and organization of
(and access to) information items. Mature work in this area,
in collaboration with Artificial Intelligence (AI) and Natural
Language Processing (NLP), have attempted to interpret the
semantics of a query, and answer it by drawing from disparate
information sources [33]. Some research on mobile informa-
tion retrieval [34] have focused on clustering retrieval results
to accommodate small display devices. Our objective of ex-
tracting the “highlights" can be viewed as a query, and the
mobile phone sensors as the disparate sources of information.
MoVi is designed to utilize metrics and algorithms from infor-
mation retrieval.

Sensor Network of Cameras. Recently, distributed cam-
era networks have received significant research attention. Of
interest are projects that observe and model sequences of
human activity. For example, BehaviorScope [35] builds a
home sensor network to monitor and help elders that live
home alone. Distributed views are used to infer networked
cameras’ locations. Smart cameras [36] are deployed to track
real time traffic load. These works provide us useful models
to organize information from multiple sensors/mobile nodes
in a manner that will provide good coverage and correlation.

People-Centric Sensing. In mobile computing, people-
centric, participatory sensing through mobile devices are
gaining rapid popularity. Example applications include CenseMe
[8], which detects the user’s activity status through sensor
readings and shares this status over online social networks.
SoundSense [6] implements audio processing and learning
algorithms on the phone to classify ambient sound types –
the authors propose an audio journal as an application. Yinz-
Cam [37] enables watching sports games through different
camera angles on mobile devices. While these systems are in-
dividual specific, others correlate information from multiple
sources to generate a higher level view of the environment.
PEIR, Micro-Blog, Urban Tomography [38,39], are few exam-
ples in this area.

Our work may be considered a mash-up of diverse tech-
niques that together realize a fuller system. Customizing the
techniques to the target application often presents new types
of research challenges that are imperceptible when viewed in
isolation. As an example, deducing human collocation based
on ambient acoustics have been a studied problem [40]. Yet,
when applied to the social context, two physically nearby in-
dividuals may be participating in conversations in two ad-
jacent dinner tables. Segregating them into distinct social
groups is non-trivial. MoVi makes an attempt to assimilate
the rich information feeds from mobile phones and process
them using a combination of existing techniques drawn from
vision, data-mining, and signal processing. In that sense, it
is a new mash-up of existing ideas. Our novelty comes from
the collaboration of devices and the automatic detection of in-
teresting events. Our preliminary ideas have been published
in [41].

6. LIMITATIONS AND ONGOING WORK
MoVi is a first step towards a longer term project on col-

laborative sensing in social settings. The reported work has



limitations, several of which stem from the non-trivial nature
of the problem. We discuss these limitations along with av-
enues to address some of them.

Retrieval accuracy. The overall precision of our system
certainly has room for improvement. Since “human inter-
est” is a semantically sophisticated notion, to achieve perfect
accuracy is challenging. However, as an early step towards
social event retrieval, the precision of around 43% can be
considered encouraging [27,33,42].

Unsatisfying camera views. Though view selection is
used, cameras in a group may all have unsatisfying views of
a specific event. The video highlights for these events exhibit
limited quality. This problem can be partly addressed by in-
troducing some static cameras into the system to provide a
degree of all-time performance guarantee. The ideas in this
paper can be extended to these static wall mounted/wearable
cameras equipped with multiple sensors.

Energy consumption. Continuous video-recording on the
iPod Nanos persists for less than 2 hours. The mobile phone
sensors can last for around 4 hours. Thus, in parallel to im-
proving our event detection algorithms, we are beginning to
consider energy as a first class design primitive. One option
is to explore peer to peer coordination among phones – few
phones may monitor a social zone, allowing other phones to
sleep. Lightweight duty cycling, perhaps with periodic help
from the server, is a part of our future effort.

Privacy. User privacy is certainly a concern in a system
like MoVi. For this paper, we have assumed that attendants
in a social party may share mutual trust, and hence, may
agree to collaborative video-recording. This may not scale
to other social occasions. Certain other applications, such as
travel blogging or distributed surveillance may be amenable
to MoVi. Even then, the privacy concerns need to be carefully
considered.

Greater algorithmic sophistication. We have drawn from
preliminary ideas, tools, and algorithms, in data mining, in-
formation retrieval, signal processing, and image processing.
A problem such as this requires greater sophistication in these
algorithms. Our ongoing work is focused towards this direc-
tion, with a specific goal of prioritizing among different event
triggers. One advantage of prioritizing will permit relative
ranking between event-triggers; this may in turn allow for
creating MoVi highlights for a user-specified duration. At
present, the MoVi highlights are of a fixed duration.

Dissimilar movement between phones and iPods. We of-
ten observed that the acceleration in the phone was not nec-
essarily correlated to the vibration in the video-clip. This is
a result of the phone being on the belt and the iPod taped to
the chest. Sensors on different parts of the body may sense
differently, leading to potential false positives. One possibility
is to apply image stabilization algorithms on the video itself
to gain better view quality.

7. CONCLUSION
This paper explores a new notion of “social activity cover-

age”. Like spatial coverage in sensor networks (where any
point in space needs to be within the sensing range of at

least one sensor), social activity coverage pertains to cover-
ing moments of social interest. Moreover, the notion of social
activity is subjective, and thus identifying triggers to cover
them is challenging. We take a first step through a system
called Mobile Phone based Video Highlights (MoVi). MoVi
collaboratively senses the ambience through multiple mobile
phones and captures social moments worth recording. The
short video-clips from different times and viewing angles are
stitched offline to form a video highlights of the social occa-
sion. We believe that MoVi is one instantiation of social activ-
ity coverage; the future is likely to witness a variety of other
applications built on this primitive of collaborative sensing
and information distillation.
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